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Akhmediev breathers, Ma solitons, and general breathers from rogue waves:
A case study in the Manakov system
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We present explicit forms of general breather (GB), Akhmediev breather (AB), Ma soliton (MS), and rogue
wave (RW) solutions of the two-component nonlinear Schrödinger (NLS) equation, namely Manakov equation.
We derive these solutions through two different routes. In the forward route, we first construct a suitable periodic
envelope soliton solution to this model from which we derive GB, AB, MS, and RW solutions. We then consider
the RW solution as the starting point and derive AB, MS, and GB in the reverse direction. The second approach
has not been illustrated so far for the two component NLS equation. Our results show that the above rational
solutions of the Manakov system can be derived from the standard scalar nonlinear Schrödinger equation with a
modified nonlinearity parameter. Through this two-way approach we establish a broader understanding of these
rational solutions, which will be of interest in a variety of situations.
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I. INTRODUCTION

We consider the integrable system of two coupled nonlinear
Schrödinger equations (NLSEs), namely the Manakov system,

iq1t + q1xx + 2μ(|q1|2 + |q2|2)q1 = 0,
(1)

iq2t + q2xx + 2μ(|q1|2 + |q2|2)q2 = 0,

where q1 and q2 are wave envelopes, x and t are space and
time variables, respectively, μ is a real constant, and subscripts
denote partial derivatives with respect to the corresponding
variables. Equation (1) represent the propagation of an optical
pulse in a birefringent optical fiber and in wavelength division
multiplexed system [1]. It has been studied widely in the
literature [1–7]. The complete integrability of this system
of coupled NLSEs was first established by Manakov [1].
It has also been demonstrated that this two-component
vector generalization of the focusing NLS equation admits
several interesting properties, including (i) infinite number
of conservation laws [1], (ii) Lax pair [1], (iii) an infinite-
dimensional algebra of noncommutative symmetries [3], (iv)
bilinear representation and bright multisoliton solutions [6],
and so on. Equation (1) also appear in multicomponent
Bose-Einstein condensates [8], biophysics [9], finance [10],
and oceanographic studies [11]. Solitons in coupled NLSEs
have been the subject of intense study over the past few
years because of their interesting collision properties and
their robustness against external perturbations. The explicit
multibright and dark soliton solutions of Eq. (1) were obtained
by Radhakrishnan et al. [6,7]. It has also been demonstrated
that the soliton solutions of Eq. (1) exhibit a fascinating shape
changing collision, resulting in a redistribution of intensity
between the modes of the two solitons, which is not observed
in the scalar NLSE case [7].

Very recently, a new rational solution called rogue wave
(RW) solution has attracted considerable attention [12–37].
RWs, alternatively called freak or giant waves, were first
observed in arbitrary depth of ocean circumstances. A wave
is classified into this category when its wave height (distance
from trough to crest) reaches a value that is at least twice
that of the significant wave height [12]. These waves may

arise from the instability of a certain class of initial conditions
that tend to grow exponentially and, thus, have the possibility
of increasing up to very high amplitudes, due to modulation
instability [13]. Over the years, RWs have also been observed
in models that arise in the description of multicomponent
Bose-Einstein condensates [14], capillary waves [15], mul-
ticomponent plasmas [16], and even in finance [17]. Recently,
efforts have been made to explain the RW excitation through
a nonlinear process. It has been found that the NLS equation
can describe many dynamical features of the RW. Certain kinds
of exact solutions of the NLS equation have been considered
to describe possible mechanisms for the formation of RWs
such as Peregrine soliton, time periodic breather or Ma soliton
(MS), and space periodic breather or Akhmediev breather
(AB) [18,19]. As a consequence, attempts have been made
to construct RW solution through different methods for the
NLS equation and its higher derivative generalizations. One
way of obtaining RW solution or Peregrine soliton for a given
system is to first construct a breather solution, either AB or
MS. From the latter, the RW solution can be deduced in an
appropriate limit.

As far as the system of two coupled NLSEs is concerned,
in recent years, the following studies have been undertaken.
Breathers and rational breather solutions of multicomponent
NLSE are presented in Ref. [20] in a determinantal form, as
limiting cases in suitable degenerations of algebrogeometric
solutions. Explicit first-, second-, and third-order RW solutions
of Eq. (1) have been constructed in Ref. [21] through
the modified Darboux transformation method. The authors
have also studied some basic properties of multirogue wave
solutions and their collision structures. In Ref. [22], two types
of RW solutions through Darboux transformation method
have been derived. The authors have shown that while the
first kind of RW solution is similar to the first-order RW
solution of NLSE, the second kind of RW behaves differently
from that of the first-order rogue wave solution. Recently,
an in-depth analysis on the construction of vector Peregrine
soliton solution and bright-dark-RW solution of Eq. (1) has
been made in Ref. [23]. In all the above cited works, only the
explicit forms of RWs are given, and we do not see any simple
tractable form of breather solutions.

022918-11539-3755/2013/88(2)/022918(11) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.022918


N. VISHNU PRIYA, M. SENTHILVELAN, AND M. LAKSHMANAN PHYSICAL REVIEW E 88, 022918 (2013)

Since the breather solution plays an important role in
the formation of RWs, we aim here to derive the breather
solution for the widely studied nonlinear evolution Eq. (1).
We divide our analysis into two parts. In the first part, we
construct a periodic envelope two-soliton solution through
Hirota’s bilinearization method. By appropriately restricting
the wave number (of one of the solitons to be the complex
conjugate of the other), which appears in the two-soliton
solution, we obtain the GB form of Eq. (1). From the GB
solution, we derive AB, MS, and RW solutions. We note here
that through a restricted set of transformations, the GB solution
of the Manakov equation can be obtained from the GB solution
of the NLS equation with a modified nonlinear parameter. In
other words, one can generate the above rational solutions of
the Manakov system from the standard nonlinear Schrödinger
equation with a modified nonlinear parameter.

In the second part of our work, we analyze the reverse
problem: How can one construct an AB or MS or GB from
a RW solution? We answer this question by rewriting the
RW solution in a factorized form and then generalizing this
factorized form in an imbricate series expression [38–40], with
certain unknown parameters in this series, following the earlier
work of Tajiri and Watanabe [41] for the case of scalar NLS
equation, and finally finding these unknown parameters in the
imbricate series by substituting it into Eq. (1) and solving the
resultant equations. With three different forms of the imbricate
series, we derive the AB, MS, and GB solutions from the RW
solution of Eq. (1).

The plan of the paper is as follows. In Sec. II, we construct
the explicit form of the GB solution of the two coupled
NLSE system Eq. (1) through Hirota’s bilinearization method.
We then explain the method of deriving AB, MS, and RW
solutions from the GB solution. The obtained form of RW
solution coincides with the ones in the literature. In Sec. III,
we discuss the method of constructing the AB solution from
the RW solution. In Sec. IV, we demonstrate the construction
of MS from RW. In Sec. V, we formulate the imbricate series
form for the RWs with certain unknown arbitrary functions
in it and then compare this expression with the one derived
from the GB in the same way. The comparison provides exact
expressions for the unknown arbitrary functions, which appear
in the imbricate series of the RW. In this way, we establish a
method of constructing GBs from RW. Finally, in Sec. VI, we
present our conclusions.

II. GENERAL BREATHER

We seek a periodic envelope solution to the CNLS Eq. (1)
with the boundary conditions |qi |2 → τ 2

i , i = 1,2, as x →
±∞, where τ1 and τ2 are real constants. To start with, we
bilinearize Eq. (1) through the transformation q1 = g

f
and

q2 = h
f

, where g and h are complex functions and f is a
real function. The resultant bilinearized forms read(

iDt + 2ikDx + D2
x

)
g · f = 0,(

iDt + 2ikDx + D2
x

)
h · f = 0, (2)

(
D2

t + 2μ
(
τ 2

1 + τ 2
2

))
f · f − 2μ(|g|2 + |h|2) = 0.

In the above, Dt and Dx are Hirota’s bilinear operators
[6]. Once the nonlinear evolutionary equation has been

bilinearized, with truncated parameter expansion at different
levels, a series of solutions, in particular the N-soliton
solution, can be obtained. As far as Eqs. (2) are concerned,
the N-soliton solution can be obtained with respect to the
expansion parameter χ , that is g = g0(1 + χg1 + χ2g2 + · · ·),
h = h0(1 + χh1 + χ2h2 + · · ·), and f = (1 + χf1 + χ2f2 +
· · ·), where gi’s and hi’s, i = 0,1,2,..N , are complex functions
of x and t and fi’s are real variables.

As our aim is to obtain the two-soliton solution, we
terminate the expansion at quadratic powers in χ , that is
g = g0(1 + χg1 + χ2g2), h = h0(1 + χh1 + χ2h2), and f =
(1 + χf1 + χ2f2). The resultant two-soliton solution emerges
in the form

q1 = τ1e
iθ g

f
and q2 = τ2e

iθ h

f
, θ = kx − ωt, (3)

where

g = h = 1 + eη1+2iφ1 + eη2+2iφ2 + aeη1+η2+2iφ1+2iφ2 ,

f = 1 + eη1 + eη2 + ae(η1+η2), ηj = pjx − �j t + η0
j ,

j = 1,2.

In the above pj , �j , η0
j and φj , j = 1,2, are complex

parameters and

ω = k2 − 2μ
(
τ 2

1 + τ 2
2

)
, pj = 2i

√
μ

(
τ 2

1 + τ 2
2

)
sin φj ,

�j = 2kjpj − p2
j cot φj , j = 1,2,

a =
[

sin 1
2 (φ1 − φ2)

sin 1
2 (φ1 + φ2)

]2

. (4)

In the above we have chosen g = h. One can proceed by
assuming g �= h also. However, in order to obtain the required
breather solutions, we find that one has to essentially fix g = h.

We have not pursued the possibility of a more general
bilinearization than Eq. (2), which will lead to the possibility
g �= h in Eq. (3). We hope to consider such a generalization
in future. So in our analysis, we have made this choice in the
beginning itself.

Note that due to the choice g = h in Eq. (3), one can
effectively make a transformation

q1 = τ1q, q2 = τ2q, (5)

so that

q = eiθ g

f
= eiθ h

f
(6)

satisfies the scalar NLS equation with the nonlinearity param-
eter 2μ(τ 2

1 + τ 2
2 ):

iqt + qxx + 2μ
(
τ 2

1 + τ 2
2

)|q|2q = 0. (7)

Consequently, one can write down the breather solution of the
variables q1 and q2 equivalently from the breather solution of
the above scalar NLS equation as well.

The constants, φj = φjR + iφjI �= 0, j = 1,2, help us to
split the above breather expression into Akhmediev and Ma
breathers as we see below. To obtain the breather solution
from the above two-soliton solution, we take η1 = η∗

2 ≡ η and
φ2 = φ∗

1 ± π . Substituting these two restrictions in Eq. (3) and
considering η = ηR + iηI and φ1 = φR + iφI , the exponential
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FIG. 1. (Color online) (a) General breather profile of q1 for the
values τ1 = 2, τ2 = 1, φR = 4, φI = 1, ηo

I = 0.5, ηo
R = 0.2, k = 0.24,

μ = 0.2 in Eqs. (5) and (8). (b) Corresponding contour plot. Similar
profile occurs for q2 also (not shown here).

functions appearing in Eq. (3) can be rewritten in terms
of trigonometric and hyperbolic functions. The resultant
expression for q turns out to be

q = cos 2φRei(θ+2φR )

{
1 + 1√

a cosh(ηR + σ ) + cos ηI

×
[(

cosh 2φI

cos 2φR

− 1

)
cos ηI + i

(√
a tan 2φR

× sinh(ηR + σ ) − sinh 2φI

cos 2φR

sin ηI

)]}
, (8)

where ηR = pRx − �Rt + η0
R , ηI = pIx − �I t + η0

I , p1 =
pR + ipI , �1 = �R + i�I , η0

R , η0
I , and σ are constants. The

exact forms of pR , �R , pI , and �I are given below:

pR = −2
√

μ
(
τ 2

1 + τ 2
2

)
cos φR sinh φI ,

pI = 2
√

μ
(
τ 2

1 + τ 2
2

)
sin φR cosh φI ,

�R = 2kpR −
(
p2

R − p2
I

)
sin 2φR + 2pRpI sinh 2φI

cosh 2φI − cos 2φR

,

�I = 2kpI −
(
p2

R − p2
I

)
sinh 2φI − 2pRpI sin 2φR

cosh 2φI − cos 2φR

.

Consequently, the solution of the Manakov Eq. (1) can be
obtained from Eq. (5) as q1 = τ1q and q2 = τ2q. Equation (8)
combined with Eq. (5) constitutes the GB solution of the
CNLS Eq. (1). Figure 1 illustrates the behavior of this breather
solution, which is periodic both in space and in time. From
the GB solution we can derive AB, MS, and RW solutions by
restricting the parameters φR and φI suitably. In the following,
we report the explicit forms of these solutions.

A. AB from GB

To derive the AB solution, we consider the choice φR �= 0
and φI = 0 in Eq. (8). This restriction fixes the wave number
to be pure imaginary. In this case, we find

pR = 0, pI = 2
√

μ
(
τ 2

1 + τ 2
2

)
sin φR,

(9)
�R = p2

I cot φR, �I = 2kpI .

FIG. 2. (Color online) (a) Akhmediev breather profile of q1 for
the values τ1 = 2, τ2 = 1, φR = 0.5, μ = 0.2, ηo

I = 0.5, ηo
R = 0.1 in

Eq. (10). (b) Corresponding contour plot. Similar profile occurs for
q2 also (not shown here).

Substituting the GB solution Eq. (8) into Eq. (5), the latter
provides

q1 = τ1 cos(2φR)ei(θ+2φR )(1 + L),

q2 = τ2 cos(2φR)ei(θ+2φR )(1 + L),

L =
[

1
cos(2φR ) − 1

]
cos ηI + i

√
a tan(2φR) sinh(ηR + σ )

√
a cosh(ηR + σ ) + cos ηI

.

(10)

Here, ηR = −�Rt + η0
R and ηI = pIx − �I t + η0

I . We have
plotted the solution Eq. (10) in Fig. 2. The solution is periodic
in x and localized in t . This spatially periodic breather is
nothing but the AB solution.

B. MS from GB

Now we consider the other case, φR = 0 and φI �= 0 with
k = 0 in the GB solution [Eq. (5) with Eq. (8)]. This restriction
fixes the imaginary part of the wave number to be zero. This
in turn provides another form of the breather solution, which
will propagate only in the time direction, that is

q1 = τ1e
iθ (1 + V ), q2 = τ2e

iθ (1 + V ),

V = cosh(2φI ) − 1√
a cosh(ηR + σ ) + cos ηI

[cos ηI − i sinh(2φI ) sin ηI ],

(11)

where

pR = −2
√

μ
(
τ 2

1 + τ 2
2

)
sinh φI , pI = 0,

�R = 2kpR, �I = p2
R coth φI , ηR = pRx − �Rt + η0

R,

and

ηI = −�I t + η0
I . (12)

We depict this solution in Fig. 3. The plot confirms that the
solution is periodic in t and localized in x. The wave solution
that is temporally breathing and spatially localized is called a
Ma breather/MS.

C. RW from GB

To construct the RW solution from the GB expression we
consider both φR and φI to be nonzero and evaluate the latter
in the limit ε → 0 by implementing a Taylor expansion. Doing
so we find φR = εγ and φI = ερ, where ε is a small parameter,
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FIG. 3. (Color online) (a) Ma breather profile of q1 for the values
τ1 = 2, τ2 = 1, φI = 0.8, μ = 0.2, ηo

I = 0.4, ηo
R = 0.3 in Eq. (11).

(b) Corresponding contour plot. Similar profile occurs for q2 also
(not shown here).

and γ and ρ are constants. Substituting these two expressions
in Eq. (4) with the restriction η2 = η∗

1, φ2 = φ∗
1 + π and

making the Taylor expansion at ε → 0, we obtain

pR = −2
√

μ
(
τ 2

1 + τ 2
2

)
ρε + O(ε3),

pI = 2
√

μ
(
τ 2

1 + τ 2
2

)
γ ε + O(ε3),

�R = [
4μ

(
τ 2

1 + τ 2
2

)
γ − 4k

√
μ

(
τ 2

1 + τ 2
2

)
ρ
]
ε + O(ε3),

�I = [
4μ

(
τ 2

1 + τ 2
2

)
ρ + 4k

√
μ

(
τ 2

1 + τ 2
2

)
γ
]
ε + O(ε3), (13)

√
a = 1 + 1

2 (γ 2 + ρ2)ε2,

f = [(
η̃2

R + η̃2
I

) + (γ 2 + ρ2)
]
ε2 + O(ε3),

g = [(
η̃2

R + η̃2
I

)−3(γ 2+ρ2) + 4i(γ η̃R + ρη̃I )
]
ε2 +O(ε3).

It is also straightforward to check that ηR − η0
R = εη̃R +

O(ε2) and ηI − η0
I = εη̃I + O(ε2). Substituting the above

expressions, Eq. (13), into the general breather form Eq. (8)
and taking the limit ε → 0 in the resultant expression, we
arrive at

q1 = τ1e
iθ (1 − Q) and q2 = τ2e

iθ (1 − Q), (14)

FIG. 4. (Color online) (a) Rogue wave profile of q1 for the
values τ1 = 0.8, τ2 = 1.5, μ = 1, k = 0 in Eq. (14). (b) Corre-
sponding contour plot. Similar profile occurs for q2 also (not shown
here).

where

Q = 4 + 16iμ
(
τ 2

1 + τ 2
2

)
t

1 + 4μ
(
τ 2

1 + τ 2
2

)
(x − 2kt)2 + 16μ2

(
τ 2

1 + τ 2
2

)2
t2

,

which is nothing but the RW solution of CNLS system, which
is localized both in space and time. The RW solution of the
CNLS equation matches with the one presented in Ref. [21].
We note that the restriction τ2 = 0 in Eq. (11) provides the RW
solution of the scalar NLS equation. A typical evolution of the
RW is shown in Fig. 4.

In the above, we derived AB, MB, and RW solutions from
the GB solution. On the other hand, we now point out the
interesting possibility that one can also construct the above
solutions from the RW solution itself in a reverse way. In the
following, we demonstrate this by following the procedure of
Tajiri and Watanabe for the case of the scalar NLS equation
[41]. To do so we consider the RW solutions in an imbricate
series form.

III. AB FROM RW

To derive AB from RW solution we first factorize the RW
solution Eq. (14) in the following form, namely

q1 = τ1 exp
(
i
{
kx − [

k2 − 2μ
(
τ 2

1 + τ 2
2

)]
t
}) ⎡

⎣1 + 1

2iμ
(
τ 2

1 + τ 2
2

)
t + 1

2

√
1 + 4μ

(
τ 2

1 + τ 2
2

)
(x − 2kt)2

⎤
⎦

×
⎡
⎣1 + 1

2iμ
(
τ 2

1 + τ 2
2

)
t − 1

2

√
1 + 4μ

(
τ 2

1 + τ 2
2

)
(x − 2kt)2

⎤
⎦ ,

q2 = τ2 exp
(
i
{
kx − [

k2 − 2μ
(
τ 2

1 + τ 2
2

)]
t
}) ⎡

⎣1 + 1

2iμ
(
τ 2

1 + τ 2
2

)
t + 1

2

√
1 + 4μ

(
τ 2

1 + τ 2
2

)
(x − 2kt)2

⎤
⎦

×
⎡
⎣1 + 1

2iμ
(
τ 2

1 + τ 2
2

)
t − 1

2

√
1 + 4μ

(
τ 2

1 + τ 2
2

)
(x − 2kt)2

⎤
⎦ . (15)
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We note here that one of the remarkable properties displayed
by many classical nonlinear evolution equations possessing
soliton modes is a nonlinear superposition principle [38–40].
More precisely, an infinite array of solitons placed at equal
intervals constitutes an exact periodic solution of the evolution
equations. For example, if we take the algebraic soliton
solution of the modified Korteweg-de Vries equation in the
form u = uo − 4u0

4u2
0(x−6u2

0t)
2+1

, we can write a more general

solution through a superposition of these algebraic solitons
as u = u0 − ∑∞

m=−∞
4u0

4u2
0(x−mλ−ct)2+1

, where λ is the spacing

between successive peaks of the sequence of solitary pulses
and c is the phase speed of the pattern, which is to be
determined. By rewriting the algebraic soliton solution as a
hyperbolic cot function and further splitting the latter as sinh
and cosh functions, one can get an expression for the periodic
solution with an unknown parameter c. This parameter can be
derived by substituting the hyperbolic cot function form in the
original evolutionary equation (for more details one may refer
to Ref. [42] and the references cited therein). The above is
indeed an imbricate solution. In fact, a theorem on imbricate
series (see for example, Theorem 3.1 in Ref. [38]) asserts
that any periodic function f (x) with period L has two series
representations. If the usual Fourier series is

f (x) = α

2π

∞∑
n=−∞

g(αn)ei2πxn/L, α > 0, (16)

then the alternative expansion is the imbricate series

f (x) =
∞∑

m=−∞
G

[
2π

Lα
(x − mL)

]
, (17)

where G(k) is the Fourier transform of g(x), that is,

G(k) = 1

2π

∫ ∞

−∞
g(x)eikxdx. (18)

However, the imbricate series of rogue waves, which we
consider in the following, will be different from the usual
way of applying such a series, which is the superposition
of the solitary waves. The important point here is that the
breather solution Eq. (15) is being constructed by the product
of two imbricate series of rogue waves as shown below.
For mathematical simplicity, we consider the constant k = 0
hereafter (for k �= 0, see below). We consider Eq. (15) in a
more general form, that is

q1 = τ1 exp[i(σ t + φ)]

[
1 + b

∞∑
n=−∞

1

iαt + v(x) + n

]

×
[

1 + b

∞∑
n=−∞

1

iαt − v(x) + n

]
,

q2 = τ2 exp[i(σ t + φ)]

[
1 + b

∞∑
n=−∞

1

iαt + v(x) + n

]

×
[

1 + b

∞∑
n=−∞

1

iαt − v(x) + n

]
, (19)

where b is a constant, α, σ , and v(x) are all to be determined.
However, to derive the AB solution we consider only this

series. In the above expression, we have grouped the spatial
variable x with the real part and the time variable t with the
imaginary part. We have superposed the RW solutions in the
x direction. Using the trigonometric identity [43] cot πx =

1
πx

+ x
π

∑∞
n=−∞

1
n(x−n) , n �= 0, we replace the infinite series

by cot function and rewrite Eq. (19) in a more compact form
as

q1 = τ1 exp[i(σ t + φ)](1 + bπ cot{π [v(x) + iαt]})
× (1 − bπ cot{π [v(x) − iαt]}),

q2 = τ2 exp[i(σ t + φ)](1 + bπ cot{π [v(x) + iαt]})
× (1 − bπ cot{π [v(x) − iαt]}). (20)

Our task is to plug Eq. (20) into Eq. (1) and determine
the parameters α, σ and the function v(x) consistently.
To do so, in the first step, we replace the cot functions
in Eq. (20) as cos[πv(x) ± iπαt]/ sin[πv(x) ± iπαt] and
substitute it into Eq. (1) and rewrite the equations in terms
of sin[πv(x) ± iπαt] and cos[πv(x) ± iπαt] and their pow-
ers and products. We then simplify these equations using
suitable trigonometric identities and rearrange the resultant
expressions in the variables cos(iπαt) sin(iπαt) and their
powers. By doing so, we have arranged the spatial variable
to appear only in the coefficients in the resultant equation.
The final expressions for both the equations in Eq. (1) turn
out to be one and the same. As a result, we proceed to
determine the unknowns σ , μ, and v(x) from the single
equation

r1 cos6(iπαt) + r2 cos5(iπαt) sin(iπαt) + r3 cos4(iπαt)

+ r4 cos3(iπαt) sin(iπαt) + r5 cos2(iπαt)

+ r6 cos(iπαt) sin(iπαt) + r7 = 0, (21)

where

r1 = 2μ
(
τ 2

1 + τ 2
2

)
(1 + b2π2 − b4π4 − b6π6) − σ + b2π2σ,

r2 = 2bπ
[
σ − 2μ

(
τ 2

1 + τ 2
2

)
(1 + b2π2)2

]
,

r3 = 2μ
(
τ 2

1 + τ 2
2

)
[−3 cos2 A − b2π2(1 + cos2 A)

+ b4π4(2 − cos2 A) + 3b6π6 sin2 A] + 3σ cos2 A

− b2π2σ (1 + cos2 A) − 4b2π4v′2(1 − 2 cos2 A)

+ 2bπ2α(1 − 2 cos2 A) + 4b2π3v′′ cos A sin A,

r4 = 8μ
(
τ 2

1 + τ 2
2

)
bπ [cos2 A + b2π2(1 + b2π2 sin2 A)]

+ 4bπ [−σ cos2 A + π2v′2(2 cos2 A − 1)

+πv′′ cos A sin A − 1
2bπ2α(1 − 2 cos2 A)],

r5 = 2μ
(
τ 2

1 + τ 2
2

)
[3 cos4 A − b2π2 cos2 A(2 − 3 cos2 A)

+ b4π4(−1 + 4 cos2 A − 3 cos4 A) − 3b6π6 sin4 A]

− 3σ cos4 A + b2π2σ cos2 A(2 − cos2 A)

+ 2b2π4v′2(1 − 8 cos2 A + 4 cos4 A) + 4bπ2α cos4 A

− 2b2π3v′′ cos A sin A(2 cos2 A + 1),

r6 = 4μ
(
τ 2

1 + τ 2
2

)
bπ (− cos4 A + 2b2π2 cos2 A sin2 A

− b4π4 sin2 A) + 2bπσ cos4 A + 4bπ3v′2 cos2 A

× (2 cos2 A − 3) + 4bπ2v′′ cos3 A sin A

+ 2b2π3α cos2 A(1 − 2 cos4 A),

022918-5



N. VISHNU PRIYA, M. SENTHILVELAN, AND M. LAKSHMANAN PHYSICAL REVIEW E 88, 022918 (2013)

r7 = 2μ
(
τ 2

1 + τ 2
2

)
(− cos6 A + 3b2π2 cos4 A sin2 A)

− 3b4π4 cos2 A sin4 A + b6π6 sin6 A + σ cos6 A

− b2π2σ cos4 A sin2 A + 2b2π4v′2 cos2 A(3 − 2 cos2 A)

− 2bπ2α cos4 A + 2b2π3v′′ cos3 A sin A,

A = πv(x). (22)

To solve Eq. (21), we equate the coefficients of various
powers of cos(iπαt) sin(iπαt) to zero. This action yields a set
of equations ri = 0, i = 1,2, . . . ,7, involving the unknowns
σ , α, and v(x). We notice that the coefficient of sixth power of
cos(iπαt) gives (r1 = 0)

2μ
(
τ 2

1 + τ 2
2

)
(1 + b2π2 − b4π4 − b6π6) − σ + b2π2σ = 0,

(23)

from which we can obtain the value of σ , that is

σ = 2μ
(
τ 2

1 + τ 2
2

)
(1 + π2b2)2. (24)

The coefficient of cos5(iπαt) sin(iπαt) also provides the
same expression for σ as given in Eq. (24). Equating next
the coefficients of cosh3(iπαt) and cos(iπαt) sin(iπαt) to
zero, we get r4 = 0 and r6 = 0. Here we get two equations,
which contain the first and second derivatives of the unknown
function v(x), namely v′ and v′′. Solving these two equations
algebraically, we find

v′2 = b2μ
(
τ 2

1 + τ 2
2

){1 − b2π2 cot2[2πv(x)]}, (25)

v′′ = 2μ
(
τ 2

1 + τ 2
2

)
π3b4 cot[2πv(x)]

{
1 + 2π2b2

π2b2

− α

2μ
(
τ 2

1 + τ 2
2

)
π2b3

+ cot2[2πv(x)]

}
. (26)

From Eqs. (25) and (26) we determine α and v(x) as follows.
Differentiating Eq. (25) with respect to x and then replacing
the first and second derivatives of v(x), which appear in this
equation by Eqs. (25) and (26), respectively, and simplifying
the resultant equation we find

α = 2μ
(
τ 2

1 + τ 2
2

)
(1 + π2b2)b. (27)

To obtain v(x) we integrate Eq. (25) with respect to x. This
action leads us to

v(x) = 1

2π
arccos

[
1√

1 + π2b2
cos(

√
2π2αbx + v0)

]
,

(28)

where v0 is a constant of integration. It is straightforward
to check that v(x) satisfies both Eqs. (25) and (26) with
α given by Eq. (27). On the other hand, considering the
coefficients of cos2(iπαt) and cos4(iπαt) and repeating the
procedure outlined above we arrive at the same expressions
for α and v(x) which are given in Eqs. (27) and (28),
respectively.

Finally, equating the coefficient of constant term to zero,
r7 = 0, we find that the resultant equation vanishes identically,
with the expressions v(x), α, and σ given above. As a result,

we have obtained a compatible set of solutions for α, σ , and
v(x), which satisfies all the equations given in Eq. (22). Now
substituting the expressions of σ , α, and v(x) into the general
form Eq. (20), and after suitable rewriting, we obtain the AB
solution in the form

q1 = τ1(1 + π2b2) exp
{
i
[
2μ

(
τ 2

1 + τ 2
2

)
(1 + π2b2)2t + φ

]}
×

(
1 − 2πb

1 + π2b2
M

)
,

q2 = τ2(1 + π2b2) exp
{
i
[
2μ

(
τ 2

1 + τ 2
2

)
(1 + π2b2)2t + φ

]}
×

(
1 − 2πb

1 + π2b2
M

)
,

M = πb cosh 2παt + i sinh 2παt

cosh 2παt − (1/
√

1 + π2b2) cos(
√

2π2αbx + v0)
.

(29)

We can note that this solution is periodic in the spatial
direction and it grows exponentially fast in the initial stage
from the time oscillatory background. After reaching the
maximum amplitude at a specific time, it decays exponentially
again to the time oscillatory background. These two stages
can be called as growing and decaying mode solutions,
respectively, as has been done by Tajiri and Watanabe for
the case of the scalar NLS equation [41]. A typical AB
solution for a suitable set of parametric values is shown in
Fig. 2.

We also note here that the Akhmediev breather solution
with k �= 0 can also be constructed by the following imbricate
series, namely

q1 = τ1 exp
{
i
[
2μ

(
τ 2

1 + τ 2
2

)
(1 + π2b2)2t + φ

]}
×

[
1 + b

∞∑
n=−∞

1

iαt + v(z) + n

]

×
[

1 + b

∞∑
n=−∞

1

iαt − v(z) + n

]
,

q2 = τ2 exp
{
i
[
2μ

(
τ 2

1 + τ 2
2

)
(1 + π2b2)2t + φ

]}
×

[
1 + b

∞∑
n=−∞

1

iαt + v(z) + n

]

×
[

1 + b

∞∑
n=−∞

1

iαt − v(z) + n

]
, (30)

where z = x − 2kt . Substituting this expression into Eq. (1)
and repeating the procedure outlined above one can obtain the
Akhmediev breather with k �= 0.

IV. MS FROM RW

Next we construct the MS solution from the RW solution.
To do so, we again rewrite the RW solution given in Eq. (11) in
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a slightly different factorized form,

q1 = τ1 exp
(
i
{
kx − [

k2 − 2μ
(
τ 2

1 + τ 2
2

)]
t
})⎡

⎣1 + i

−2μ
(
τ 2

1 + τ 2
2

)
t + i 1

2

√
1 + 4μ

(
τ 2

1 + τ 2
2

)
(x − 2kt)2

⎤
⎦

×
⎡
⎣1 + i

−2μ
(
τ 2

1 + τ 2
2

)
t − i 1

2

√
1 + 4μ

(
τ 2

1 + τ 2
2

)
(x − 2kt)2

⎤
⎦ ,

q2 = τ2 exp
(
i
{
kx − [

k2 − 2μ
(
τ 2

1 + τ 2
2

)]
t
})⎡

⎣1 + i

−2μ
(
τ 2

1 + τ 2
2

)
t + i 1

2

√
1 + 4μ

(
τ 2

1 + τ 2
2

)
(x − 2kt)2

⎤
⎦

×
⎡
⎣1 + i

−2μ
(
τ 2

1 + τ 2
2

)
t − i 1

2

√
1 + 4μ

(
τ 2

1 + τ 2
2

)
(x − 2kt)2

⎤
⎦ . (31)

We can write this equation in the following general form with
k = 0,

q1 = τ1 exp[i(ζ t + φ)]

[
1 + ih

∞∑
n=−∞

1

κt + i�(x) + n

]

×
[

1 + ih

∞∑
n=−∞

1

κt − i�(x) + n

]
,

q2 = τ2 exp[i(ζ t + φ)]

[
1 + ih

∞∑
n=−∞

1

κt + i�(x) + n

]

×
[

1 + ih

∞∑
n=−∞

1

κt − i�(x) + n

]
, (32)

where the function �(x) and the parameters κ and ζ are
to be determined. Here we have superposed the RW in the
temporal direction. We have also grouped the temporal variable
with the real part and the spatial variable with the imaginary
part. We identify the infinite series with the cot hyperbolic
function [43], coth πx = 1

πx
− ix

π

∑∞
n=−∞

1
n(x−in) ,n �= 0, and

rewrite the above expression as

q1 = τ1 exp[i(ζ t + φ)](1 + hπ coth{π [�(x) − iκt]})
×(1 − hπ coth{π [�(x) + iκt]}),

q2 = τ2 exp[i(ζ t + φ)](1 + hπ coth{π [�(x) − iκt]})
×(1 − hπ coth{π [�(x) + iκt]}). (33)

As we did previously, we split the cot hyperbolic function as
cosh[π�(x) ± iπκt]/ sinh[π�(x) ± iπκt]. We then substitute
Eq. (33) into the CNLS Eq. (1) and rewrite the latter in terms
of cosh[π�(x) ± iπκt]/ sinh[π�(x) ± iπκt]. As before, we
simplify this equation further by imposing trigonometric
identities and arrive at an equation which is in powers of
cosh(iπκt) sinh(iπκt) and their products. In this case, we
also find that both the equations in Eq. (1) provide the
same expression. As a result, we consider only the following

equation to determine the unknown parameters, that is

z1 cosh6(iπκt) + z2 cosh5(iπκt) sinh(iπκt)

+ z3 cosh4(iπκt)

+ z4 cosh3(iπκt) sinh(iπκt) + z5 cosh2(iπκt)

+ z6 cosh(iπκt) sinh(iπκt) + z7 = 0, (34)

where

z1 = 2μ
(
τ 2

1 + τ 2
2

)
(−1 + h2π2 − h4π4 − h6π6) + ζ + h2π2ζ,

z2 = 4hπμ
(
τ 2

1 + τ 2
2

)
(1 − h2π2)2 − 2hπζ,

z3 = 2μ
(
τ 2

1 + τ 2
2

)
[3 cosh2 A − h2π2(1 + cosh2 A)

+h4π4(cosh2 A − 2) − 3h6π6 sinh2 A] − 3ζ cosh2 A

−h2π2ζ (1 + cosh2 A) + 4h2π4�′2(1 − 2 cosh2 A)

+ 2hπ2κ(2 cosh2 A − 1) − 4h2π3�′′ cosh A sinh A,

z4 = 8μ
(
τ 2

1 + τ 2
2

)
hπ (− cosh2 A + h2π2 + h4π4 sinh2 A)

+ 4hπζ cosh2 A + 2hπ3�′2(−1 + 2 cosh2 A)

+ 4hπ2�′′ cosh A sinh A + 2h2π3κ(1 − 2 cosh2 A),

z5 = 2μ
(
τ 2

1 + τ 2
2

)
[−3 cosh4 A− h2π2 cosh2 A(2 − 3 cosh2 A)

+h4π4(1 − 4 cosh2 A + 3 cosh4 A − 3h6π6 cosh2 A

× sinh2 A)] + 3ζ cosh4 A − 4hπ2κ cosh4 A

+ 2h2π2ζ cosh2 A(1 − 2 cosh2 A) − 2h2π4�′2

× (1 − 8 cosh2 A + 4 cosh4 A) − 2h2π3�′′ cosh A

× sinh A(2 cosh2 A + 1),

z6 = 4μ
(
τ 2

1 + τ 2
2

)
hπ (cosh4 A − 2h2π2 cosh2 A sinh2 A

+h4π4 sinh4 A) − 2hπζ cosh4 A + 4hπ3�′2 cosh2 A

× (2 cosh2 A − 3) − 4hπ2�′′ cosh3 A sinh A

− 2h2π3κ cosh2 A(1 − 2 cosh2 A),

z7 = 2μ
(
τ 2

1 + τ 2
2

)
(cosh6 A − 3h2π2 cosh4 A sinh2 A

+ 3h4π4 cosh2 A sinh4 A − h6π6 sinh6 A) − ζ cosh6 A

+h2π2ζ cosh4 A sinh2 A + 2h2π4�′2 cosh2 A

× (2 sinh2 A − 1) + 2hπ2κ cosh4 A

− 2h2π3�′′ cosh3 A sinh A,

A = π�(x). (35)
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Equating the various powers of cosh(iπκt) sinh(iπκt) to
zero, we obtain zi = 0, i = 1,2 . . . ,7. We then solve these
equations and determine ζ , �(x), and κ as follows. The
coefficient of cosh6(iπκt) gives

2μ
(
τ 2

1 + τ 2
2

)
(−1 + h2π2 + h4π4 − h6π6)

+ ζ + ζh2π2 = 0, (36)

from which we fix

ζ = 2μ
(
τ 2

1 + τ 2
2

)
(1 − π2h2)2. (37)

We also obtain the same expression for ζ by equating the
coefficient of cosh5(iπκt) sinh(iπκt) to zero. We proceed
to consider the coefficients of cosh3(iπκt) sinh(iπκt) and
cosh(iπκt) sinh(iπκt), namely, z4 = 0 and z6 = 0. We con-
sider these two expressions to determine the unknown �(x).
Solving these two equations algebraically, we find

�′2 = h2μ
(
τ 2

1 + τ 2
2

){1 − h2π2 coth2[2π�(x)]},

�′′ = 2μ
(
τ 2

1 + τ 2
2

)
π3h4 coth[2π�(x)]

{
1 − 2π2h2

π2h2

+ κ

2μ
(
τ 2

1 + τ 2
2

)
π2h3

+ coth2[2π�(x)]

}
. (38)

We solve these two equations in the same manner as we did
previously. Our result shows that

κ = −2μ
(
τ 2

1 + τ 2
2

)
(1 − π2h2)h (39)

and

�(x) = 1

2π
cosh−1

[
1√

1 − π2h2
cosh(

√
−2π2κhx + �0)

]
,

(40)

where ρ0 is a constant. We can also obtain the same expression
for �(x) and κ from the coefficients of cosh2(iπκt) and
cosh4(iπκt) by solving the resultant equations algebraically
in the same manner.

Inserting the obtained expressions of ζ , �, and κ in the final
determining equation, we find that it vanishes trivially. With
these expressions, the general form of Eq. (32) now becomes

q1 = τ1(1 − π2h2) exp
{
i
[
2μ

(
τ 2

1 + τ 2
2

)
(1 − π2h2)2t + φ

]}
×

(
1 + 2πh

1 − π2h2
M

)
,

q2 = τ2(1 − π2h2) exp
{
i
[
2μ

(
τ 2

1 + τ 2
2

)
(1 − π2h2)2t + φ

]}
×

(
1 + 2πh

1 − π2h2
M

)
,

M = πh cos 2πκt − i sin 2πκt

cos 2πκt − (1/
√

1 − π2h2) cosh(
√−2π2κhx + c)

,

(41)

which is nothing but the Ma breather solution. This solution
is periodic in the temporal direction and localized in space. It
grows and decays recurrently in time oscillate background as
in the case of the NLS equation [41]. The Ma breather solution
of CNLS equations for a set of parametric values is shown in
Fig. 3.

The RW solution can also be obtained as the limiting case
of Ma breathers. This can be done by imposing the limit h → 0
and incorporating the Taylor series expansion.

We note here that the Ma breather solution with k �= 0 can
also be constructed by the following imbricate series,

q1 = τ1 exp
{
i
[
2μ

(
τ 2

1 + τ 2
2

)
(1 − π2h2)2t + φ

]}
×

[
1 + ih

∞∑
n=−∞

1

κt + i�(z) + n

]

×
[

1 + ih

∞∑
n=−∞

1

κt − i�(z) + n

]
,

q2 = τ2 exp
{
i
[
2μ

(
τ 2

1 + τ 2
2

)
(1 − π2h2)2t + φ

]}
×

[
1 + ih

∞∑
n=−∞

1

κt + i�(z) + n

]

×
[

1 + ih

∞∑
n=−∞

1

κt − i�(z) + n

]
, (42)

where z = x − 2kt . Substituting this expression into Eq. (1),
and repeating the procedure given above, one can obtain the
Ma soliton with k �= 0.

V. GB AS IMBRICATE SERIES OF RW

It is very difficult to derive the GB solution from the RW
solution in the same fashion as we did in the previous two
cases. This is mainly because in the present analysis we have
to include two arbitrary functions (both of which are functions
of t and x), one with real part and another with imaginary
part in the imbricate series. The determining equations that
come out from the imbricate series are difficult to solve, unlike
the earlier two cases. To overcome this difficulty, we adopt
the following methodology. We show that the absolute square
of the modulus of RW solution of Eq. (1) can be written in
terms of the second derivative of a logarithmic function, which
involves product of two imbricate series [see Eq. (45) given
below]. We then rewrite this expression in a more compact
form, which involves trigonometric functions that also contain
these two arbitrary functions. Unlike the earlier two cases,
we do not substitute this series into Eq. (1) and determine
these two unknown arbitrary functions (as it is very difficult to
solve the determining equation). Instead, we also rewrite the
absolute square of the modulus of the general breather solution
as the second derivative of a logarithmic function that contains
product of two functions [see Eq. (49) given below]. At this
stage, since both the GB expression and the RW solution have
been written in the same form. We compare the arguments
inside the logarithmic function and fix the exact expression of
the two unknown arbitrary functions. This in turn confirms that
the GB can also be derived from the RWs. In the following,
we present the exact mathematical details of this procedure.

To begin with, we rewrite the RW solution Eq. (14) in the
form

|q1|2 = τ 2
1 (1 − Q)(1 − Q∗), |q2|2 = τ 2

2 (1 − Q)(1 − Q∗),

(43)
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where Q is the same expression given in Eq. (14) and the star
denotes complex conjugate of it. The above expressions can be
rewritten as the second derivative of a logarithimic function,
namely

|q1|2 = τ 2
1 − τ 2

1

μ
(
τ 2

1 + τ 2
2

) ∂2

∂x2
ln

(
1

S
× 1

T

)
,

(44)

|q2|2 = τ 2
2 − τ 2

2

μ
(
τ 2

1 + τ 2
2

) ∂2

∂x2
ln

(
1

S
× 1

T

)
,

where

S =
[

1
2

√
1 + 4μ

(
τ 2

1 + τ 2
2

)
(x − 2kt)2 + 2iμ

(
τ 2

1 + τ 2
2

)
t
]2

,

T =
[

1
2

√
1 + 4μ

(
τ 2

1 + τ 2
2

)
(x − 2kt)2 − 2iμ

(
τ 2

1 + τ 2
2

)
t
]2

.

Now we consider Eq. (44) in a more general form as

|q1|2 = τ 2
1 − τ 2

1

μ
(
τ 2

1 + τ 2
2

)
× ∂2

∂x2
ln

{ ∞∑
n=−∞

1

[φ(x,t) − iψ(x,t) − n]2

×
∞∑

n=−∞

1

[φ(x,t) + iψ(x,t) − n]2

}
,

|q2|2 = τ 2
2 − τ 2

2

μ
(
τ 2

1 + τ 2
2

)
× ∂2

∂x2
ln

{ ∞∑
n=−∞

1

[φ(x,t) − iψ(x,t) − n]2

×
∞∑

n=−∞

1

[φ(x,t) + iψ(x,t) − n]2

}
, (45)

where φ(x,t) and ψ(x,t) are arbitrary functions of x and t ,
which need to be determined. In the above expression, we
considered the superposition of RWs in both space and time
directions. Using the trigonometric identity [43] csc2(πx) =
1
π2

∑∞
k=−∞

1
x−k2 , the above expression can be rewritten in the

form,

|q1|2 = τ 2
1 − τ 2

1

μ
(
τ 2

1 + τ 2
2

) ∂2

∂x2
ln{π2 csc2[π (φ − iψ)]

×π2 csc2[π (φ + iψ)]},

|q2|2 = τ 2
2 − τ 2

2

μ
(
τ 2

1 + τ 2
2

) ∂2

∂x2
ln{π2 csc2[π (φ − iψ)]

×π2 csc2[π (φ + iψ)]}. (46)

We further simplify the expression on the right-hand side
by using the relation π4 csc2[π (φ − iψ)] csc2[π (φ + iψ)] =

4π4

cosh 2πψ−cos 2πφ
. As a result, Eq. (46) can be brought to the form

|q1|2 = τ 2
1 + τ 2

1

μ
(
τ 2

1 + τ 2
2

) ∂2

∂x2
ln[cosh 2πψ − cos 2πφ],

(47)

|q2|2 = τ 2
2 + τ 2

2

μ
(
τ 2

1 + τ 2
2

) ∂2

∂x2
ln[cosh 2πψ − cos 2πφ].

As we mentioned in the beginning of this section, we do
not substitute this solution into Eq. (1) and determine the form
of ψ and φ. Instead of this, we compare Eq. (47) with the
GB, which is rewritten in the same form. For this purpose, we
rewrite the GB solution Eq. (5) with Eq. (8) in the form

|q1|2 = τ 2
1 + τ 2

1

μ
(
τ 2

1 + τ 2
2

) ∂2

∂x2
ln f,

(48)

|q2|2 = τ 2
2 + τ 2

1

μ
(
τ 2

1 + τ 2
2

) ∂2

∂x2
ln f,

where f = 1 + 2eηR cos ηI + ae2ηR , ηR = pRx − �Rt + η0
R ,

and ηI = pI − �I t + η0
I . To compare this with the one

derived from the RW solution, we rewrite f as f =
2eηR [

√
a cosh(ηR + σ ) − cos(ηI + θ )] with the ηR and ηI as

given above. The resultant expression now turns out to be

|q1|2 = τ 2
1 + τ 2

1

μ
(
τ 2

1 + τ 2
2

) ∂2

∂x2
ln[

√
a cosh(pRx − �Rt + σ )

− cos(pIx − �I t + θ )],

|q2|2 = τ 2
2 + τ 2

2

μ
(
τ 2

1 + τ 2
2

) ∂2

∂x2
ln[

√
a cosh(pRx − �Rt + σ )

− cos(pIx − �I t + θ )], (49)

where σ = η0
R + 1

2 ln a and θ = η0
I + π .

Now let us compare the two expressions |q1|2 and |q2|2, the
one derived from RW solutions [vide Eq. (47)] and the other
derived from the GB solution [vide Eq. (49)]. Doing so, we
find

cosh 2πψ = √
a cosh(pRx − �Rt + σ ),

(50)
cos 2πφ = cos(pIx − �I t + θ ),

or

cosh 2πψ = cosh(pRx − �Rt + σ ),
(51)

cos 2πφ = 1√
a

cos(pIx − �I t + θ ).

From these two sets of equations, we find two different
expressions for ψ and φ, namely

ψ = 1

2π
ln[

√
a cosh(pRx − �Rt + σ )

+
√

a cosh2(pRx − �Rt + σ ) − 1],

φ = 1

2π
(pIx − �I t + θ ) (52)

and

ψ = − 1

2π
(pRx − �Rt + σ ),

(53)

φ = 1

2π
arccos

[
1√
a

cos(pIx − �I t + θ )

]
.

An exact imbricate series of RW solution for breather solution
of CNLS equations can be displayed by substituting Eq. (52)
or Eq. (53) into Eq. (45). The solution is periodic in both space
and time.
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VI. CONCLUSION

During the past five years or so, rogue wave solutions
have been studied intensively in different physical contexts
and several applications have been proposed. Rogue waves in
an array of optical wave guides is one of the examples [44].
Optical rogue wave has already been suggested for application
in enhancing supercontinuum generation, and several authors
have elucidated key aspects of the underlying nonlinear
dynamical processes [45]. In this work, we have constructed
a class of nonlinear waves, namely GB, AB, MS, and RW for
the well-known two-coupled NLSEs Eq. (1). To derive these
solutions, we followed two different paths. By following the
conventional procedure, we first brought out the explicit form
of a GB solution from which we derived the other forms of
rational solutions, namely AB, MS, and RW solutions. We
then deviated from this conventional approach and derived
AB, MS, and GB from the RW solution as the starting point.
The expressions obtained in both the directions match with

each other. Our study on the coupled NLSEs will be useful
in the study of rogue waves in birefringent optical fibers,
multicomponent Bose-Einstein condensates, multicomponent
plasmas, and so on. We also hope to derive higher-order
breather solutions in both the directions discussed in this paper
by extending the procedure.

ACKNOWLEDGMENTS

N.V.P. thanks the University Grants Commission (UGC-
RFSMS), Government of India, for providing a Research
Fellowship. The work of M.S. forms part of a research project
sponsored by NBHM, Government of India, while the work
of M.L. forms part of an IRHPA project and a Ramanna
Fellowship project of M.L., sponsored by the Department of
Science and Technology (DST), Government of India. M.L.
also acknowledges the financial support under a DAE Raja
Ramanna Fellowship.

[1] S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).
[2] C. R. Menyuk, IEEE J. Quantum Electron. 23, 174 (1987).
[3] Y. Kodama and A. V. Mikhailov, Physica D: Nonlinear

Phenomena 152, 171 (2001).
[4] O. C. Wright and M. G. Forest, Physica D: Nonlinear Phenomena

141, 104 (2000).
[5] Q. H. Park and H. J. Shin, IEEE J. Quantum Electron. 8, 432

(2002).
[6] R. Radhakrishnan and M. Lakshmanan, J. Phys. A: Math. Gen.

28, 2683 (1995).
[7] R. Radhakrishnan, M. Lakshmanan, and J. Hietarinta, Phys. Rev.

E 56, 2213 (1997).
[8] Th. Busch and J. R. Anglin, Phys. Rev. Lett. 87, 010401 (2001).
[9] A. C. Scott, Phys. Scr. 29, 279 (1984).

[10] Z. Yan, Phys. Lett. A 375, 4274 (2011).
[11] A. K. Dhar and K. P. Dhas, Phys. Fluids A 3, 3021 (1991).
[12] C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in

the Ocean: Observation, Theories and Modeling (Springer,
New York, 2009).

[13] N. Akhmediev, A. Ankiewivz, and M. Taki, Phys. Lett. A 373,
675 (2009).

[14] Y. V. Bludov, V. V. Konotop, and N. Akhmediev, Eur. Phys. J.
Special Topics 185, 169 (2010).

[15] M. Shats, H. Punzmann, and H. Xia, Phys. Rev. Lett. 104, 104503
(2010).

[16] W. M. Moslem, P. K. Shukla, and B. Eliasson, Eur. Phys. Lett.
96, 25002 (2011).

[17] Y. Z. Ya, Commun. Theor. Phys. 54, 947 (2010).
[18] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty,

N. Akhmediev, and J. M. Dudely, Nature (London) 6, 790
(2010).

[19] B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N.
Akhmediev, F. Dias, and J. M. Dudely, Sci. Rep. 2, 463 (2012).

[20] C. Kalla, J. Phys. A 44, 335210 (2011).
[21] B. G. Zhai, W. G. Zhang, X. L. Wang, and H. Q. Zhang,

Nonlinear Anal.: Real World Applications 14, 14 (2012).

[22] G. B. Ling and L. L. Ming, Chin. Phys. Lett. 28, 110202 (2011).
[23] F. Baronio, A. Degasperis, M. Conforti, and S. Wabnitz,

Phys. Rev. Lett. 109, 044102 (2012).
[24] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature (London)

450, 1054 (2007).
[25] V. B. Efimov, A. N. Ganshin, G. N. Kolmakov, P. V. E.

McClintock, and L. P. Mezhov-Deglin, Eur. Phys. J. Special
Topics 185, 181 (2010).

[26] F. Fedele, Physica D: Nonlinear Phenomena 237, 2127 (2008).
[27] A. O. Smirnov, Theor. Math. Phys. 173, 1403 (2012).
[28] P. K. Shukla and W. M. Moslem, Phys. Lett. A 376, 1125

(2012).
[29] Y. Ohta and J. Yang, J. Phys. A: Math. Theor. 46, 105202

(2013).
[30] K. B. Dysthe and K. Trulsen, Phys. Scr. T 82, 48 (1999).
[31] N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, Phys.

Rev. E 80, 026601 (2009).
[32] D. J. Kedziora, A. Ankiewicz, and N. Akhmediev, Phys. Rev. E

86, 056602 (2012).
[33] A. Chabchoub, N. Hoffmann, M. Onorato, A. Slunyaev,

A. Sergeeva, E. Pelinovsky, and N. Akhmediev, Phys. Rev. E
86, 056601 (2012).

[34] D. J. Kedziora, A. Ankiewicz, and N. Akhmediev, Phys. Rev. E
84, 056611 (2011).

[35] Z. Yan, V. V. Konotop, and N. Akhmediev, Phys. Rev. E 82,
036610 (2010).

[36] A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, Phys. Rev.
Lett. 106, 204502 (2011).

[37] A. Ankiewicz, N. Akhmediev, and J. M. Soto-Crespo,
Phys. Rev. E 82, 026602 (2010).

[38] J. P. Boyd, in Advances in Applied Mechanics, edited by J. W.
Hutchinson and T. Y. Wu, Vol. 27 (Academic Press, San Diego,
1990).

[39] J. P. Boyd, SIAM J. Appl. Math. 44, 952 (1984).
[40] M. Toda, Phys. Rep. 18, 1 (1975).
[41] M. Tajiri and Y. Watanabe, Phys. Rev. E 57, 3510 (1998).

022918-10

http://dx.doi.org/10.1109/JQE.1987.1073308
http://dx.doi.org/10.1016/S0167-2789(01)00168-3
http://dx.doi.org/10.1016/S0167-2789(01)00168-3
http://dx.doi.org/10.1016/S0167-2789(00)00021-X
http://dx.doi.org/10.1016/S0167-2789(00)00021-X
http://dx.doi.org/10.1109/JSTQE.2002.1016345
http://dx.doi.org/10.1109/JSTQE.2002.1016345
http://dx.doi.org/10.1088/0305-4470/28/9/025
http://dx.doi.org/10.1088/0305-4470/28/9/025
http://dx.doi.org/10.1103/PhysRevE.56.2213
http://dx.doi.org/10.1103/PhysRevE.56.2213
http://dx.doi.org/10.1103/PhysRevLett.87.010401
http://dx.doi.org/10.1088/0031-8949/29/3/016
http://dx.doi.org/10.1016/j.physleta.2011.09.026
http://dx.doi.org/10.1063/1.858209
http://dx.doi.org/10.1016/j.physleta.2008.12.036
http://dx.doi.org/10.1016/j.physleta.2008.12.036
http://dx.doi.org/10.1140/epjst/e2010-01247-6
http://dx.doi.org/10.1140/epjst/e2010-01247-6
http://dx.doi.org/10.1103/PhysRevLett.104.104503
http://dx.doi.org/10.1103/PhysRevLett.104.104503
http://dx.doi.org/10.1209/0295-5075/96/25002
http://dx.doi.org/10.1209/0295-5075/96/25002
http://dx.doi.org/10.1088/0253-6102/54/5/31
http://dx.doi.org/10.1038/srep00463
http://dx.doi.org/10.1088/1751-8113/44/33/335210
http://dx.doi.org/10.1016/j.nonrwa.2012.04.010
http://dx.doi.org/10.1088/0256-307X/28/11/110202
http://dx.doi.org/10.1103/PhysRevLett.109.044102
http://dx.doi.org/10.1038/nature06402
http://dx.doi.org/10.1038/nature06402
http://dx.doi.org/10.1140/epjst/e2010-01248-5
http://dx.doi.org/10.1140/epjst/e2010-01248-5
http://dx.doi.org/10.1016/j.physd.2008.01.022
http://dx.doi.org/10.1007/s11232-012-0122-6
http://dx.doi.org/10.1016/j.physleta.2012.02.018
http://dx.doi.org/10.1016/j.physleta.2012.02.018
http://dx.doi.org/10.1088/1751-8113/46/10/105202
http://dx.doi.org/10.1088/1751-8113/46/10/105202
http://dx.doi.org/10.1238/Physica.Topical.082a00048
http://dx.doi.org/10.1103/PhysRevE.80.026601
http://dx.doi.org/10.1103/PhysRevE.80.026601
http://dx.doi.org/10.1103/PhysRevE.86.056602
http://dx.doi.org/10.1103/PhysRevE.86.056602
http://dx.doi.org/10.1103/PhysRevE.86.056601
http://dx.doi.org/10.1103/PhysRevE.86.056601
http://dx.doi.org/10.1103/PhysRevE.84.056611
http://dx.doi.org/10.1103/PhysRevE.84.056611
http://dx.doi.org/10.1103/PhysRevE.82.036610
http://dx.doi.org/10.1103/PhysRevE.82.036610
http://dx.doi.org/10.1103/PhysRevLett.106.204502
http://dx.doi.org/10.1103/PhysRevLett.106.204502
http://dx.doi.org/10.1103/PhysRevE.82.026602
http://dx.doi.org/10.1137/0144066
http://dx.doi.org/10.1016/0370-1573(75)90018-6
http://dx.doi.org/10.1103/PhysRevE.57.3510


AKHMEDIEV BREATHERS, Ma SOLITONS, AND GENERAL . . . PHYSICAL REVIEW E 88, 022918 (2013)

[42] K. W. Chow and C. F. Wu, Comm. Non. Sci. Num. Sim.,
doi: 10.1016/j.cnsns.2013.06.029 (2013).

[43] A. Jeffrey and D. Zwillenger, Table of Integrals, Series and
Products (Academic Press, San Diego, 2007).

[44] Y. V. Bludov, V. V. Konotop, and N. Akhmediev, Opt. Lett. 34,
3015 (2009).

[45] N. Akhmediev, J. M. Dudley, D. R. Solli, and S. K. Turitsyn,
J. Opt. 15, 060201 (2013).

022918-11

http://dx.doi.org/10.1016/j.cnsns.2013.06.029
http://dx.doi.org/10.1364/OL.34.003015
http://dx.doi.org/10.1364/OL.34.003015
http://dx.doi.org/10.1088/2040-8978/15/6/060201



