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Semiclassical wave functions for open quantum billiards
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We present a semiclassical approximation to the scattering wave function �(r,k) for an open quantum billiard,
which is based on the reconstruction of the Feynman path integral. We demonstrate its remarkable numerical
accuracy for the open rectangular billiard and show that the convergence of the semiclassical wave function to the
full quantum state is controlled by the mean path length or equivalently the dwell time for a given scattering state.
In the numerical implementation a cutoff length in the maximum path length or, equivalently, a maximum dwell
time τmax included implies a finite energy resolution �E ∼ τ−1

max. Possible applications include leaky billiards
and systems with decoherence present.
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I. INTRODUCTION

In his doctoral thesis R. P. Feynman, extending earlier
work by Dirac [1], developed a novel formulation of quantum
mechanics [2]. Unlike Schrödinger’s formulation in terms of
the solution of a partial differential equation Feynman based
his description on the intuitive picture of paths connecting two
points in space. Each path carries an amplitude and a phase that
is given by its classical action. Incorporating the principle of
superposition, the propagator, i.e., the probability amplitude to
move from one point in space to another, is given by the sum
(i.e., integral) over all paths connecting these points. While
this path integral formulation is equivalent to the standard
Schrödinger theory, its implementation as an operational
algorithm to solve quantum problems is complicated due to the
mathematical difficulties associated with the path integration.
One of its advantages is, however, the conceptual insight it
can provide. Most importantly, modern semiclassical theory
invokes the convergence of the path manifold as contained in
Feynman’s path integral towards a discrete subset of classical
paths of extremal action as h̄ → 0.

The semiclassical approximation applicable at the border
between quantum and classical mechanics follows from the
path integral formalism in the limit that the variation of
the classical action is large compared to h̄ for small path
variations. Mesoscopic systems with linear dimension D

large compared to the de Broglie wavelength λdB, λdB � D,
represent prototypical cases for which semiclassical approx-
imations are frequently invoked since in many cases ab
initio quantum calculations become unfeasible. Moreover, the
description in terms of paths can provide detailed physical
insights into spectral and transport properties. For example,
dephasing and decohering interactions are associated with
a characteristic mean free path length �MFP, thereby lim-
iting phase coherent transport to short paths, � < �MFP. A
well known example is the open quantum billiard in the
ballistic regime, which has been extensively studied in the

*fabian.lackner@tuwien.ac.at
†iva.brezinova@tuwien.ac.at

last several years both experimentally and theoretically (see,
e.g., Refs. [3–5] and references therein). The semiclassical
approximation has contributed to the understanding of phase
coherent transport effects such as conductance fluctuations and
weak localization [6–26]. Most semiclassical approximations
to date have focused on either the spectral density ρ(E) [27]
or transport coefficients determined for ballistic transport by
S matrix elements [10,28]. Semiclassical calculations of the
wave function �(r,k) itself which test the quantum to classical
transition locally on the finest scale have remained a challenge.
Few pioneering studies have been performed: scars in closed
billiards could be reproduced by semiclassical calculations
of the energy-averaged probability density 〈|�(r,k)|2〉 [29].
For open chaotic billiards, statistical properties of the wave
functions such as nodal point distributions have been found in
good agreement with random wave models [30]. In the regime
of high incident energies with a large number of open modes,
quantum calculations [31] for the open chaotic stadium billiard
have shown that the wave function closely mirrors the path
bundles [12] of short classical scattering trajectories. A simple
semiclassical approximation to the wave function yields good
qualitative agreement with the quantum wave function.

We present in the following an accurate semiclassical
determination of the fine-scale wave function �(r,k) for an
open ballistic billiard. We construct the wave function in
terms of a sum over paths connecting the entrance lead with
an arbitrary point r in the interior of the billiard closely
following the Feynman path integral prescription. We employ
the pseudopath semiclassical approximation (PSCA) [14–17]
to include both classical and diffractive, i.e., nonclassical
paths into the path sum. We aim at a quantitative agreement
with quantum wave functions for the low-energy regime with
only few open modes in the leads (quantum wires) and a
semiclassical description that pertains to the interior of the
billiard. We gauge the accuracy of the wave function by
comparison with full quantum wave functions. For technical
reasons, we focus on the rectangular billiard for which the
enumeration and summation of paths is still feasible since it
is a prototypical example of a integrable system. We show
that the convergence towards the quantum wave function is
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controlled by the dwell time or, equivalently, by the mean path
length of the scattering state at given energy.

The outline of the paper is as follows. In Sec. II we
briefly review the PSCA of the constant energy propagator
and present its extension to calculations of wave functions
of open quantum billiards. Concurrent calculations of the
full quantum scattering state as well as its truncated form
in which Fourier components associated with long path length
are filtered out are discussed in Sec. III. In Sec. IV we present
a quantitative comparison between semiclassical and quantum
wave functions. We relate the convergence of the semiclassical
wave function towards the exact quantum wave function to the
dwell time, or, equivalently, to the Eisenbud-Wigner-Smith
(EWS) delay time of the scattered wave inside the ballistic
cavity. In the outlook (Sec. V) we briefly discuss future
applications to leaky billiards and decoherence processes
where long (coherent) paths or delay times are effectively
suppressed and the PSCA offers a simple route to construct
wave functions when short paths dominate the dynamics.

II. SEMICLASSICAL THEORY FOR SCATTERING STATES

A. Rectangular ballistic billiard

We discuss in the following the PSCA for wave functions
with the help of the specific example of a squared (rectangular)
open billiard [Fig. 1(a)]. The lead width d = 1/16 is small
compared to the linear dimension D = 1 in reduced units.
Consequently, the short-wave limit λdB � D is reached for
the internal dynamics of the cavity while the motion inside
the leads (or quantum point contacts) is still in the quantum
regime for low transverse mode numbers n with transverse
wave number ky,n = nπ/d. The longitudinal wave number

is kx,n =
√

k2 − k2
y,n. All wave numbers are given in the

following in units of π/d. The PSCA is designed to describe
the semiclassical dynamics for billiards which are coupled to
quantum wires. The asymptotic scattering boundary condition

(a) (b)

FIG. 1. (Color online) (a) Geometry of the rectangular (square)
billiard with side length D = 1 and equal lead widths d = 1/16.
The placement of the leads is point symmetric with offset h = 0.25.
The diffractive couplings from the leads (quantum point contacts) to
the cavity, cn(θ,k), and for backscattering into the cavity v(θ ′,θ,k)
are sketched. The quantum point contacts (red dots) placed in the
center of the leads are located at the coordinates (x1 = 0,y1 = 0) and
(x2 = D,y2 = D − 2h). (b) The set of classical paths that connect the
two quantum point contacts up to the maximal length L = 10. The
color intensity of the paths is proportional to their deflection factor
defined in Eq. (2).

is defined by the incoming wave

�n,k(r) = 1√
kx,n

χn(y)eikx,nx, (1)

where (x,y) are the local coordinates along and perpendicular
to the entrance lead and χn(y) =

√
2
d

sin[ nπ
d

(y − d
2 )] is the

transverse wave function of mode n. �n,k(r) is flux normalized.
The center of our coordinate system is the quantum point
contact at the entrance lead denoted by r1 = (x = 0,y = 0)
(see Fig. 1). The energy of the scattering state is given by
E = k2/2. The potential in the interior of the billiard cavity
vanishes, V = 0, and is infinitely high at the walls. Dephasing
and decohering interactions with the environment are not
included in V . We comment on the influence of decohering
processes on the path length distribution below.

The classical dynamics of transport from the entrance to
the exit lead (transmission) or back to the entrance (reflection)
is given by all classical paths p connecting the quantum point
contacts (located at the center of the lead junctions) with each
other. The action of a classical path p with path length Lp is
given by Sp = kLp. The classical phase space is structured
in paths (or path bundles [12] when the finite size of the lead
openings is taken into account) whose weight (area in phase
space) is given by the deflection factor

Dp(k) =
∣∣∣∣∣

∂2S
∂r′∂r ,

1
k

∂2S
∂r∂k

1
k

∂2S
∂r′∂k

, 1
k2

∂2S
∂k2

∣∣∣∣∣. (2)

In Fig. 1(b) we depict several classical paths connecting the
entrance and exit point contact. Each path represents a path
bundle and its color intensity is proportional to its weight, i.e.,
the deflection factor. For the rectangular billiard the deflection
factor is exactly Dp = 1/(kLp). It is strictly positive and free
of singularities. Consequently, the Maslov index μp entering
semiclassics is given by

μp = 2Np, (3)

where Np is the number of reflections from the hard wall
along path p. Note that one could alternatively incorporate von
Neumann boundary conditions by setting the Maslov index
equal to zero.

B. PSCA for scattering states

Starting point for the development of a semiclassical
approximation to the wave function of the scattering state
in the interior of the billiard is its expression in terms of the
Green’s function G(r′,r,k),

�n(r′,k) = −i
√

kx,n

∫ d/2

−d/2
G(r′,x = 0,y)χn(y)dy, (4)

for an incoming particle with wave number k = √
2E in mode

n. The scattering boundary condition [Eq. (1)] at the lead
entrance (x = 0,y) acts as a source and the Green’s function
or constant-energy Feynman propagator connects the entrance
point with the observation point via all (nonclassical) paths.
Eq. (4) contains an integral over all entrance points with
transverse coordinate y.

We note that the Fisher-Lee equation [32] expressing the
S-matrix elements in terms of G is a special case of Eq. (4).
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For example, the transmission amplitude tmn is given by

tmn(k) = −i
√

kx,mkx,n

×
∫∫

χ∗
m(y ′)G(x ′ = D,y ′,x = 0,y; k)χn(y)dy ′dy,

(5)

where the integral over y ′ extends over all coordinates at the
exit lead weighted with the outgoing mode amplitude χm(y ′)
in the exit channel. The transmission (reflection) matrix is
related to the S matrix as tmn = S2,1

mn and rmn = S1,1
mn . The

conductance g of the quantum billiard is determined by the
Landauer formula [33,34]

g(k) = 2e2

h
T (k) = 2e2

h

N∑
n=1

N∑
m=1

|tmn(k)|2, (6)

where N is the number of open modes in the leads (in our case
the leads have equal width).

The semiclassical approximation to Eqs. (4) and (5)
involves two steps: First, the evaluation of the integrals over
the entrance and exit leads by either a stationary phase
approximation (SPA) as done in the conventional semiclassical
approximation or as a diffractive integral [12,28] as imple-
mented in the PSCA. We employ for the latter a combination of
the geometric theory of diffraction [35] (GTD) and the uniform
theory of diffraction [36,37] (UTD), called GTD-UTD, which
has been previously successfully applied for the scattering
matrix of the circular billiard [16]. The GTD-UTD takes into
account the multiple scattering between the edges of a given
lead (for details see Ref. [16]). Second, the quantum propagator
is replaced within the PSCA by a semiclassical propagator
that contains in addition to classical paths also pseudopaths,
i.e., sequences of classical paths joined by diffractive (back)
scattering at the lead openings. The reasoning underlying this
augmented path manifold is that near the sharp edges of the
leads or, more generally, at the interface between the quantum
point contacts and the cavity (Fig. 1), the semiclassical regime
of sufficiently small λdB cannot be reached and, therefore,
nonclassical path contributions, determined to leading order
in h̄ by diffractive integrals, must be included from the outset.
These pseudopaths are contributions to the Feynman path in-
tegral that are nonclassical in origin, yet can be systematically
included in the approximation. Accordingly, each pseudopath
p of order η(p) consists of a sequence of η + 1 classical path
segments pi joined by η diffractive scatterings at one of the
lead openings (or point contacts) with diffractive amplitude
v(θpi ,θpi−1,k), where θpi−1 (θpi ) are the incoming (outgoing)
scattering angle with which the trajectory pi−1 (pi) approaches
(leaves) the point contact. Explicit analytic expressions of the
coupling coefficient v(θpi ,θpi−1,k) are given in Appendix. The
PSCA to the propagation along the pseudopath p between
the starting point r and the end point r′ reads

GPSCA
p (r′,r,k) =

[
η∏

i=1

GSCA
pi

(k)v(θpi ,θpi−1 ,k)

]
GSCA

p0
(k), (7)

where the amplitude for each classical path segment pi

connecting two quantum point contacts is given by the standard

SCA expression for the rectangular billiard

GSCA
p (k) = 2π

(2πi)3/2

√|Dp(k)|

× exp

[
iSp(k) − i

π

2
μp

]

= 2π

(2πi)3/2

1√
kLp

exp[ikLp − iNpπ ]. (8)

The complete propagator GPSCA

 (r′,r,k) to order 
 is the sum

over all contributions from pseudopaths connecting r′ and r
with η(p) � 


GPSCA

 (r′,r,k) =

∑
p:η(p)�


GPSCA
p (r′,r,k). (9)

Note that in Eq. (9) r′ and r can be arbitrary points inside
the billiard. In the application to the wave function [Eq. (4)]
we will set r to be the entrance point contact r1 and r′ to be
an arbitrary internal point inside the billiard while in Eq. (5)
r′ is one of the lead-billiard junctions when transmission or
reflection is determined. The order 
 controls the degree
to which diffractive contributions are included. Since the
sum in Eq. (9) extends over infinitely many contributions its
numerical evaluation requires in practice the limitation of path
lengths by a cutoff length Lmax. For integrable billiards such
as the rectangular billiard the number of trajectories below
a maximum length MSCA(Lmax) increases quadratically,
MSCA(Lmax) ∝ L2

max. However, the number of pseudopaths
resulting from joining classical paths by a sequence of
diffractive couplings eventually proliferates exponentially,
MPSCA(Lmax) ∝ exp(Lmax/L0). Therefore, sums over
pseudopaths in numerical implementations can only by
executed up to modest length Lmax. The convergence depends
on the parameter pair (
,Lmax). Note that GPSCA


=0 [Eq. (9)] is
not equivalent to GSCA [Eq. (8)]. In the SCA a path that hits
the exit leaves the cavity. Within the PSCA the diffractive
scattering at the exit gives rise to a plane wave and, to first
order, a circular diffractive wave. In zeroth order the circular
wave vanishes but the plane wave leads to geometrically
reflected paths, which are not included in the SCA.

The propagator within the PSCA, GPSCA, can be used to
construct the semiclassical wave function via Eq. (4). However,
the integral over the entrance lead-billiard junction weighted
with the transverse mode wave function χn would require the
calculation of GPSCA(r′,x = 0,y) for all points −d/2 < y <

d/2. For low mode numbers n we can approximate the integral
by a diffraction approximation that replaces the lead junction
by a quantum point contact, which acts as a point scatterer
located at r1.

We note that this description is appropriate for low-energy
scattering with λdB ≈ d while in the high-energy limit λdB �
d entire path bundles emanating from the finite-size lead open-
ing rather than resolved paths connecting the point contacts
should be included in the semiclassical approximation [31].
In the following we will focus on paths emitted from such a
point contact. The amplitude for a incoming particle in mode
n to leave the point contact at the entrance lead with launching
angle θ relative to the lead axis (see Fig. 1) and wave number
k is denoted by cn(θ,k) (see Appendix for its analytic form).
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Analogously c∗
m(θ,k) represents the amplitude for a trajectory

incident on the junction under the angle θ to exit in mode m.
Inserting Eq. (9) and cn(θ,k) into Eq. (4) yields the PSCA

for the scattering wave function inside the billiard subject to
the boundary condition [Eq. (1)] of incident current in mode n

�PSCA
n,
 (r′,k) = −i

√
kn

∑
p:η(p)�


GPSCA
p (r′,r1,k)cn

(
θe
p,k

)
, (10)

where θe
p is the entrance angle of the trajectory p. Analogously,

the transmission amplitude follows as

tmn(k) = −i
√

kmkn

∑
p:η(p)�


cm

(
θf
p ,k

)
GPSCA

p (r2,r1,k)cn

(
θe
p,k

)
,

(11)

where θ
f
p is the exit angle of the trajectory p. We will use in

the following Eq. (11) as a test for the accuracy of the PSCA
complementary to that for the wave function in Eq. (10).

III. QUANTUM CALCULATIONS

Before presenting results of the PSCA, we briefly review
the method employed for solving the underlying quantum
problem. Our quantum calculations are based on the modular
recursive Green’s function method (MRGM) [38–40]. In the
MRGM the two-dimensional (2D) Schrödinger equation is
solved numerically on a tight-binding grid, which leads to a
nonquadratic (cosine) dispersion relation. While in the PSCA
the dispersion relation has the correct form of E = k2/2,
the discretization within the MRGM leads to a nonquadratic
(cosine) dispersion relation, the main source for deviations
from the exact 2D Schrödinger equation. Thus, the comparison
between the PSCA and QM requires small grid spacings within
the MRGM. We have used 30 grid points per half-wave length.
A coarser discretization below this value leads to a visible shift
in k of the QM transport results with respect to the PSCA due
to the nonquadratic dispersion relation.

Even though the concept of paths and path lengths does not
explicitly enter the quantum description, the scattering wave
function �(r,k) can be Fourier analyzed in terms of its length
component L,

�̃(r,L) =
∫

dk�(r,k)e−ikL. (12)

As we will show the Fourier conjugate variable to k is closely
related to the physical variable length of the (semi)classical
dynamics. For the numerical evaluation of Eq. (12), we
perform a windowed Fourier transform in interval [kmin,kmax].

Equation (12) is the generalization of the path length
spectroscopy [6,12,15,41] of S-matrix elements

S̃mn(L) =
∫ kmax

kmin

dk Smn(k)e−ikL. (13)

S̃mn(L) is the probability amplitude for a quantum path of
length L to scatter from mode n to m. The path-length spectrum
of open quantum systems decays for increasing length L.
However, contributions from very long paths may become
important near resonances of long-lived quasibound states.

We will present examples of path length distributions entering
� below.

Assuming for the moment that the Fourier component
�̃(r,L) can be, indeed, identified with the semiclassical path
length, it is now instructive to construct truncated quantum
wave functions that retain only Fourier components with
L less than the maximum path length Lmax included in the
PSCA. To this end, we truncated the inverse Fourier transform
at L = Lmax

�T(r,k) =
∫ Lmax

0
dL �̃(r,L)eikL. (14)

Analogous truncation of Fourier spectra are performed for S

matrix elements

ST
mn(k) =

∫ Lmax

0
dL S̃mn(L)eikL. (15)

Normalizations have been omitted for simplicity. The
comparison between �T and �PSCA allows us to directly and
quantitatively compare the semiclassical wave function with
the quantum wave function that contains all Feynman paths up
to the same length Lmax. Conversely, comparison between �T

and the full quantum wave function � allows us to assess the
influence of long paths L > Lmax and, therefore, the truncation
error involved in semiclassical path sums (see Sec. IV B).

The numerical evaluation of the Fourier transform for finite
discretized intervals in k gives rise to a maximal resolvable
length �L = 2π/δk where δk is the grid spacing in the k

domain. In order for contributions with L > Lmax not to enter
�T, the amplitude at the maximum resolvable length �L,
�̃(r,�L), must already be strongly suppressed. Otherwise, the
Fourier spectrum is back folded such that contributions with
L � �L � Lmax appear near the origin (L ≈ 0) and cannot
be cleanly cut off by Eq. (14). To avoid such back folding we
choose a large �L. However, we will see in Sec. IV B that
a complete truncation cannot be established in the vicinity of
sharp resonances.

The truncation in L corresponds to the application of a
sinc filter in signal processing and results in a finite resolution
in k or an effective energy average whose full width at half
maximum is given by

σ = 7.582

Lmax
. (16)

By applying the truncation, all details on a finer scale than
σ are smeared out leading to a smoothing of sharp peaks
as a function of k. Consequently, unitarity is violated since
high Fourier components corresponding to contributions from
long paths are missing. Note, however, that the convolution
is performed on the level of the amplitudes whereas, e.g., in
the semiclassical description of scars [29], the energy average
is applied to the absolute square of the wave function, i.e.,
the local density of states. In the latter case the associated
effective average window differs approximately by a factor of
1/

√
2 (see Fig. 8).

The relative importance of a given path length can be quan-
tified by the expectation value of the Eisenbud-Wigner-Smith
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0

0.5

1
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1

PSCA
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FIG. 2. (Color online) Comparison of the total transmission T (k) as a function of k within the PSCA [green (light gray) line], truncated
QM (black dashed line), and full QM [in the inset, upper panel red (dark gray) line]. The PSCA is calculated for a maximum path length of
Lmax = 17.5 and maximum order of diffractive scattering 
 = 6. The inset shows a magnification of the region k ∈ [1.75,1.85].

(EWS) time delay operator for incoming mode n

τEWS = 〈Q〉 =
〈
−iS† ∂

∂E
S

〉

= −i
∑
m

t†nm

∂

∂E
tmn + r†mn

∂

∂E
rmn. (17)

For billiards with zero potential in the interior, the time delay
τEWS can be directly converted into a path length

�EWS = kτEWS. (18)

By comparing �EWS(k) at a given wave number k with Lmax

we can provide an independent estimate for the expected
proximity of �T to � and, in turn, for the convergence of
�PSCA to the full scattering state.

An alternative measure for the time the particle spends
inside the cavity is the dwell time

τD =
∫

cavity
|�(r,k)|2dx dy. (19)

The difference between τEWS and τD is referred to as the
interference delay that the wave packet experiences before
entering the cavity due to interference with parts of itself that
have already been reflected [42]. This self-interference delay
becomes important when the de Broglie wavelength of the
particle is comparable to the linear dimension of the billiard.
In the semiclassical regime, however, we find τD = τEWS to a
very good degree of approximation.

IV. NUMERICAL RESULTS

A. Scattering matrix

To set the stage, we first present typical results for S-matrix
elements [Eqs. (5) and (11)]. The total transmission T (k)
[Eq. (6)] as a function of the incident energy or, equivalently,
k (Fig. 2) displays excellent agreement between the PSCA
and the scattering matrix ST truncated at the same path
length Lmax = 17.5 as the PSCA. A few exceptions are
worth mentioning. They appear, e.g., in the vicinity of the

channel opening k � 2. Just above the channel opening the
emission angle θ is close to π/2. For grazing incidence
the diffraction amplitude cn(θ,k) and scattering amplitude
v(θ ′,θ,k) in GTD-UTD is less accurate, most likely causing
this discrepancy. While, overall, the agreement between the
PSCA and the truncated quantum S matrix is remarkable,
pronounced differences appear to the full quantum S matrix
as highlighted in Fig. 2 for the magnified interval 1.75 � k �
1.85. Pronounced sharp structures are missing in the PSCA
indicating that the latter are due to long paths, i.e., represent
long-lived resonances. In principle, the PSCA could account
for those if Lmax could be extended. In practice, however, the
exponential proliferation of contributing pseudopaths prevents
to perform complete path sums. The comparison suggests that
for those k values where sharp resonances appear, the PSCA
wave function will be significantly different from the quantum
scattering state � while in spectral regions where T (k) is
smooth, the PSCA should become accurate.

B. Wave functions

We present in the following three prototypical cases of
scattering wave functions: one in the smooth off-resonant part
of the spectrum for incoming mode n = 1 (Fig. 3), one near
a sharp resonance (Fig. 4) and one for incoming mode n =
2 (see Fig. 10 below). Obviously, in the nonresonant case
we find near perfect agreement between �, �T, and �PSCA

while in the resonant case �PSCA strongly differs from � but
is in close agreement with �T, as anticipated. In resonant
scattering a long-lived quasibound state is excited such that
contributions from very long path lengths become essential
while off-resonant wave functions typically show signatures
associated with the dynamics of short paths.

The computational effort to calculate �PSCA is much larger
than for the S-matrix elements since the path sum has to
be performed for each grid point of a square lattice with
small spacings δx. In order to generate high-resolution images
of �PSCA with modest computational effort we employ the
following trick: we expand �PSCA in terms of the analytically
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(a) QM

0 0.2 0.4 0.6 0.8 1

(b) PSCA

(c) truncated QM

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

FIG. 3. (Color online) Comparison of the full quantum wave
function �, �PSCA, and the truncated wave function �T for a
nonresonant scattering state in incident mode n = 1 with k = 1.7835
and �EWS = 10.5. (a) Full quantum wave function �, (b) PSCA with
Lmax = 17.5 and maximum diffractive order 
 = 6, (c) truncated
quantum wave function with Fourier components L � Lmax = 17.5.

known eigenstates of the closed billiard

〈r|mn〉 = 2

D
sin(Kmx) sin(Kny), (20)

where Kn = π
D

n. With the help of the projection amplitude

aPSCA
mn = 〈mn|�PSCA〉 (21)

QM

PSCA

truncated QM

(a)

0 0.2 0.4 0.6 0.8 1

(b)

(c)

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

FIG. 4. (Color online) As Fig. 3 but for a resonant scattering state
in incident mode n = 1 with k = 1.8295 and �EWS = 47.

evaluated on the grid, we can evaluate �PSCA in the interior as

�PSCA(r,k) = 2

D

∑
mn

aPSCA
mn (k) sin(Kmx) sin(Kny). (22)

Due to energy conservation the expansion coefficients
aPSCA

mn (k) are nonzero only near the circle K2
m + K2

n = k2 (see,
e.g., the inset of Fig. 5). In the limit of a bound state of the
closed billiard the amplitudes take the form of a delta function
amn(k) = δ(k − √

K2
n + K2

m). We can thus use a coarse grid
δx � π/k such that the maximal resolved wave number �K =
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FIG. 5. (Color online) The absolute square of the spectral angular
amplitude �(φ,k) [Eq. (23)] at fixed wave number k = 1.7835 for
� within full quantum mechanics [Fig. 3(a)]. The inset shows the
expansion coefficients anm(k) and the definition of the angle φ. The
color code goes from white for vanishing amplitude over green (light
gray) to dark blue (dark gray) for maximum amplitude.

π/δx is slightly larger then the wave number k of the scattering
state. amn(k) calculated from this coarse grid contains the
complete information on the wave function inside the cavity.
We note that the eigenfunctions of the closed billiard do not
form a complete basis for the open billiard because the lead

openings are replaced by hard walls. Therefore, the Fourier
expansion [Eq. (21)] and its inverse are not strictly unitary.

Since the expansion coefficients amn are nonzero only near
the circle k2 = K2

m + K2
n , we can construct a spectral angular

amplitude of the scattering state with wave number k as

�(φ,k) =
∑
n,m

δ(n, tan(φ)m)amn(k). (23)

The expression δ(n, tan(φ)m) is unity for tan(φ) = n/m and
zero elsewhere. Equation (23) can be applied to both the
exact quantum state and to its semiclassical approximation.
Figure 5 shows the angular spectra of the nonresonant
scattering state [Fig. 3(a)] within full quantum mechanics.
As expected from the visual inspection of the wave function,
the angular distribution shows many peaks corresponding to
a large number of excited modes. Nevertheless �(φ,k) is not
uniformly distributed in angle φ because excitation of modes
with large φ would lead, in general, to long lifetimes caused
by their weak cavity-lead coupling [see Fig. 9(a)]. For states
with short dwell times such as in Fig. 3 large φ contributions
are suppressed.

To quantify the agreement between the quantum and
semiclassical wave functions we use the distance metric in
Hilbert space

d2(�1,�2) = 1

D2

∫∫
cavity

dx dy |�2(r,k) − �1(r,k)|2. (24)

The convergence of the semiclassical wave function �PSCA

as a function of 
 and Lmax can be conveniently studied
by employing d2(�T,�PSCA). We observe that at fixed Lmax

and increasing 
, �PSCA converges monotonically to �T

shown in Fig. 6(a) for the scattering state at k = 1.7835.
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FIG. 6. (Color online) (a) The distance d2(�PSCA,�T) as a function of Lmax depicted for varying orders 
 = 1 to 
 = 6 and wave number
k = 1.7835 (same as in Fig. 3). (b) The normalized distance, d2(�,�̄)

d2(�,0)
, of �̄ to the exact quantum wave function �, with �̄ being either �PSCA

[green (light gray) line] or �T (black line) as a function of Lmax for the same wave number as in (a). The mean path length within the full QM
[Eq. (18)] is �EWS = 10.5 and is marked by a vertical line. The PSCA is depicted for order 
 = 6. �T (black line) is obtained via a discrete
Fourier transform of Eq. (14) in the interval k ∈ [1.725,1.875] with δk = 0.00025.
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FIG. 7. (Color online) Distance d2(�,�PSCA) between the quantum wave functions � and the PSCA �PSCA [red (dark gray) line], as well
as the distance d2(�T,�PSCA) between the truncated QM and the PSCA [green (light gray) line]. The PSCA is calculated to order 
 = 6 with
Lmax = 17.5. The black solid line is the mean path length �EWS [see Eq. (18)] and the horizontal dashed line marks a mean path length of
� = Lmax = 17.5. Note the logarithmic scale of the figure. The two vertical arrows mark the wave number of a nonresonant scattering state
(k = 1.7835, as in Fig. 3) and the wave number of a resonant scattering state (k = 1.8295, Fig. 4), respectively. The sharp peak at k = 1.82925
corresponds to the resonance m = 29,n = 4 and has a mean path length of �EWS = 145 almost degenerate to the resonance state m = 4,n = 29
at k = 1.8295.

The semiclassical wave function �PSCA has converged to �T

within d2(�T,�PSCA) = 0.0015 for 
 = 6 at Lmax = 20.
At fixed 
 and increasing Lmax the semiclassical wave

function �PSCA starts to diverge from �T with the onset of
divergence shifted to larger Lmax as 
 increases [Fig. 6(a)].
This is a consequence of the increasing lack of pseudopaths
required for the complete path sum at length Lmax. For large
Lmax an exponentially increasing number of pseudopaths of
the same length become accessible that consist of segments
of shorter classical paths joined by an increasing number of
diffractive scatterings [see Eq. (7)]. Some of these high-order
pseudopaths are missing for the proper interference with the
paths already included in the PSCA of low order 
. Therefore,
convergence to the quantum wave function, if existent, requires
a correlated limit of both large Lmax and 
. It should be noted
that with increasing order 
, the PSCA becomes more and
more sensitive to the accuracy of v(θ ′,θ,k) (the diffractive
amplitude for the internal scattering at the cavity-lead junction)
since any error in v(θ ′,θ,k) is exponentiated to the power 
.
We note parenthetically, that the global convergence of the
(pseudo)path sum, in particular near sharp resonances and for
weakly open structures, remains an open question.

While the dependence of d2(�T,�PSCA) on the order 


of the PSCA allows to estimate the significance of diffractive
contributions to the path sum up to a given length Lmax, the
distance d2(�,�T) measures the total contribution of paths
with length beyond Lmax [Fig. 6(b)]. The convergence of �T

to the exact scattering state as a function of Lmax is controlled
by the mean path length �EWS of the exact scattering state.
In general, for Lmax � �EWS the truncated wave function �T,
and thereby �PSCA for sufficiently high 
 converge to the full
scattering state.

The PSCA fails to reproduce the quantum scattering state
near a sharp resonance (Fig. 4) because long paths well
beyond Lmax contribute to the long-lived quasibound state. It is
therefore instructive to directly compare the distance functions

d2(�,�PSCA) with the EWS length �EWS as a function of k

(Fig. 7). Indeed, the distance of the wave function in Hilbert
space strongly correlates with the mean path length �EWS and
allows to predict the accuracy of �PSCA for a given Lmax

when �EWS is known. The two prototypical cases shown above
are marked in Fig. 7. It is also instructive to measure the
distance between �PSCA and �T (Fig. 7). It is uniformly small
(<0.05) over the entire k interval and slowly varying. It is
worth noting that the residual fluctuations in d2(�T,�PSCA)
are not due to shortcomings of the PSCA but rather due to
the truncation process in �T [see Eq. (14)]. Near resonances
�̃(r,L) contains non-negligible contributions up to very long
paths. Consequently, when �̃(r,L) is still non-negligible for L

beyond the Fourier resolution limit L > �L = 2π/δk, back
folding causes truncation errors. The latter are responsible for
the increase of d2(�T,�PSCA) in the region of high density of
sharp resonances (e.g., near k = 1.765 and k = 1.822).

The contribution from long paths and the possible con-
tamination by back folding can be conveniently monitored
by the projection amplitudes amn(k) onto bound states of the
closed billiard [Eq. (21)] or onto quasibound states of the open
billiard. We present |amn(k)|2 and its path length spectrum
|ãmn(L)|2, where

ãmn(L) =
∫

dk amn(k)e−ikL (25)

for two extreme cases in Fig. 8, the broad resonance (m = 29,
n = 1) and the sharp resonance (m = 15, n = 25). For the
broad resonance, the PSCA and the truncated quantum state
agree perfectly since the path length spectrum of the amplitude
has already decayed by over four orders of magnitude near
L = �L = 500. For the sharp resonance with �EWS = 1460,
the path length spectral intensity at L ≈ 500 is still ≈10−1

of its value for small L and, consequently, truncation leads
to large discrepancies between �PSCA and �T. Naturally both
the PSCA and the quantum state truncated at Lmax = 17.50
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FIG. 8. (Color online) The absolute magnitude square of the amplitudes |amn(k)|2 for the two extreme cases of (a) a broad resonance
(m = 1,n = 29) and (b) a sharp resonance (m = 25,n = 15). Note the different ranges of the ordinate in (a) and (b) for the quantum result. The
inset shows the length spectrum |amn(L)|2 of the amplitude of � on a logarithmic scale. The length spectrum of the sharp resonance [inset of
(b)] is not sufficiently decreased at the boundary of numerical resolution �L = 500 such that some paths with L > Lmax are not filtered out of
�T. This causes the difference between �T (black dashed line) and �PSCA [green (light gray) line] in (b). The scattering state which excites the
sharp resonance corresponds to the mean path length of � = 1460 at k = 1.822 (see Fig. 7). The scale bar gives the width σ/

√
2 = 0.0061π/d

of the effective energy average associated with the truncation on the level of the square absolute amplitudes [for σ see Eq. (16)]. The PSCA is
calculated with Lmax = 17.5 and order 
 = 6.

fail to describe the exact quantum scattering state for the sharp
resonance.

The visual proximity of quantum scattering states near
long-lived resonances to bound states of the closed system
[Fig. 4(a)] might suggest that they can be approximated by
semiclassical wave functions of the closed system. However,
the amplitude with which such a scattering resonance is excited
by the incoming scattering state is essentially controlled by the
diffractive coupling to the asymptotic incoming and outgoing
scattering states at the lead entrance and exit. Moreover, while
the position kR of the resonance can be estimated from the
quantized closed system [43–45], its width � and its Fano
asymmetry parameter [46] can only be determined within a
semiclassical description of the open billiard. Inclusion of
very long paths into the latter remains a challenge. Only in
exceptional cases such as the hyperbolic three-disk problem
with only isolated unstable periodic orbits the line width of
scattering resonances could be determined by a rapidly con-
vergent cycle expansion of the spectral determinant [47–49].
Such an approach is not directly applicable to the integrable
billiard with a continuous manifold of (stable) periodic orbits.
We emphasize that the case of narrow resonances where the
numerical evaluation of the PSCA fails is the exception rather
than the rule. For example, 92% of the scattering states in Fig. 7
have a mean path length �EWS of less than 50. Only 8% are
associated with long-lived resonances. Moreover, as discussed
below, in experimental realizations with decoherence present,
the contribution of long paths is suppressed.

While the previous numerical examples feature low wave
numbers k < 2 with only one open channel we have checked
on the convergence of �PSCA for higher wave numbers up
to k = 5 as well. We find, in general, the same very good
agreement between the PSCA and the full quantum mechanics

in the regime Lmax > �EWS and between the PSCA and the
truncated quantum mechanics in the regime Lmax < �EWS.

An example for the wave function convergence for the
second mode with k = 2.25375 and �EWS = 9.5 is shown
in Fig. 10. One remarkable feature of this wave function
different from the previous cases is the intensity enhancement
along a classical periodic orbit. Both �PSCA and �T show
clear traces of this orbit. For the full quantum state � the
occurrence of this structure is caused by the excitation with
nearly equal amplitude of two almost degenerate eigenstates
of the closed system |mi,ni〉 with m1 = 26,n1 = 25 and m2 =
30,n2 = 20. Superposition of these two eigenstates lead to an
envelope that follows the track of the periodic orbit similar to
the formation of a beat in acoustics [50]. It is now instructive
to analyze their appearance within the PSCA. We first
note that the angular spectrum of � (analogous to Fig. 9)
features two dominant peaks with equal height near the angles
φi = tan−1(ni/mi) (i = 1,2) determined by the quantum
numbers of the two resonant states. Moreover the angular
distribution for diffractive coupling from the point contact
into the billiard in second mode c2(θ,k) [Eq. (10)] features a
high amplitude near these angles, θe = φi . This differs from
the coupling in first mode for which large angles would be
suppressed. The buildup of the beat pattern results now from
the constructive interference between the rays emitted from
the contact into the billiard with entrance angle close to φi

and its replica propagating into the same direction after four
consecutive reflections at the billiard wall. The path length
difference between two such trajectories inside the billiard is
given by

�L = 2D
1 + tan φi√
1 + tan2 φi

= 2D
mi + ni√
m2

i + n2
i

. (26)
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FIG. 9. (Color online) Comparison of �(φ,k) within PSCA, truncated QM and full QM for (a) a resonant (k = 1.8295, Fig. 4) and
(b) a nonresonant (k = 1.7835, Fig. 3) scattering state. The wave numbers correspond to those labeled in Fig. 7. Lmax = 17.5, 
 = 6.

The necessary condition for constructive interference

�S = k�L = 2πj (j ∈ N) (27)

is now approximately satisfied for both φ1 (k�L = 100.01π )
and φ2 (k�L = 101.97π ) at k = 2.25375. In addition, the
condition for constructive interference between the rays with
entrance angle θe = φi and θe = −φi leads to sin(hky) =
0, which gives a simple estimate for the strength of the
coupling between eigenstate and incoming second mode (for
definition of h see Fig. 1). Both requirements are approx-
imately met for (mi,ni)i=1,2 resulting in the simultaneous
excitation of the corresponding eigenstates and, in turn, in
the beat pattern and in the density enhancement near the
periodic orbit. The strong coupling between the incident mode
n = 2 and the two eigenstates is facilitated by the spatial
proximity, to within a de Broglie wavelength, of one reflection
point of the periodic orbit and the location of the entrance
lead.

The excitation amplitude of the eigenstate also depends on
the position of the exit lead. Taking into account higher-order

diffractive corrections incorporates the coupling to the exit
lead into the semiclassical description. Note that the present
mechanism for the formation of this periodic orbit is different
from the appearance of scars in wave functions of open
chaotic billiards for low k [51], which is based on constructive
interference for consecutive retracing of a single isolated
periodic orbit. It is also different from the appearance of
path bundles for large k where bundles of short classical
scattering trajectories emanating from the entrance opening
whose width is determined by the lead width appear in
scattering states [31,52].

The comparison between the truncated and the full QM
wave function (Fig. 10) shows that there are nonvanishing
contributions from paths with length L > Lmax indicating the
presence of resonances in the immediate vicinity. Investigation
of d2(�,�T) as function of the truncation length Lmax shows
rapid decay for small Lmax and a slow, plateaulike, decay for
Lmax > 11 due to the residual influence of nearby resonances,
which causes a small �EWS but still nonvanishing distance
d2(�,�T) at Lmax = 17.5 > �EWS.

QM

0 0.2 0.4 0.6 0.8 1

PSCA

0 0.2 0.4 0.6 0.8 1

truncated QM

0 0.2 0.4 0.6 0.8 1
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FIG. 10. (Color online) As Fig. 3 but for an off-resonant scattering state in incident mode n = 2 with k = 2.25375 and �EWS = 9.5.
Comparison of �, �PSCA, and the truncated wave function �T. The white dashed line in (a) shows the density enhancement along the classical
periodic orbit.
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V. SUMMARY AND OUTLOOK

We have presented the construction of the semiclassical
constant energy propagator and of scattering states employing
the pseudopath semiclassical approximation (PSCA). The
convergence of the PSCA to the quantum limit is controlled
by the maximum path length Lmax and the maximum order

 of nonclassical diffractive scatterings included. For the
open rectangular billiard we find unprecedented quantitative
agreement between �PSCA and the full quantum scattering
state � when the mean path length �EWS = kτEWS determined
by the Eisenbud-Wigner-Smith (EWS) time delay τEWS is
covered by the PSCA, �EWS � Lmax. Thus, the pseudopaths
resulting from sequences of classical paths joined by nonclas-
sical diffractive scatterings at the lead openings provide the
necessary complements to the classical paths for completion
of the Feynman path sum for quantum propagation. We have
presented a protocol for constructing semiclassical scattering
wave functions whose convergence to its quantum counterpart
can be quantitatively controlled. Even when the mean path
length of the exact scattering state �EWS exceeds the maximum
path length included in the numerical implementation of
the PSCA as it happens for energies (or wave numbers k)
near long-lived resonances, we find near-perfect agreement
between �PSCA and the corresponding quantum wave function
�T with the path length spectrum truncated at the same Lmax

as the PSCA.
Extension of the present PSCA to the description of scatter-

ing states in open chaotic billiards is of considerable interest.
However, performing a complete path sum up to a given length
poses a challenge as in this case already the set of classical
paths [i.e., the zeroth-order (
 = 0) diffraction contributions]
exponentially proliferates. Combining these classical paths
with the exponentially increasing number of pseudopaths when
higher-order diffraction corrections are included results in a
path set, which will be difficult to enumerate for all but the
shortest cutoff length Lmax. One feature that could possibly
simplify this task is a faster convergence of the path sum
as a function of the diffractive order compared to integrable
systems. For the latter, large 
 are required to generate
a sufficient number of pseudopaths to shadow long paths
by destructive interference [14]. Exponential proliferation
of classical paths may alleviate this problem and lead to
accelerated convergence already for smaller 
.

Due to the mathematical equivalence between the
Schrödinger and the Helmholtz equations the experimental
measurement of wave functions can be conducted in open
microwave billiards using movable antennas [53] or in micro-
cavity lasers [50]. The direct measurement of wave functions
in quantum dots is still a major challenge but some progress has
been made using scanning tunneling microscopy in graphene
quantum dots [54]. The truncation of long paths beyond Lmax,
introduced here to control the sum over an exponentially pro-
liferating set of pseudopaths, does have, in fact, experimental
analogues and applications: finite energy resolution of the
detection and/or excitation processes leading to smearing out
of the sharp resonances is equivalent to suppressing long paths
in the expectation value 〈|�(r)|2〉E . Moreover, the finite phase
coherence length �φ present in decohering systems precludes
the appearance of long-lived resonances and causes long paths

to contribute only incoherently [7,55,56]. The latter can easily
be incorporated within the PSCA by an exponential damping
e−L/�φ of long path contributions [6]. Damping of long paths
naturally occurs in billiards with leaky boundary conditions
where tunneling through the billiard walls is present. In
the experiment such systems can be realized as microwave
billiards with dielectric boundaries. The PSCA can be used to
describe such systems by incorporating an additional reflection
amplitude for each bounce off the billiard walls accounting for
the tunneling probability. For such billiards, violation of flux
conservation (unitarity) as well as a small mean path length,
both naturally incorporated within the PSCA, are key features
of the scattering system. The appearance of total reflection
for small incident angles causes the reflection amplitude to
become a pure phase factor, i.e., its modulus is unity. In the
ray picture the associated phase shift can be interpreted by a
spatial shift known as the Goos-Hänchen shift [57,58]. The
inclusion of this effect can lead to a considerable change in
the dynamics of billiards with penetrable walls [59–62]. Due
to the possibility of controlling individual path contributions,
the PSCA has the potential to develop into an accurate method
for calculating scattering states in open billiards where both
diffraction at lead edges and dielectric boundary conditions
are present.
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APPENDIX: DIFFRACTION AMPLITUDES

We reproduce here the diffraction amplitudes v(θ ′,θ,k) and
cm(θ,k) within the GTD-UTD. The derivation can be found in
Ref. [16].

The diffraction amplitude vGTD(θ ′,θ,k) for backscattering
into the cavity within the GTD [35] is given by

vGTD(θ ′,θ,k,d) = 1
2DL(θ ′,θ )e−ik d

2 (sin θ ′+sin θ)

+ 1
2DR(θ ′,θ )e+ik d

2 (sin θ ′+sin θ) (A1)

with the scattering coefficients at the left and right wedge

DL(θ ′,θ ) = D(π/2 − θ ′,π/2 − θ )
(A2)

DR(θ ′,θ ) = D(π/2 + θ ′,π/2 + θ )

and

D(φ′,φ) = −2
sin π/N

N

[
1

cos π
N

− cos φ′−φ

N

− 1

cos π
N

− cos φ′+φ

N

]
(A3)

with N = 3/2 the exterior angle (in units of π ) of a perpen-
dicular wedge. The angles θ and θ ′ are depicted in Fig. 1. We
use the diffraction coefficient within the UTD [36] to take into
account multiple scatterings between the two wedges of the

022916-11



FABIAN LACKNER et al. PHYSICAL REVIEW E 88, 022916 (2013)

cavity-lead junction

DUTD(φ′,φ,r ′,r,k) = −ei π
4

N

∑
σ,η=±1

σ cot

(
π + η(φ′ − σφ)

2N

)

×
(

k
rr ′

r + r ′ aη(φ′ − σφ)

)
, (A4)

where a±(β) = 2 cos2 ( 2πNn±−β

2 ) and n± is the integer that
most closely satisfies 2πNn± − β = ±π . The function F is
defined as a generalized Fresnel integral

F (x) = −2i
√

xe−ix

∫ ∞
√

x

dτeiτ 2
. (A5)

With the notation

UL(θ ′,θ,r,k) = DUTD(π/2 − θ ′,π/2 − θ,r ′ → ∞,r,k)

UR(θ ′,θ,r,k) = DUTD(π/2 + θ ′,π/2 + θ,r ′ → ∞,r,k)

(A6)
we obtain for the diffraction amplitude v(θ ′,θ,k) within the
GTD-UTD

v(θ ′,θ,k,d)

= vGTD(θ ′,θ,k,d)

+ 1

4

jmax∑
odd: j=1

UL(θ ′,−π/2,jd,k)gj (k)ei�−+
DR(+π/2,θ )

+UR(θ ′,+π/2,jd,k)gj (k)ei�+−
DL(−π/2,θ )

+ 1

4

jmax∑
even: j=1

UR(θ ′,+π/2,jd,k)gj (k)ei�++
DR(+π/2,θ )

+UL(θ ′,−π/2,jd,k)gj (k)ei�−−
DL(−π/2,θ ), (A7)

where

gj (k) = 1√
2πkjd

1

2j−1
ei(kjd+(j−1)π) (A8)

and

�±± = k
d

2
(± sin θ ′ ± sin θ ). (A9)

The sum goes over multiples of scatterings between the wedges
and is cut at jmax where convergence is reached. We use
jmax = 5.

The diffraction amplitude for coupling of the quantum lead
to a cavity within the GTD is given by

cGTD
m (θ,k,d) = −ie

imπ
2√

2dkx,m

[
1

2
DL(θ,θm)ei mπ

2 e−ik d
2 sin θ

− 1

2
DR(θ,θm)e−i mπ

2 eik d
2 sin θ

]
. (A10)

As before we use the notation

DL(θ,θm) = D

(
π

2
− θ,

3π

2
− θm

)
,

(A11)

DR(θ,θm) = D

(
π

2
+ θ,

3π

2
− θm

)
for the left and right wedge. The angle θm is determined by the
open lead mode and is given by θm = arcsin(mπ/dk). Using
the UTD Eq. (A6) for the out-coupling into the cavity we
obtain

cGTD−UTD
m (θ,k,d)

= cGTD
m (θ,k,d) − i

e
imπ

2√
2dkx,m

× 1

4

⎡
⎣ jmax∑

odd:j=1

UR(θ,+π/2,jd,k)gj (k)eiφ++
DL(−π/2,θm)

−UL(θ,−π/2,jd,k)gj (k)ei�−−
DR(+π/2,θm)

+
jmax∑

even:j=1

(−1)UR(θ,+π/2,jd,k)gj (k)ei�+−
DR(+π/2,θm)

+UL(θ,−π/2,jd,k)gj (k)ei�−+
DL(−π/2,θm)

⎤
⎦ , (A12)

where

�±± = ±k
d

2
sin θ ± mπ

2
, (A13)

and gj (k) is given in Eq. (A8).
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