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Fractal dynamics in chaotic quantum transport
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Despite several experiments on chaotic quantum transport in two-dimensional systems such as semiconductor
quantum dots, corresponding quantum simulations within a real-space model have been out of reach so far.
Here we carry out quantum transport calculations in real space and real time for a two-dimensional stadium
cavity that shows chaotic dynamics. By applying a large set of magnetic fields we obtain a complete picture
of magnetoconductance that indicates fractal scaling. In the calculations of the fractality we use detrended
fluctuation analysis—a widely used method in time-series analysis—and show its usefulness in the interpretation
of the conductance curves. Comparison with a standard method to extract the fractal dimension leads to consistent
results that in turn qualitatively agree with the previous experimental data.
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I. INTRODUCTION

Since the pioneering works of Mandelbrot [1], fractal
patterns have been found in a variety of objects in nature
including, e.g., snowflakes, fern leaves, coastlines [2,3], and
even music [4–7]. These self-similar (or self-affine) structures
were also found in many branches of chemistry and physics;
prominent examples are crystal growth and fractal surfaces,
and transport in gold nanowires and electron “billiards”
[3,8–15]. In contrast with idealized mathematical fractals
continuing to infinitely small scales, fractal scaling in nature
has a lower and an upper limit.

While fractals found in nature are often well described by
classical theories [1,3,8,9], fractals have also been suggested
to manifest in different quantum systems [16–21], where a
fundamental lower cutoff for fractal scaling is given by the
Heisenberg uncertainty principle. In the case of transport
through chaotic systems, such as chaotic electron billiards,
both semiclassical [22] (involving quantum interference) and
classical mechanisms [23] for the emergence of fractal scaling
have been proposed.

For quantum systems with an underlying classically mixed
phase space with both regular and chaotic regions, a quantum
graph model suggests a splitting of the chaotic regime into
two parts [18]: One part yields fractal conductance fluctuations
while the other one leads to isolated resonances on small scales.
These isolated resonances were later shown to be associated
with the eigenstates of a closed system [24].

A stadium quantum billiard of charged particles is a generic
chaotic system whose underlying classical phase space is
chaotic. The phase space becomes mixed in the presence of
a (perpendicular) magnetic field. In the past two decades the
system has been subject to several experiments [10,25–28]. A
typical setup consists of the two-dimensional (2D) electron gas
(2DEG) in a semiconductor heterostructure, where metallic
gates are used to form the geometrical shape of the billiards,
here called a quantum dot. Alternatively, stadium billiards (and
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other chaotic systems) can be realized experimentally with
microwave cavities [28].

The dynamics in chaotic cavities has been extensively
studied with various theoretical methods including, e.g.,
random matrix theory [29], trajectory-based semiclassical
theory [30], quantum mechanical kicked-rotor models [31],
and tight-binding calculations [21]. Semiclassical and random
matrix theory have been used to investigate weak localization
and Ehrenfest time effects [32,33], while the kicked-rotor
model and tight-binding studies have focused on the fractal
structure of the quantum survival probability in chaotic
cavities and the effect of changing the width of the output
leads [21], respectively. Benenti et al. provide evidence for
fractal fluctuations of the quantum survival probability in
the nonclassical situation of strong localization [19]. How-
ever, previous dynamical approaches have not focused on
conductance calculations in 2D chaotic cavities described by
real-space grids in space and time.

It is worthwhile to notice that, in principle, the conductance
problem of a chaotic cavity can be treated within the con-
ventional transport formalism, where the equilibrium current
is obtained time independently [34]. In this approach, the
coupling matrix of the cavity eigenstates and the lead states
need to be evaluated. The most tedious part is an accurate and
efficient treatment of the 2D eigenvalue problem for the chaotic
cavity in real space and in the presence of the magnetic field.
Recent progress has been made in this direction [35] and such
a conventional transport scheme is a subject for future work.
Nevertheless, as shown below, the present dynamical approach
provides an efficient way to assess the conductivity and gives
also additional information on time-dependent effects in the
system.

In this work we calculate the fractal scaling of conductance
fluctuations in an open quantum stadium billiard in a full 2D
model in real space and real time. Our explicit solution of
the time-dependent Schrödinger equation for chaotic transport
goes beyond both the semiclassical treatment [22] and the
above mentioned quantum graph model [18]. We analyze
the fractal scaling using two methods that originate from
different fields of physics: the variation method [3,10,36] and
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detrended fluctuation analysis [37–39] (DFA). The variation
method was used by Sachrajda et al. [10] for the analysis of
experimental magnetoconductance curves. We are able to find
good agreement between theory and experiment, both yielding
a fractal dimension D ∼ 1.3.

II. MODEL AND COMPUTATIONAL SCHEME

We consider a model for a semiconductor stadium device
fabricated in the 2DEG of a AlGaAs/GaAs heterostructure
similar to that in Ref. [10]. The Hamiltonian describing our
2D system reads in atomic units (a.u.)

Ĥ = 1
2 [−i∇ + A(r)]2 + Vext(r,t), (1)

where the vector potential is given in the linear gauge A(r) =
(−By,0,0) to describe a static and uniform magnetic field
perpendicular to the plane. During the time propagation at
t > 0, the potential Vext(r,t) consists of three parts: (i) a
stadium with radius r = 1 and width d = 0.7, (ii) input and
output leads of width w = 0.56, and (iii) a linear potential
along the propagation direction in the first two-thirds of the
input lead describing a source-drain voltage. The used grid
spacing in the system is �x = �y = 0.02. The potential has
hard boundaries with a depth V0 = 10 000 and the slope of
the accelerating linear potential is −100. The central part of
the external potential is shown in Fig. 1. The input and output
leads extend further to the left and right.

The initial state at t = 0 is calculated by taking a small part
of the input lead as a potential well. The resulting ground state
of a single electron in the well is then used as an initial state
for the time propagation. At t > 0 the above described linear
potential accelerates the wave packet across the system. For
the time propagation we use a fourth-order Taylor expansion of

FIG. 1. (Color online) Snapshots of the electron density in the
model stadium system (see the text) during a transport simulation
with the magnetic flux �/�0 = 20. The input and output leads extend
further to the left and right.

the time-evolution operator. The OCTOPUS code package [40]
is used in all the calculations.

We assess the conductance by calculating the integrated
probability density in the output lead from

T (�,t) =
∫

output
dr|ψ(�,r,t)|2, (2)

where � is the fixed magnetic flux, given above in units of
the magnetic flux quantum �0 = h/e. We call T a transmis-
sion factor assumed to be proportional to the transmission
coefficient available in conventional transport theory. The
validity of the transmission factor in estimating the relative
conductivity as a function of an external parameter—here
the magnetic flux—has been justified in Ref. [41]. Thus
we repeat the time propagation for different values of � to
obtain the magnetoconductance that can be compared with the
experiments in Ref. [10].

It is important to note that our calculations allow energy
dispersion for the wave functions in the cavity, i.e., we describe
nonstationary states. In this respect, our results are not directly
comparable to those of Ref. [22]. However, our transport
approach qualitatively describes an experimental situation to
the extent that each value for the magnetic field is treated
equally, so that we can compare the relative conductance as
a function of B. Previously, a similar approach was used
to assess quantum conductance in quantum rings [41] and
Aharonov-Bohm interferometers [42].

III. TRANSPORT SIMULATIONS

In Fig. 1 we show snapshots of the electron density at dif-
ferent times at � = 20�0 through the stadium. Approximately
one half of the density is transferred through and other half
is either reflected back to the input lead or confined in the
stadium. As expected, the density is scattered in the stadium in
a chaotic fashion. The size of the wiggles during the scattering
depends on the momentum: The higher the momentum the
higher eigenstates are probed. We point out that the modes
are not set prior to the calculation, but the wave packet is
freely scattered and dispersed in the cavity. Here we have
chosen the initial momentum of the wave packet such that
considerable overlap is found with ∼50–100 eigenstates of the
stadium during the transport. This corresponds to considerable
qualitative complexity in the propagated density, which, as
shown below, leads to a complex behavior of T . We do not
consider higher initial momenta in order to guarantee a reliable
description of the scattered wave packet in the cavity with the
used grid spacing.

A complete presentation of our transport results is given in
Fig. 2, where the transmission factor T is plotted as a function
of both time and the magnetic flux. The figure consists of 401
respective time propagations, each with a fixed number of flux
quanta �/�0 ranging from zero to 40 in steps of 0.1. The flux
range is qualitatively similar to the experiment in Ref. [10].
A complex magnetoconductance is formed if the propagation
time is larger than ∼1. A cross section of the conductance at
t = 1.4 is shown in Fig. 3. We point out that due to the finite
system size we are not able to reach the equilibrium current
and thus find the absolute conductance. In practice, we stop the
time propagation immediately when the backscattering from
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FIG. 2. (Color online) Transmission factor as a function of time
and magnetic flux through the stadium.

the walls of the calculation box becomes visible. Therefore, we
consider fixed propagation times through the parameter range
of �/�0. In other words, a fixed propagation time is expected
to treat all the values of �/�0 equally in order to obtain the
relative conductance T .

We first briefly consider the general trends in T in
Fig. 3. As the flux is increased from zero the conductance
decreases mainly due to the disappearance of trajectories
directly coupling the left and the right leads. After reaching the
minimum the conductance generally becomes larger, which is
due to the increase of skipping orbits along the boundaries
of the system. At large fields, interference effects play an
important role [43]. We point out, however, that the dynamics
is largely chaotic through the whole range of fluxes considered
here, possibly only apart from the zero-flux limit.

Now the essential question is whether the conductance as
a function of the magnetic flux shows fractal characteristics.
Moreover, it is interesting to consider how large propagation
times are required to find fractals. This is analyzed in the
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FIG. 3. (Color online) Transmission factor as a function of the
magnetic flux at t = 1.4. The inset shows the scaling exponent α =
1.46 obtained from the DFA analysis.

following with two techniques: the variation method [3,10,36]
and DFA [37–39].

IV. METHODS FOR FRACTAL ANALYSIS

A. Variation method

To extract the fractal dimension D for a mapping f :
R → R, the domain of the given function is first divided into
length intervals �x. The difference between the minimum and
maximum of the function is calculated within every interval
and added up. Note that the intervals are shifted windowwise
across the x axis (not pointwise). In the case of fractal scaling,
the resulting sum is a power-law function of the interval
length [3,10,36]:∑

i

[max f (x) − min f (x)]|x−xi |<�x/2 ∝ (�x)−D+1. (3)

B. Detrended fluctuation analysis

Detrended fluctuation analysis is a standard method that
was developed in the context of time-series analysis to study
1/f noise and long-range correlations [37] and has proven to
be very reliable particularly in dealing with nonstationary time
series and trends in the data [6,37,38,44,45]. It has also been
used outside the time domain, e.g., to study the organization
of DNA nucleotides [39]. Here DFA is applied to fractal
conductance curves.

The standard procedure of DFA consists of the following
four steps [37,38]: (i) integrating the time series, (ii) dividing
the series into windows of size s, (iii) fitting with a polynomial
fs(i) of degree m = 2, . . . ,4 that represents the trend in the
window, and (iv) calculating the variance with respect to the
local trend fs(i) from

F (s) = 〈[f (i) − fs(i)]
2〉

= 1

N − 1

N∑
i=1

[f (i) − fs(i)]
2 ∝ sα. (4)

The key point in applying DFA to study conductance fluctua-
tions is to relate the exponent α to the quantity of interest (here
the fractal dimension D). It is known that D = 2 − γ /2 with
〈(�G)2〉 ∝ (�B)γ [10,22]. The latter is exactly step (iv) of the
DFA analysis above. We therefore omit step (i) and identify
α = γ , hence the fractal dimension reads D = 2 − α/2.

V. RESULTS ON THE FRACTALITY

In DFA we apply quadratic detrending (m = 2) to our data
in Fig. 3. The inset shows the fitting of the data (solid line) at
t = 1.4, which yields α = 1.46. This qualitatively agrees well
with the experimental result γ = α = 1.38 of Sachrajda et al.
[10]. The corresponding fractal dimension extracted from DFA
is D = 1.27. In comparison, the variation method yields D =
1.32 for our data, whereas the corresponding experimental
result, obtained with the same method, is D = 1.25 [10].
The expected error bars for our results are discussed below.
Nevertheless, we find excellent qualitative agreement of the
results regarding both the different methods and comparison
with the experimental data. We point out that our stadium
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FIG. 4. (Color online) (a) Fractal dimension D calculated from
DFA with the relation D = 2 − α/2 and from the variation method,
respectively, during the time propagation. Note that the fractal
structure is developed only at t � 1. (b) Time development of the
error in the fitting procedure at t = 0.7, . . . ,1.4 (see the text).

model is similar to the experiment and the channel dimensions
are also comparable. According to our calculations, increasing
the channel width from 0.56 to 0.7 leads to the same D obtained
in the variation method, whereas DFA yields a slightly
smaller D.

In Fig. 4(a) we show the time development of the fractal
dimension obtained from DFA and the variation method,
respectively. We point out that clear signatures of a fractal
structure are developed only at t � 1. Nevertheless, D con-
verges during the time propagation towards the values given
above and the quality of the fitting in both methods improves as
well. Figure 4(b) shows the error in the fitting η = 1 − R2 for
times t = 0.7, . . . ,1.4. Here R is the Pearson product-moment
correlation coefficient of the log-log data. Thus η measures the
linear fit quality such that η = 0 corresponds to exact linear
behavior. The minimum of the error is obtained at t ≈ 1.4,
which is the optimal time used above to determine α and
D. At larger times with t � 1.4 the error increases due to
backscattering effects resulting from the finite simulation box
(see above). In this way we are able to determine the range of
validity in our scheme to calculate the fractal dimension.

It is important to note that in addition to the numerical error
of the fitting procedure (see above), the algorithms for fractal
analysis have internal error bars analyzed in detail by Pilgram
and Kaplan [46]. For example, DFA results for the fractal
scaling are expected to have a standard deviation of ∼15% for

data sets that are the of same size as ours. The results from the
variational analysis are expected to contain similar deviations.

Finally we point out that qualitatively similar fractal dimen-
sions have been obtained in various experiments on billiard
systems of different shapes [11,13,14]. The dependence of
D on energy-level resolution determined by experimental
conditions has been discussed in several works [47]. Moreover,
the considerable role of disorder in the modulation-doped
2DEG was recently demonstrated [15]. However, in the
same work it was shown that electrostatic doping leads to
reproducible properties in thermal cycling. In view of these
recent advances it can be expected that ballistic transport
properties of 2DEG billiard systems will be determined in
forthcoming experiments with a high precision. In turn, this
motivates us to extend the applications of the present method
to various geometries.

VI. SUMMARY

We have calculated the time evolution of a single-electron
wave packet through a two-dimensional stadium-shaped cavity
by solving the Schrödinger equation in real time and real
space. The relative conductance has been calculated for a
large set of magnetic fluxes in order to analyze the fractal
nature of the magnetoconductance. We have found that the
conductance shows clear indications for fractal scaling. The
fractal dimensions extracted from two respective methods are
consistent with each other. Moreover, we have found excellent
qualitative agreement with previous experimental results. Our
findings indicate that DFA is well suited for the analysis
of fractal scaling in chaotic quantum transport. Hence we
suggest to extend the use of the concept of data detrending
(and hence DFA) to study fractal scaling of transport and other
characteristics in chaotic (quantum) systems.
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[17] D. Wójcik, I. Białynicki-Birula, and K. Życzkowski, Phys. Rev.
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