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Radial sine-Gordon kinks as sources of fast breathers
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We consider radial sine-Gordon kinks in two, three, and higher dimensions. A full two-dimensional simulation
showing that azimuthal perturbations remain small allows us to reduce the problem to the one-dimensional
radial sine-Gordon equation. We solve this equation on an interval [r0,r1] and absorb all outgoing radiation. As
the kink shrinks toward r0, before the collision, its motion is well described by a simple law derived from the
conservation of energy. In two dimensions for r0 � 2, the collision disintegrates the kink into a fast breather,
while for r0 � 4 we obtain a kink-breather metastable state where breathers are shed at each kink “return.” In
three and higher dimensions d , an additional kink-oscillon state appears for small r0. On the application side, the
kink disintegration opens the way for new types of terahertz microwave generators.
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I. INTRODUCTION

The sine-Gordon equation is an important model both
for theory and for applications. It corresponds to a classical
field with degenerate ground states (2nπ ) [1]. In one space
dimension, it is integrable via the inverse-scattering transform
and it has two main classes of localized solutions, namely the
kink and the breather. The former is particularly interesting
because it is a topological defect separating two regions where
the solution is 0 and 2π . In higher dimensions, one can
introduce the radial kink, i.e., a kink which only depends on
the radius r , and this was studied by a number of authors.
Among these, Christiansen et al. [2–4] have shown that such
kinks with initial velocity exhibit the return effect where they
“grow” up to some radius and then shrink back. Note also
the remarkable work by Geicke, who described solutions of
the radial sine-Gordon equation [5,6] and indicated that radial
kinks are destroyed [7] at the origin in two dimensions. This
was also observed by Bogolubsky and Makhankhov [8]. This
particular phenomenon is not well understood. Geicke [7]
reports in particular a difference in the collapse of the kink
in two and three dimensions. The second class of solutions,
the breather, can be generalized to higher dimensions. In two
dimensions, some such solutions were observed numerically to
be very long lived; for example, Ref. [9] gives initial conditions
leading to such solutions. These “pulsons” or “oscillons” can
also be found in the sister model of the sine-Gordon equation,
i.e., the φ4 equation. For both models, the frequency of the
oscillons is below the gap but their long life in two dimensions
has just been explained recently [10].

To analyze these radial solutions, one can assume that
the radial term is small so that the system is a perturbed
one-dimensional sine-Gordon equation. The main assumption
is that the width of the kink remains small compared to its
radius. Such a perturbation theory based on inverse scattering
was formulated by Maslov [11]. The radiation generated by
a shrinking sine-Gordon kink was computed by Malomed
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[12]; for a φ4 kink, it was computed in Ref. [13]. These
estimates were never compared systematically to the numerical
solutions. On the other hand, when the radius of the solution
is small, the perturbation term becomes very large. Then only
conservation laws can be used, so the analysis becomes very
difficult. For oscillons, Gleiser [10] showed their stability
in two dimensions by using a Gaussian ansatz. Alfimov
and Vazquez [14] assumed periodicity (which is observed
numerically), expanded the solution in Fourier series, and
studied the harmonics. They showed that the harmonics could
not be bounded in general, so the solution has infinite energy
and therefore cannot exist. The only explanation is that the
radiation leak exists but is very weak. There is a connection
between radial kinks and oscillons because a kink placed at
R0 = 3 was shown to give rise to an oscillon [7]. However, a
systematic picture of the radial kink collision in two and higher
dimensions is missing.

On the application side, the two-dimensional sine-Gordon
equation describes the electrodynamics of a Josephson junc-
tion between two superconducting films in the absence of
external current and dissipation [15]. The wave part comes
from Maxwell’s equations and the sine nonlinearity from
Josephson’s constitutive relation. The variable is the phase
difference (or flux) ψ between two superconductors. In this
context, the kink solution, a “fluxon,” carries a flux quantum
which generates microwave radiation in the terahertz range
when it collides on the boundary of the device. When the lateral
geometry of the device is reduced, the fluxon, once created,
is “dragged” toward the narrow edge. This suggested a design
of a particle detector [16] and also gave rise to the so-called
Eiffel junctions with exponential tapered width [17,18]. For
these, analysis and a preliminary experimental realization [19]
confirmed that no magnetic field is needed to move the kink;
current alone suffices. The dynamics was shown to be very
regular, contrary to the standard rectangular design. Note also
the analysis of the resonances by Jaworski [20].

There is a strong link between this Eiffel design and the
radial sine-Gordon model, as we will see below. This link,
together with the formal studies and the applications, inspired
us to undertake a numerical study of the dynamics of two-
and higher-dimensional radial kinks. We relied strongly on
numerical studies using a careful procedure. We first solved
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the two-dimensional (2D) sine-Gordon equation for a radial
kink and showed that azimuthal perturbations remain small.
This justifies the reduction to the radial sine-Gordon equation.
We studied this equation numerically for a radial kink initial
condition on a finite domain r0 < r < r1, and absorbed all
outgoing radiation. This last point is important because the
radiation reflecting from the boundary and coming back into
the computational domain can perturb strongly the solution.
We varied r0 systematically from 10 to 0 to see how the radial
term (d − 1)φr/r in the Laplacian affects the collision. The
dimension d is another parameter that we varied. The radial
term can be seen as a perturbation of the one-dimensional sine-
Gordon equation, and by changing r0 we change the magnitude
of this perturbation from small to very large. Changing both r0

and d systematically provides a coherent picture of the radial
kink dynamics in two and higher dimensions.

Before the collision at r0, we find that the 2D and 3D
radial kinks are well described by a simple equation for the
radius obtained from energy conservation. When collision
occurs, the kink is always strongly affected when r0 � 5.
In two dimensions for r0 � 2 it disintegrates into a fast
breather rapidly ejected away from r0. For larger r0, we
observe a semistable kink-breather bound state which sheds
fast breathers at each “return.” In all cases, the kink decays to
0. Interestingly, in three dimensions for r0 = 5 we recover
the total destruction of the kink. For r0 � 5, all the kink
energy cannot be converted into a single breather because
the radial term is too strong to prevent it from escaping.
Instead we observe a kink-oscillon bound state that ejects
small high-frequency (low-energy) breathers. For d � 3, the
collision can yield the three states as shown by a study of the
(d,r0) parameter plane. This scenario explains the differences
observed by Geike [7] and other authors for the two- and
three-dimensional kink collision. It also opens an avenue for
new microwave devices which transform a fluxon (kink) into
a large microwave pulse.

The article is organized as follows. In Sec. II we illustrate
the collapse of a sine-Gordon kink in two dimensions and
show that there are no azimuthal effects. This justifies the
reduction to the radial sine-Gordon equation. In Sec. III
we recall its conservation laws. The conservation of energy
provides a simple model for the shrinking, which we compare
to the numerical solution. We examine in detail the radial kink
collision in two, three, and higher dimensions in Sec. IV, and
we characterize the emission of breathers. We conclude in
Sec. V and suggest a design for a terahertz radiation source.

II. THE COLLAPSE OF A SINE-GORDON KINK
IN A 2D SECTOR

To illustrate the problem that we will consider, we present
here a 2D numerical study of the dynamics of a radial kink in
a sector. The 2D sine-Gordon equation reads

ψtt − ψθθ

r2
− ψrr − ψr

r
+ sin ψ = 0. (1)

As a domain, we consider the sector r0 < r < r1, 0 < θ < θ0

shown in Fig. 1. The boundary conditions corresponding to no
external current are homogeneous Neuman so that ψθ = 0 for
θ = 0,θ0 and ψr = 0 for r = r0,r1.
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FIG. 1. Sketch of the 2D domain for the sine-Gordon equation.
The radial kink initial condition is shown as a dotted-dashed line.

We consider the propagation of a sine-Gordon kink inside
such a sector. In that case, the initial condition is given by [1]

φ(r,t = 0) = 4atan

⎛
⎝ r − R0√

1 − u2
0

⎞
⎠ , (2)

where R0 and u0 are, respectively, the initial position and the
velocity of the kink.

We have computed the evolution of such an initial condition
using the COMSOL finite element software [21]. Figure 2 shows
two different snapshots of the evolution of a kink in a domain
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FIG. 2. (Color online) Snapshots of the evolution of a kink for the
2D sine-Gordon equation in a wedge. The kink is started at R0 = 15
in a domain such that r0 = 1,r1 = 20. The panels show the solution
for t = 20 before the collision and for t = 50 after the collision. The
z color range is [0; 2π ].
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such that r0 = 1,r1 = 20 assuming R0 = 10 and u0 = 0. In the
top panel, showing the kink at t = 20, the kink is accelerated
toward the narrow edge. Notice the absence of radiation and
the characteristic overshoot. The bottom panel presents the
solution after collision t = 50 and shows that the kink has
disappeared and only a flat background φ ≈ 2π persists with
some oscillations. Despite the violence of the collision, all the
energy remains in the radial n = 0 mode and no azimuthal
modes are excited. The space discretization (finite elements)
does not preserve the radial symmetry. Nevertheless, azimuthal
perturbations do not grow. We therefore now look for a
reduction of the model to the radial case and justify this
approximation.

To reduce the 2D problem, it is natural to expand in
azimuthal modes using the cosine Fourier series,

ψ(r,θ,t) =
∞∑

n=0

φn(r,t)χn(θ ), (3)

where χn(θ ) = cos( nπθ
θ0

). Plugging the expression (3) into (1)
and projecting onto χ0, we obtain the evolution of φ0,

−φ0t t + φ0rr + φ0r

r

= 1

θ0

∫ θ0

0
sin(φ0 + φ1χ1 + φ2χ2 + · · ·)dθ. (4)

The integrand on the right-hand side can be written as

sin(φ0 + φ1χ1 + · · ·) = sin(φ0) cos(φ1χ1 + φ2χ2 + · · ·)
+ cos(φ0) sin(φ1χ1 + φ2χ2 + · · ·).

The integral on the right-hand side of (4) becomes

sin(φ0)

θ0

∫ θ0

0
dθ cos(φ1χ1 + φ2χ2 + · · ·)

+ cos(φ0)

θ0

∫ θ0

0
dθ sin(φ1χ1 + φ2χ2 + · · ·).

To estimate these terms, we expand the cosine and sine. Then
we find that the nonzero contribution for the first term will
yield terms of the form

φ2
i

2
sin(φ0),

and will yield cubic terms for the second integral. This shows
that if the φi are small, one can assume that

sin(φ0 + φ1χ1 + · · ·)
≈ sin(φ0) + cos(φ0)(φ1χ1 + φ2χ2 + · · ·),

so that (4) reduces to the radial 1D sine-Gordon equation,

−φtt + φrr + φr

r
= sin(φ), (5)

where the 0’s have been omitted for simplicity. The model (5)
can be obtained for any angle θ0, and in particular for the whole
two-dimensional sector. It is also linked to the variable width
sine-Gordon equation which contains the term φxw

′(x)/w(x)
[17]. The radial sine-Gordon equation corresponds to w(x) =
θ0x while the Eiffel junction is for w(x) = w0e

−λx .

III. NUMERICAL PROCEDURE

We now detail the numerical procedure because it is the
basis of this work. Another reason is that the approximate
analysis based on perturbation methods is difficult to validate
a priori for small radii. We give it meaning by comparing
the predictions to the numerical solution. We solve the radial
sine-Gordon equation using the method of lines where the
space discretization is done using a finite difference and the
time advance is done using an ode solver (DOPRI5 ordinary
differential equation solver [22]). This method is flexible
and one can increase easily the space discretization. Another
time integrator we have used for comparison is the Verlet
method [23]. The number of discretization points for a typical
run is 4000 and the accuracy is checked by computing the
Hamiltonian H (10). For all cases presented, the relative error
is smaller than 2 × 10−5. The boundary condition at r0 is of
the Neuman type so that there is perfect reflection. When
r0 = 0, care must be taken because the operator φr/r should
be regularized because we have an indetermination 0/0. The
way to do this is to invoke the limit

φr

r
= φr (r,t) − 0

r − 0
→r→0 φrr (r = 0,t), (6)

so that φrr + φr/r|r=0 = 2φrr |r=0.
At the instant of collision, radiation is emitted from the

kink. To avoid it reentering the computational domain, we
introduce a “sponge layer” where waves are damped so that
the equation becomes

φtt − φrr − (d − 1)
φr

r
+ sin(φ) = −α(r)φt , (7)

where α(r) increases smoothly from rd = 0.9r1 to the edge of
the domain r1 as shown in Fig. 3. This mechanism kills all
radiation that travels to the right and exits the computational
domain. The amount of energy leaving the computational
domain is then computed using the flux relation (12) evaluated
at rf < rd . This “sponge layer” is better adapted for our
purposes than a perfectly patched layer because it damps all
outgoing waves, not only the ones of speed one.

Equation (5) is not integrable as in the 1D case, and there
are only a finite number of conservation laws. These are the
main analytical tool to study the solution. We consider them
in the next section.

IV. CONSERVATION LAWS

The radial sine-Gordon equation in d dimensions,

φtt − φrr − (d − 1)
φr

r
+ sin(φ) = 0, (8)

sponge layer

r0  

α(r)

r r

r

1f

FIG. 3. Sketch of the 1D computational domain.
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in a finite domain [r0,r1] possesses the following energy
conservation law:

dH

dt
= [rd−1φrφt ]

r1
r0
, (9)

where the Hamiltonian H is

H =
∫ r1

r0

rd−1dr

[
φ2

t

2
+ φ2

r

2
+ (1 − cos φ)

]

≡
∫ r1

r0

rd−1dr H. (10)

To see this, multiply (8) by φt , integrate over the domain, and
integrate by parts the φr term. Assuming a Neuman boundary
condition at r = r0, we naturally obtain the flux relation for
the energy,

dH

dt
= rd−1

1 φrφt |r1 . (11)

By integrating this relation over time, we obtain

H (t) = H (0) + rd−1
1

∫ t

0
φr (r1,t

′)φt (r1,t
′)dt ′. (12)

This enables us to compute how much energy leaves the
computational domain at r = rf . The energy conservation will
be crucial to explain many properties of the solution.

Another conservation law is related to the momentum 	 of
the wave defined as

	 =
∫ r1

r0

rd−1dr φt . (13)

From the partial differential equation (8), we get

d	

dt
= [rd−1φr ]r1

r0
−

∫ r1

r0

rd−1dr sin φ, (14)

which shows that even for Neuman boundary conditions at
r = r0,r1 the momentum is not conserved.

For a localized wave such as a kink, the integrands in H

and 	 are highly localized in r . With the Hamiltonian we can
then get a good approximation of the motion before collision
by using the kink solution to the 1D sine-Gordon equation as
an ansatz,

φk = 4 atan

[
exp

(
r − R√
(1 − Ṙ2)

)]
, (15)

where R is the kink position. Samuelsen [24] used this
argument to obtain the kink motion; here we give more details
and compare the prediction to the numerical solution. We
assume that the kink is not too close to the boundary so the
integral can be taken from −∞ to ∞. To calculate it, we
change the integration variable so that r − R = r ′ and write

H = R

∫ +∞

−∞
H dr ′ +

∫ +∞

−∞
r ′dr ′H.

The second integral is then 0 because of parity. This gives

H ≈ 8
R√

1 − (Ṙ)2
. (16)

At t = 0, we start the kink at R = R0 with u0 initial velocity
so that H = 8R0. Solving the resulting ordinary differential
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FIG. 4. (Color online) Two-dimensional radial kink position as
a function of time for r0 = 0 (a) and r0 = 5 (b). For both plots,
the numerical solution is drawn with crosses and the analytical
estimates (18)–(20) are shown by the full line.

equation

dR

dt
=

√
1 − R2

R2
0

, (17)

we recover the expression of Samuelsen [24],

R = R0 cos
t

R0
. (18)

Note that using the second-order differential equation would
give a wrong result. For a minimal radius r0 > 0, the
expression can be generalized to

R = R0 cos
t

R0
, t < t0, (19)

R = R0 cos
2t0 − t

R0
, t > t0, (20)

where t0 = R0cos(r0/R0). Figure 4 shows the evolution of
the kink position R(t) for the numerical solution, calculated
from the maximum of φt together with the estimate (18) for
r0 = 0 in panel (a). The agreement is very good even for R

close to r0. The bottom panel shows R(t) for r0 = 5. The
estimates (19) and (20) give a good agreement up to t = 33.
After that, radiation is shed from the kink and travels away.
Then the estimate breaks down. We come back to this point in
the next section.

Using similar arguments, we can reduce the Hamiltonian
for the 3D kink to

H = R2
∫ +∞

−∞
H dr ′ +

∫ +∞

−∞
r ′2dr ′H.
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FIG. 5. (Color online) Time evolution of the 3D radial kink
position for r0 = 0. The numerical solution is drawn with crosses
and the analytical estimate (23) is shown by the full line.

The first term gives

H ≈ 8
R2√

1 − (Ṙ)2
. (21)

The second term is a small correction of the order of the cube
of the “width” of the kink. It is much smaller than the leading
term (21). We then obtain the evolution of the 3D radial kink
as

dR

dt
=

√
1 − R4

R4
0

, (22)

whose solution is [24]

R = R0cn

(√
2

t

R0
,
1

2

)
, (23)

where cn(x,m) is the cosine elliptic function [25]. The
comparison of (23) with the numerical solution is also good,
as shown in the bottom panel of Fig. 5.

V. RADIAL KINK COLLISION IN TWO AND
THREE DIMENSIONS

To understand the collision of a kink with the boundary at
r = r0, we have conducted extensive numerical studies varying
systematically r0. The main result for both two, three, and
larger dimensions is that the kink does not survive collision in
a proper way when r0 is small. It decays after a few collisions,
and at each collision it emits part of its energy in the form of
fast breathers that escape the radial potential. This is true for
all initial conditions R0 > 5. This is interesting since it is a
way to destroy the kink. The specifics vary from the 2D case
to the 3D case, so we will consider them separately.

A. Collision in two dimensions

Figure 6 shows snapshots of φ(x,t) as a function of x for
different times before and after the collision at r0 = 0. The
top panel shows the times t = 11, . . . ,36 corresponding to
the kink being accelerated toward r0 = 0. Before collision,
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FIG. 6. (Color online) Two-dimensional radial kink collision for
r0 = 0. Plot of φ(x,t) as a function of x for t = 11, 16, 21, 26, 31,
and 36 (a) and t = 41 and 61 (b). The kink is started at R0 = 20. The
parameters are r0 = 0,r1 = 40.

radiation is formed as shown by the “bump” to the left of
the solution for t = 26 [12]. This radiation, however, remains
with the kink and grows. This explains why the estimate (18)
gives such a good agreement before collision. At collision, the
radiation “bump” gives rise to the large overshoot for t = 31.
The panel (b) of Fig. 6 shows the two instants t = 41 and 61
showing that very little is left of the initial kink. There is just
a small disturbance around 2π traveling toward large r . In
fact, all the kink energy from (16) H ≈ 20 × 8 = 160 leaves
the computational domain as shown by the energy flux (12)
measured at r = 30 shown in Fig. 7.

The wave present in the domain after the collision is a fast
breather. Recall that a sine-Gordon breather is given by

φb = 4 atan

[ √
1 − ω2 cos[ωγ (t − ur − t0)]

ω cosh[
√

1 − ω2γ (r − R0 − ut)]

]
, (24)
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FIG. 7. (Color online) Two-dimensional radial kink collision.
Energy exiting the domain at rf = 30 as a function of time for r0 = 0,
5, and 10. The kink is started at the same position R0 = 20 so the
initial energy H0 ≈ 160 is the same for the three cases.
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where γ is the usual Lorentz factor

γ = 1√
1 − u2

.

The energy of the breather on the infinite line is given by [26]

H = 16γ
√

1 − ω2, (25)

so that using the same argument as for the kink, we get for the
radial case

Hb = 16Rγ
√

1 − ω2, (26)

where R is the center of mass of the breather. To identify this
fast breather in the numerical solution, we have plotted the
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FIG. 8. (Color online) Characterization of the wave after the 2D
radial kink collision. The plot (a) shows the center of mass of the wave
as a function of time, the numerical solution is shown by the full line
(red online), while the fit is shown by the dashed line (blue online).
Parts (b) and (c) show the numerical solution by the full line (red
online) together with the breather fit (24) by the dashed line (blue
online) for t = 41 and 46, respectively.
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FIG. 9. (Color online) Two-dimensional radial kink collision for
r0 = 5. Plots of φ(x,t) as a function of x for t = 11, 16, 21, 26, 31,
36, and 41 (a) and t = 41 and 61 (b). The kink is started at R0 = 20.
The parameters are r0 = 5,r1 = 40.

position of its center of mass as a function of time on the top
panel of Fig. 8. The velocity estimated by the fit (dashed line)
is u ≈ 0.89. In the middle and bottom panels, we have plotted
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FIG. 10. (Color online) Two-dimensional radial kink collision.
Time evolution of the rescaled momentum 	/2, the kink position R,
and the source term S of the momentum equation for r0 = 0 (a) and
r0 = 5 (b).
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FIG. 11. (Color online) Two-dimensional radial kink collision:
Time evolution of the energy components et = ∫ r1

r0
0.5xφ2

t dx, ex =∫ r1
r0

0.5xφ2
xdx, and ecos = ∫ r1

r0
(1 − cosφ)x dx for a kink. In (a), r0 =

0, while in (b), r0 = 10. The kink is started at the same position,
R0 = 20.

the analytical expression of the breather (24) added to the 2π

background together with the numerical solution for t = 41
and 46. The parameters used for the fitting are

ω = 0.82, t0 = −3, x0 = 9.2.

As can be seen, the fit is very good. The error in the energy
between the fit and the numerical solution is 10%. Such a
breather can “escape” the radial trap because its high frequency
averages out the radial force. Also note that the radial wave
equation does not support any traveling wave as in the 1D case,
so any emitted radiation has to be in the form of a wave packet.
It is interesting to find breather solutions as a product of the
disintegration of a kink. In the 1D case for which the sine-
Gordon equation is integrable, the breather and kink-antikink
pairs are separated. Here, with the radial term, a connection
has been opened between the two states. This is similar to the
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FIG. 12. (Color online) Energy exiting the computational domain
as a function of time for three different values r0 = 0, 5, and 10. The
kink is started at the same position R0 = 20 so the initial energy
H0 ≈ 3200 is the same for the three cases.
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FIG. 13. (Color online) 3D radial kink collision for r0 = 5: plot
of φ(x,t) as a function of x for t = 11, 16, 21, 23, 26, and 31. The
snapshots after the collision are indicated by the dashed (blue) line.
The kink is started at R0 = 20. The parameters are r0 = 5,r1 = 40.

numerical experiments of [27], where kink-antikink pairs are
created out of a train of small breathers in the φ4 model, which
is a perturbation of the sine-Gordon equation.

For a larger value of the boundary r0 = 5, the kink is
reflected and looks roughly like an antikink. The snapshots
are shown in Fig. 9. Notice the return occurring for t ≈ 41.
There is, however, about 20% of energy (about 21) lost
after the collision, as shown in the flux plot Fig. 7. The
approximate antikink that is formed has an energy which is
about 16 × 8 = 128 so that it “stops” at R ≈ 16, as shown in
the bottom panel of Fig. 9. Again a breather is emitted; it is
bound to the antikink up to t = 41, after which it detaches and
propagates to the right. To characterize this breather, we ran
the simulation over a much larger space interval, r1 = 100.
The parameters of the breather can be calculated as follows
using the energy loss:

H (t = 0) − H (t = 81) ≈ 21 = x016

√
1 − ω2

√
1 − u2

with x0 = 30 corresponding to an instant of observation t =
80. This gives the following parameters:

u = 0.7, ω = 0.9995,

which are consistent with the energy loss (21) and
the duration of the breather passing through the
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FIG. 14. (Color online) 3D radial kink collision for r0 = 0: plot
of φ(x,t) as a function of x for t = 11, 16, 21, 23, 26, and 31. The
field for the snapshot t = 23 has been divided by 5 to fit in the plot.
The kink is started at R0 = 20. The parameters are r0 = 0,r1 = 40.
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FIG. 15. (Color online) Energy exiting the computational domain
[r0 : 100] for d = 5. The curves correspond to r0 = 0 in continuous
(red) line, r0 = 5 in dashed (blue) line and r0 = 10 in dotted (pink)
line.

boundary,

δt = width/speed =
√

1 − ω2

γ u
≈ 32.

After the emission of this breather, the kink continues to
oscillate and decays slowly, emitting waves at each collision
with r = r0. For larger r0, as shown in Fig. 7 for r0 = 10,
the kink decays much slower. For t = 100, its energy has
diminished by about 10%. At every collision some energy is
radiated away. For such a value r0, the radial term φr/r is small
and we are close to the one-dimensional situation.

To shed more light on the problem, it is useful to examine
the different conservation laws before and after collision. We
analyzed the difference between r0 = 0 and 5 by computing
the momentum 	, the right-hand side

−S = −
∫ r1

r0

rd−1dr sin φ

in the flux of the momentum (14), and the front position
R. The latter is defined as the maximum of φx . The time
evolution of the three quantities 	, S, and R is shown in
Fig. 10. Panel (a) [(b)] corresponds to r0 = 0 (r0 = 5). For
r0 = 0, the momentum 	 goes through 0 for R = 0 (collision
instant). There S > 0, so that 	 will keep decreasing and
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FIG. 16. (Color online) Parameter plane (d,r0) showing the
different possible outcomes for a kink collision, a fast breather (B), a
kink-oscillon metastable state (KO), and a kink-breather metastable
state (KB).
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FIG. 17. Sketch of a microwave generator based on a radial
Josephson window junction.

oscillate around zero, indicating that the soliton is destroyed.
For r0 = 5 shown in the bottom panel, 	 > 0 at collision
and S > 0 so that 	 remains positive for t � 20. After that
instant, S starts to oscillate with a period of about 6. S is largely
positive so that 	 < 0 on average. We then reach 	 = 0 so
that the kink stops at t ≈ 41, for which R = 15. This is the
return effect. The total energy is conserved but gets distributed
differently between the different components, the kinetic term
et = ∫ r1

r0
0.5φ2

t x dx, the gradient term ex = ∫ r1

r0
0.5xφ2

xdx, and

the potential term ecos = ∫ r1

r0
(1 − cosφ)x dx. Initially the kink

has 0 velocity so that et = 0; all the energy is concentrated
in ex and ep. For r0 = 0 in Fig. 11(a), the kinetic term et

increases from 0 to its maximum at the collision and then
remains about constant. The potential term ep decreases from
its maximum value at t = 0 and stabilizes around half its value.
The behavior is different for r0 = 10 shown in Fig. 11(b), for
which the collision is almost elastic. There at the instant of
collision, the kinetic energy reaches its maximum, and the
total energy, potential energy, and gradient energies are almost
zero. After collision, both recover their initial values.

B. Collision in three and higher dimensions

We now consider the collision of a kink in three and
higher dimensions to see if there are particular situations.
The situation is qualitatively similar to the 2D case. Radiation
forms as a “bump” as the kink shrinks toward r0 and stays with
the kink. At collision, this radiation is emitted as fast breathers
out of the computational domain. As an example, consider
the flux of the energy shown for the 3D case in Fig. 12 for
r0 = 0, 5, and 10. Interestingly, the case r0 = 5 is similar to
the 2D case for r0 = 0. The kink is entirely destroyed and
its energy is shed away in the form of a fast breather that
exits the computational domain. This is shown in the series of
snapshots in Fig. 13. The fast breather is clearly seen traveling
to the right at time t = 31. For r0 = 0, there is a kink-breather
bound state so that the kink “sheds” a breather at every collision
with the boundary and decays. Figure 14 shows the successive
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snapshots of the solution in this case. The solution for t = 31 is
clearly a combination of a kink and a breather. For such a large
value of d and such a small r0, the radial term (d − 1)φr/r

is very strong and prevents a low-frequency breather from
escaping. Only breathers of frequency ω ≈ 1 can escape, and
these have fairly low energy. Such a breather will be “shed”
from the kink as it reaches its return point, around R = 5. The
energy and momentum behave in a very similar way as in the
2D case, so we do not present them.

To confirm these findings, we conducted two simulations
with d = 5 for r0 = 0 and 5 and r1 = 40. The flux of
energy exiting the domain is shown in Fig. 15. It shows two
breathers being emitted, respectively, at t = 55 and 100 for
r0 = 0. The (d,r0) parameter plane is shown in Fig. 16. It
shows the coexistence of the three states: the fast breather
(B), the kink-breather metastable (KB), and the kink-oscillon
metastable state (KO). Interestingly, the last one cannot be
seen for d = 2.

VI. CONCLUSION

Motivated by theory and applications, we studied radial
sine-Gordon kinks in two and higher dimensions. A full two-
dimensional simulation showed that azimuthal perturbations
remain small. We therefore reduced the problem to the one-
dimensional radial sine-Gordon equation, which we solve on
an interval [r0,r1]. Before collision, the kink is well described
by a simple law derived from the conservation of energy. In
two dimensions, the collision of the kink with the boundary r0

will result in a fast breather for small r0 and in a kink-breather
metastable state for larger r0. In the latter, the kink sheds at each
“return” a large part of its energy into bursts, which are breather
solutions. We have characterized these waves in terms of their
energy, frequency, and velocity. In three and higher dimensions

and small r0, we observe a kink oscillon bound state. The three
states exist in the (d,r0) parameter space. This study shows that
radial perturbation opens a channel between the kink solutions
and the breather solutions. This is particularly interesting
because in one dimension these are completely separated. This
additional term provides, therefore, a mechanism to “destroy”
these solutions and extract the energy they contain.

In view of applications to 2D Josephson junctions, this
could be very useful to generate terahertz radiation. At this
time, output from these devices is low. Here for small r0 all
the kink energy is converted into radiation. This suggests the
design of a new device based on window Josephson junctions.
A sketch of the device is shown in Fig. 17. Panel (a) shows
a top view of the junction together with the radiofrequency
detector D. Notice that the current input is similar to
that in [19] with its passive region separating the electrodes.
Panel (b) shows a side view of the system with the oxide layer
O separating the two superconducting films. As the current I

is increased, a train of fluxons is formed. These reflect into the
narrow end r = r0 and fast breathers are formed that consist
of bursts of microwaves. Since all the kink energy is converted
into microwaves, we expect this system to generate much more
radiation than a standard flux-flow.
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