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Bistability and chaos at low levels of quanta
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We study nonlinear phenomena of bistability and chaos at a level of few quanta. For this purpose, we consider
a single-mode dissipative oscillator with strong Kerr nonlinearity with respect to the dissipation rate driven by
a monochromatic force as well as by a train of Gaussian pulses. The quantum effects and decoherence in the
oscillatory mode are investigated in the framework of the purity of states and the Wigner functions calculated from
the master equation. We demonstrate the quantum chaotic regime by means of a comparison between the contour
plots of the Wigner functions and the strange attractors on the classical Poincaré section. Considering bistability
at a low limit of quanta, we analyze the minimal level of excitation numbers at which the bistable regime of
the system is displayed. We also discuss the formation of an oscillatory chaotic regime by varying oscillatory
excitation numbers at ranges of a few quanta. We demonstrate quantum-interference phenomena that are assisted
hysteresis-cycle behavior and quantum chaos for the oscillator driven by a train of Gaussian pulses. We establish
the border of quantum-classical correspondence for chaotic regimes in the case of strong nonlinearities.
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I. INTRODUCTION

Nonlinear dissipative oscillators (NDO) operating in the
quantum regime are of particular significance to fundamen-
tal and applied sciences because they are pertinent to the
engineering of nonclassical states in basic quantum optical
systems and the realization of quantum logic. An important
implementation of NDO has been achieved recently in the
context of superconducting devices based on the nonlinearity
of the Josephson junction (JJ), which is known to exhibit a
wide variety of quantum phenomena (see Refs. [1–9]). In fact,
the dynamics in some of these devices is analogous to those
of a quantum particle residing in an oscillatory anharmonic
potential [10]. Furthermore, a single nonlinear oscillator and
systems of nonlinear oscillators are basic theoretical models
of various nanoelectromechanical and nano-optomechanical
devices. Exciting technological advances in the fabrication
and control of such devices [11–14] have become possible
in the last decade, leading to an increase in interest on the
exploitation of the remarkable combination of properties of
these devices, such as small mass, high operating frequency,
large quality factor, and easily accessible nonlinearity, to a
broad variety of research areas and applications. In many
cases, nanomechanical oscillators are fundamental to the
development of a host of nanotechnological applications. They
are ideal candidates for the probing of the quantum limits of
mechanical motion within an experimental setting. Moreover,
they are the basis of various precision measurements [15–17].
They are also useful for basic research in the mesoscopic
physics of phonons [18] and the general study of the behavior
of mechanical degrees of freedom at the interface between the
quantum and the classical worlds [19].
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The efficiency of quantum oscillatory effects requires a high
nonlinearity with respect to dissipation. However, for weak
damping, even a small nonlinearity can become important.
The successful development of driven NDO in the quantum
regime requires the system to be cooled to the ground state.
Indeed, significant advances have been made that achieve this
by attaining a temperature far below the environment [20–26].

It is well known that the bistability of the classically
driven NDO [27] results from the induced dependency of
the oscillatory frequency or the amplitude on the underlying
nonlinearity. The corresponding systems describe amplifiers
which are ubiquitous in experimental physics. In particular, a
bistable amplifier based on the Josephson junction has been
discussed in [28]. In [29,30], the dynamical bifurcation of a
rf-biased Josephson junction was proposed as a basis for the
amplification of quantum signals. Although the bistability has
often been treated as a classical signature of the NDO, the
quantum dynamics in the bistable region is a new subject that
has been pursued in recent years [31–34].

The quantum dynamics of an oscillator is naturally de-
scribed by the Fock states, which have a definite number
of energy quanta. However, these states are hard to create
in experiments because the excitation number of oscillatory
systems usually leads to the production of coherent states
instead of quantum Fock states. Nevertheless, quantum os-
cillatory states can be prepared and can be manipulated
by coupling the oscillators to atomic systems driven by
classical pulses. The systematic procedure has been proposed
in Ref. [35] and has been demonstrated for the deterministic
preparation of mechanical oscillatory Fock states with trapped
ions [36], in cavity QEDs with Rydberg atoms [37], and in
a solid-state circuit QED for the deterministic preparation of
photon number states in a resonator by interposing a highly
nonlinear Josephson phase qubit between a superconducting
resonator [38].

Because of the nonlinearity within NDO, transition fre-
quencies between energy levels are different in the quantum
regime. For example, it is known that strong nonlinearity can
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enable spectroscopic identification and selective excitation of
transitions between Fock states. In consequence, it is possible
to prepare the NDO at low levels of quanta in this regime.
Furthermore, it has been shown in this approach that the
production of Fock states, as well as the superposition of
Fock states or qubits, can also be realized in the overtransient
regime of an anharmonic dissipative oscillator without any
interactions with atomic and spin-1/2 systems and with
complete consideration of decoherence effects [39]. To meet
this goal, strong Kerr nonlinearity as well as the excitation of
resolved lower oscillatory energy levels with a specific train
of Gaussian pulses have been considered.

In this paper, we consider NDO in the regime of low
levels of excitation to investigate the problems of quantum
bistability and chaos. Our goal of the paper is twofold.
First, we consider bistability on a few oscillatory excitation
numbers for a NDO driven by monochromatic force. Note that
bistability on a few excitation numbers is attractive for ultralow
power operation. Nonetheless, it has practical problems related
to quantum fluctuation-induced spontaneous switching. For
this part, we shall demonstrate the production of quantum
interference between bistable branches for a NDO driven
by a train of Gaussian pulses. It should be mentioned that
bistability on few photon regimes has already been investigated
theoretically [40,41] as well as experimentally [42] in the area
of single-atom cavity quantum electrodynamics.

The other part of the paper is devoted to the investigation
of quantum chaos in the oscillator low level excitation regime
of the pulsed NDO. Much research on the subject of classical
and quantum chaos has been done on the basis of the kicked
rotor, which exhibits regions of regular and chaotic motion.
The experimental realization and observation of the model
with the consideration of dissipation and decoherence effects
have been carried out on a gas of ultracold atoms in a
magneto-optical trap subjected to a pulsed standing wave
[43,44]. In another context, a parametrically kicked nonlinear
oscillator model was proposed to be realized in a cavity
involving Kerr nonlinearity in Ref. [45]. It had been shown
that a more promising realization of this system, including the
quantum regime, can be achieved via the dynamics of cooled
and trapped ions, interacting with a periodic sequence of both
standing wave pulses and Gaussian laser pulses [46]. Recently,
the quantum chaotic behavior of the quantum kicked top model
of a single atom has been experimentally realized [47]. The
transition to classical chaos for a system with coupled internal
(spin) and external (motional) degrees of freedom has also been
considered [48]. The other important goal (see also [49,50])
of the paper is on quantum dissipative chaos of a NDO driven
by a train of Gaussian pulses at low levels of quanta and in
complete consideration of dissipation and decoherence. In this
way, quantum dissipative chaos at the limit of low levels of
excitation numbers is considered in this paper.

The analysis is performed within the framework of a master
equation and the method of quantum trajectories based on
oscillatory excitation numbers, the Wigner function, and the
purity of quantum states. As a result, our original results on
bistability and chaos obtained from the quantum treatment
are well grounded. Nevertheless, for completeness, we have
also compared some of these results with the analogous ones
determined from the semiclassical equation.

The paper is organized as follows. In Sec. II, we give
a short description of the pulsed NDO. In Sec. III, we
investigate bistability at the level of a few quanta for a NDO
driven by monochromatic force. In Sec. IV, we consider the
production of quantum interference at the bistable regime of
the NDO driven by a train of Gaussian pulses. In Sec. V, we
study quantum dissipative chaos at the limit of low levels of
excitation numbers for a NDO driven by a train of Gaussian
pulses. Finally, we summarize our results in Sec. VI.

II. THE MODEL: SHORT DESCRIPTION

The Hamiltonian of an anharmonic-driven oscillator in the
rotating-wave approximation takes the form

H = h̄�a†a + h̄χ (a†a)2 + h̄f (t)(�a† + �∗a). (1)

Note that the time-dependent coupling constant �f (t) is
proportional to the amplitude of the driving field, which
consists of Gaussian pulses with duration T separated by time
intervals τ as follows:

f (t) =
∑

e−(t−t0−nτ )2/T 2
. (2)

Here, a†,a are the oscillatory creation and annihilation
operators, respectively, χ is the nonlinearity strength, and
� = ω0 − ω is the detuning between the mean frequency of the
driving field and the frequency of the oscillator. For f (t) = 1,
this Hamiltonian describes a nonlinear oscillator driven by a
monochromatic force.

The evolution of the system of interest is governed by the
following master equation for the reduced density matrix in
the interaction picture:

dρ

dt
= − i

h̄
[H,ρ] +

∑
i=1,2

(
LiρL

†
i − 1

2
L
†
i Liρ − 1

2
ρL

†
i Li

)
,

(3)

where L1 = √
(N + 1)γ a and L2 = √

Nγa† are the Lindblad
operators, γ is a dissipation rate, and N denotes the mean
number of quanta of a heat bath. To study the pure quantum
effects, we focus below on the case of very low reservoir
temperature, which, however, ought to be still larger than the
characteristic temperature T � Tcr = h̄γ /kB .

The Hamiltonian (1) describes a wide range of physical sys-
tems, including nanomechanical oscillator, Josephson junction
device, optical fibers, quantum dots, and quantum scissors
(we have noted a few of these systems in Sec. I). Note that
quantum effects in a NDO with a time-modulated driving force
including the pulsed regime have been studied in a series of
papers [51–56].

Our numerical simulation of Eq. (3) is based on the method
of quantum state diffusion (QSD) (see Ref. [57] and, for
example, applications in Refs. [51–56] and [58–61]). For
clarity, we choose the mean number of reservoir photons
N = 0 in our numerical calculation. Note that for N � 1, this
restriction is valid for the majority of problems in quantum
optics and, in particular, for the schemes involving a nanome-
chanical oscillator and Josephson junction. In experiments, the
nonlinear oscillator based on the current-biased JJ is cooled
down to a temperature of T = 20 mK, which corresponds to
N = 0.0013, whereas Tcr = 10−5 K for γ = 1 MHz.
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On the other hand, the corresponding equation of motion
for the dimensionless amplitude of the oscillatory mode in the
semiclassical approach has the following form:

dα

dt
= −i[� + χ + 2|α|2χ ]α + if (t)� − γα. (4)

This equation modifies the standard Duffing equation in the
case of the NDO with time-dependent coefficient. It will be
useful for the comparison of results obtained from the quantum
approach with the analogous ones in the semiclassical limit.

III. BISTABILITY AT LEVEL OF A FEW QUANTA

First, we describe the NDO driven by monochromatic force
[i.e., f (t) = 1 in the Hamiltonian described by (1)] in the
bistable regime. Based on the semiclassical approach given
by Eq. (4), the bistable dynamics is realized if the following
inequalities are satisfied [27]:

χ (� + χ ) < 0,

|(� + χ )/0.5γ | >
√

3,[
1 + 27χ�2

(� + χ )3
+

(
1.5γ

� + χ

)2]2

<

[
1 − 3

(
γ /2

χ + �

)2]3

.

(5)

With this range of parameters, the typical hysteresis curves
depending on the detuning � and force amplitude � are
displayed in the system [27]. The result for the stationary
excitation number n = |α|2 can be obtained by solving the
following equation:

|α|2 = �2

(� + χ + 2χ |α|2)2 + γ 2
, (6)

and is depicted in Fig. 1.
It is well known that whereas the semiclassical result

exhibits hysteresis-cycle behavior, the corresponding quantum
mechanical result, which accounts for the influence of quantum
noise, shows a gradual evolution. This can be observed from
the exact quantum solution for the mean excitation number in
the following form:

〈a†a〉 = �2

(� + χ )2 + (γ /2)2

F (c + 1,c∗ + 1,z)

F (c,c∗,z)
, (7)

FIG. 1. (Color online) The mean excitation number of an anhar-
monic oscillator: (1) quantum solution and (2) semiclassical solution.
The parameters are as follows: �/γ = −15, χ/γ = 2.

where F = F2 is the generalized hypergeometric function,
and c and z are coefficients that depend on the parameters,
c = (� + χ )/χ − iγ /(2χ ) and z = 2(�/χ )2.

It is also observed that the characteristic threshold behavior,
which is determined by a drastic increase of the intensity in the
transition region, disappears as the relative nonlinearity χ/γ

increases. In Fig. 1, we have plotted both the semiclassical and
quantum solutions corresponding to Eqs. (6) and (7).

More detailed information on the quantum-statistical prop-
erties of the oscillatory mode in the bistable range can be
obtained from the analysis of the excitation number probability
distribution function p(n), but not from the mean excitation
number. In this way, the locations of extrema of the p(n)
function, i.e., the locations of the most and least probable
values of n, may be identified with the semiclassical stable
and unstable steady states in the limit of small quantum noise
level [62,63]. With the increase of χ/γ , the curve of locations
of these extrema which depend on � becomes shifted from
the corresponding semiclassical curve for the mean excitation
number.

For this reason, we have analyzed quantum bistability in
phase space in the framework of the Wigner function that
gives the most complete description of quantum systems and
can be measured by methods of quantum tomography. The
analogous investigations of bistability have already been done
in the area of single-atom cavity quantum electrodynamics.
Therefore, bistable behavior on few photon regimes has been
studied theoretically [40,41] and experimentally [42] on local
maxima and minima curves as well as on the Q function in
phase space by a comparison of the semiclassical and quantum
treatments.

Considering bistability at low levels of quanta, it is natural
to pose the following question: what is the minimal low
level range of excitation numbers at which bistability is
displayed in the strong quantum regime? Below, we shall
discuss this problem based on quantum trajectories and the
Wigner function for the case of quantum dynamics, and the
Poincaré section for the case of semiclassical dynamics.

We shall use the numerical method, instead of the analytical
results obtained in terms of the exact solution of the Fokker-
Planck equation [63–65], to analyze the monochromatically
driven NDO at low levels of quanta within the overtransient
time intervals t � γ −1. The reason is that the steady-state
solution of the Fokker-Planck equation has been found using
the standard approximation method of potential equations.
Here, the validity of this solution is checked in the low levels
of quanta that require a high nonlinearity with respect to
dissipation.

We employ the Wigner function

W (r,θ ) =
∑
n,m

ρnm(t)Wmn(r,θ ) (8)

in terms of the matrix elements ρnm = 〈n|ρ|m〉 of the density
matrix operator in the Fock state representation. Here, (r,θ )
are the polar coordinates in the plane of complex phase space,
x = r cos θ , y = r sin θ , while the coefficients Wmn(r,θ ) are
the Fourier transform of matrix elements of the Wigner
characteristic function.

The properties of the bistable dynamics at the level of a few
excitation number are illustrated in Fig. 2. Figure 2(a) shows
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FIG. 2. (Color online) (a) The time evolution of the mean
excitation numbers of the oscillatory mode, (b) the Wigner function,
(c) the semiclassical Poincaré section, and (d) the time evolution of
the excitation numbers along a single trajectory. The parameters are
as follows: �/γ = −8, χ/γ = 2, and �/γ = 2.7.

that the mean excitation number is small, which implies that the
system is operating in the deep quantum regime. In Fig. 2(d),
we have plotted one single quantum stochastic trajectory
for excitation number by setting the system initially in the
vacuum oscillatory state, and consider time dependence over
a long time compared to the characteristic dissipative time.
As expected, the analysis of the time-dependent stochastic
trajectories after taking the expectation shows that the system
spends most of its time close to one of the semiclassical
bistable solutions with quantum interstate transitions occurring
at random intervals.

In order to demonstrate the occurrence of bistability in
phase space, we tune the parameters of the nonlinear oscillator
to satisfy the set of inequalities given by Eq. (5). As our calcula-
tions show, the Wigner function displays two peaks [Fig. 2(b)]
which indicate bistability. On the other hand, the Poincaré
section, which is obtained from the semiclassical calculations
of Eq. (4), shows a single point in phase space [Fig. 2(c)],
corresponding to the presence of regular dynamics. Thus, for
this set of parameters, we have distinctly demonstrated the
difference between the semiclassical and quantum treatment
of bistability in phase space for the low levels of quanta. In
Sec. IV, we will present the other pure quantum effect in
bistable behavior, which concerns the production of quantum
superposition.

Further investigation of the model has allowed us to es-
tablish additional properties of dissipative bistable dynamics.
For this purpose, we have shown in Fig. 3 the occurrence of
bistability in phase space against the amplitude of the external
force. We observe that for the given parameters of detuning
and nonlinearity, there is an intermediate range of amplitudes
where bistability takes place.

It is also interesting to consider the behavior of the NDO
by using the scaling properties of Eq. (4). Indeed, it is

FIG. 3. (Color online) The Wigner functions for the oscillatory
mode against the amplitude of the external force. The parameters are
as follows: �/γ = −8, χ/γ = 2, and (a) �/γ = 2.1, (b) �/γ =
2.3, (c) �/γ = 2.5, (d) �/γ = 2.7, (e) �/γ = 2.9, and
(f) �/γ = 3.1.

easy to verify that this equation is invariant with respect to
the following scaling transformation of the complex ampli-
tude: α′ → λα,χ ′ → χ/λ2,�′ → λ�,�′ → � + χ (1 − 1/λ2).
Thus, for λ > 1, oscillatory excitation numbers are increased
via the scaling transformation. It is interesting to analyze such
scaling from the point of view of quantum-statistical theory,
and its relevance to decoherence and dissipation. By using
the scaling properties, we can consider the system for various
excitation numbers. The Wigner functions for the scaled λ = 2
and λ = 3 are presented in Fig. 4. As shown in the figure,
increasing λ leads to a suppression of one of the peaks in the
Wigner function and on the whole, the bistability of the system

FIG. 4. (Color online) (a) The Wigner function for (a) λ = 2 and
(b) λ = 3. The parameters are as follows: �/γ = −8, χ/γ = 2, and
�/γ = 2.7.
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has vanished. Hence, we have shown that such parameter
scaling does not arise in the low levels of quanta of the NDO.

There is a detection boundary of bistable states at the limit
of small excitation numbers in phase space in accordance
with the Planck uncertainty principle. By accounting for
�X�P � 1/2, where X and P are dimensionless position
and momentum operators and n = |α|2 with α = X + iP , it
seems that for a small enough level of excitation numbers, we
cannot distinguish between the two branches of bistability. In
this case, the size of the contour plots of the Wigner functions
is sufficiently squeezed, such that the two bistable branches
are too close with respect to each other to be distinguishable.

IV. QUANTUM INTERFERENCE
ASSISTED BY BISTABILITY

In this section, we demonstrate that it is possible to create
quantum superposition in bistable dynamics of the NDO under
pulsed excitation. Indeed, the application of time-dependent
force can lead to a transition between the two branches of
the system dynamics in the bistable regime, and open an
opportunity to generate interference between them. However,
quantum interference takes place at a very short time interval
and disappears due to dissipation and decoherence. In order to
recover the quantum interference beyond the transient regimes,
we suggest the application of a specific train of Gaussian
pulses according to the model considered in Sec. II. The
results depicted in Fig. 5 shows that with the applied Gaussian
pulse, the Wigner function has negative ranges. The Wigner
functions are found to possess two humps, which correspond
to the bistable branches in phase space, and there is also the
occurrence of an interference pattern between them.

In order to be sure that the effects of dissipation and
decoherence in the oscillatory mode at transient time are
suppressed when the train of pulses is applied, we proceed
to calculate the purity of the state, i.e., Tr(ρ2). Note that
for a pure state, Tr(ρ2) = 1. The results for the dependence
of Tr(ρ2) on the pulse duration T and the time intervals
between pulses τ are depicted in Fig. 6 for the overtransient
regime, i.e., for time intervals t � γ −1. In Fig. 6(a), which
corresponds to a variation of pulse duration for a fixed τ of
2.5, we notice that the purity is maximal for very short pulses
and decreases monotonically as T increases. The opposite
behavior is observed, however, for the case when the time

FIG. 5. (Color online) The Wigner functions showing quantum-
interference patterns. The parameters are as follows: �/γ = −8,
χ/γ = 2, �/γ = 2.7, (a) T = 0.5γ −1, τ = 2γ −1, and (b) T = 0.1γ −1,
τ = 2γ −1.

FIG. 6. The dependence of purity (a) on T for fixed τ = 2.5γ −1

and (b) on τ for fixed T = 0.5γ −1. The rest of the parameters are
�/γ = −8, χ/γ = 2, and �/γ = 2.7.

interval between pulses is varied while the pulse duration is
fixed, as displayed in Fig. 6(b).

V. QUANTUM DISSIPATIVE CHAOS AT LOW LEVELS
OF EXCITATION NUMBERS

In this section, we demonstrate that dissipative chaos is
realized in the strong quantum regime of NDO at low levels of
quanta. The chaotic regime appears in the NDO when driven
by a train of Gaussian pulses, and it depends on the duration
T of the pulses and the time intervals τ between them.

Many criteria have been suggested to define chaos in
quantum systems, varying in their emphasis and domain
of application. Nevertheless, as yet, there is no universally
accepted definition of quantum chaos. Our analysis is given in
the framework of semiclassical and quantum distributions by
using a correspondence between contour plots of the Wigner
function and the Poincaré section. Such analysis has been
proposed and realized [53] in the mesoscopic regimes of NDO
with time-dependent coefficients.

It is well known that the Poincaré section has the form of
strange attractor in phase space for dissipative chaotic systems,
while it has the form of close contours with separatrices for
Hamiltonian systems. Thus, in this paper, we demonstrate the
quantum chaotic regime by means of a comparison between
the contour plots of the Wigner functions and the strange
attractors on the classical Poincaré section. In this way, we
calculate the Wigner function in phase space by averaging an
ensemble of quantum trajectories for definite time intervals.
On the other hand, the Poincaré section is calculated through
the semiclassical distribution based on Eq. (4), but for a large
number of time intervals: it is constructed by fixing points in
phase space at a sequence of periodic intervals. Note that such
analysis seems to be rather qualitative than quantitative for the
ranges of low level, oscillatory excitation numbers, where the
validity of the semiclassical equation is questionable. Indeed, it
is shown below that the semiclassical and quantum treatments
of quantum dissipative chaos are cardinally different in the
deep quantum regime.

The typical results of calculations are depicted below.
Note that the ensemble-averaged mean oscillatory excitation
number and the Wigner functions are nonstationary and
exhibit a periodic time-dependent behavior, i.e., they repeat the
periodicity of the driving pulses at the overtransient regime.
In this nonstationary regime, the Poincaré section depends on
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FIG. 7. (Color online) (a) The Poincaré section, (b) the contour
plot of the Wigner function, (c) the excitation number time series with
snapshots of Gaussian pulses as inset, and (d) the Wigner function.
The parameters are as follows: χ/γ = 0.7, �/γ = 20.4, �/γ = −15,
T = 0.25γ −1, τ = 2π/5γ . Note that these distributions occur at time
γ t = 100 with the mean excitation number of 1.54. The range of
excitation numbers is 1.26 to 4.98.

the initial time interval t0. We choose various initial times
t0 in order to ensure that they match with the corresponding
time intervals of the Wigner function. In Figs. 7–10, we show
the typical semiclassical and quantum distributions for the
parameters �/γ , χ/γ , �/γ which correspond to the chaotic
regimes, and for various durations of the Gaussian pulses.
In the following, we shall study the quantum phase space
dynamics that have a chaotic classical counterpart.

It is observed that the figures of Poincaré sections clearly
indicate a classical strange attractor with fractal structure that
is typical of chaotic dynamics. The Wigner functions have
spiral (helical) structures (Figs. 7–10) that reflect a chaotic

FIG. 8. (Color online) (a) The Poincaré section, (b) the contour
plot of the Wigner function, (c) the excitation number time series
with snapshots of Gaussian pulses as inset, and (d) the Wigner
function. The parameters are χ/γ = 0.7, �/γ = 20.4, �/γ = −15,
T = 0.205γ −1, τ = 2π/5γ . Note that these distributions occur at
time γ t = 100 with the mean excitation number of 1.74. The range
of excitation numbers is 1.29 to 5.11.

FIG. 9. (Color online) (a) The Poincaré section, (b) the contour
plot of the Wigner function, (c) the excitation number time series
with snapshots of Gaussian pulses as inset, and (d) the Wigner
function. The parameters are χ/γ = 0.7, �/γ = 20.4, �/γ = −15,
T = 0.15γ −1, τ = 2π/5γ . Note that these distributions occur at time
γ t = 100 with the mean excitation number of 2.04. The range of
excitation numbers is 1.43 to 5.13.

regime in analogy to the corresponding Poincaré sections,
and their contour plots are concentrated approximately around
the attractor. It is important to note that such qualitative
correspondence is only used to demonstrate a chaotic regime
in quantum treatment based on the Wigner function. How-
ever, the Wigner function, being a quantum quasiprobability
distribution, also describes the quantum effects. Hence, in
the deep quantum regime, the different branches of the
attractors are hardly resolved in the Wigner functions that
show the delocalization due to quantum noise. Among these
pure quantum effects, we especially note the occurrence of
superposition states and quantum interference effects that

FIG. 10. (Color online) (a) The Poincaré section, (b) the contour
plot of the Wigner function, (c) the excitation number time series
with snapshots of Gaussian pulses as inset, and (d) the Wigner
function. The parameters are χ/γ = 0.7, �/γ = 20.4, �/γ = −15,
T = 0.1γ −1, τ = 2π/5γ . Note that these distributions occur at time
γ t = 100 with the mean excitation number of 2.46. The range of
excitation numbers is 1.62 to 4.83.
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FIG. 11. (Color online) (a) The Poincaré section, (b) the excita-
tion number time series, (c) the contour plot of the Wigner function,
and (d) the Wigner function at the moment γ t = 100.6 when the
excitation number is maximum. The parameters are χ/γ = 0.7,
�/γ = 20.4, �/γ = −15, T = 0.1γ −1, τ = 2π/5γ .

assist the chaotic behavior in the low levels of quanta. Indeed,
it should be specified that the Wigner function for the regime
presented in Fig. 10 has a region of negative values. These
effects, which correspond to quantum interference in phase
space, vanish in the semiclassical approach. The demonstration
of these and other quantum effects for both dissipative bistable
and chaotic dynamics is one of the remarkable results of this
paper.

The chaotic dynamics of the oscillatory mode strongly
depends on the time interval t . To demonstrate this point,
in Figs. 11 and 12, we depict the Wigner function and the
Poincaré section for the oscillatory parameters used in Fig. 10,
but for the other time intervals of t within the duration of pulses
which correspond to the maximal and minimal values of the
number of excitation number.

FIG. 12. (Color online) (a) The Poincaré section, (b) the ex-
citation number time series, (c) the contour plot of the Wigner
function, and (d) the Wigner function at the moment γ t = 100.4 when
the excitation number is minimum. The parameters are as follows:
χ/γ = 0.7, �/γ = 20.4, �/γ = −15, T = 0.1γ −1, τ = 2π/5γ .

At the end of this section, we explore the transition from
regular to chaotic regimes that is realized through varying
the strength of the pulse trains by considering cases of small
excitation numbers. We note that the studies of transition to
chaos have a long history. Nevertheless, important outstanding
questions related to quantum-classical correspondence have
been raised recently, such as the question of how to recover
classical (chaotic) dynamics in open quantum systems subject
to decoherence (see, for example, [47]). Here we have
employed an experimentally available model which is a
modification of a very popular system-kicked oscillator model
with driving by Gaussian pulses. It is thus natural for us to
include a discussion of various regimes of this oscillator, which
encompasses also the regime of transition to quantum chaos
for completeness.

For this goal, we first present our results on semiclassical
approximation based on an analysis of the Lyapunov exponents
of the semiclassical time series [66]. This quantity is deter-
mined as L = 1

�t
ln ‖x2(t)−x1(t)‖

‖x2(t0)−x1(t0)‖ ; here, x = [Re(α),Im(α),β],
where β is the time variable defined through dβ/dt = 1
which augments Eq. (4) to create an autonomous system.
Note that x2 and x1 represent two trajectories that are very
close together at the initial time t0. Furthermore, �t = t − t0,
with t → ∞. For L > 0, the system shows chaotic dynamics.
L = 0 corresponds to the case of conservative regular systems,
and L < 0 indicates that the dissipative system is regular. We
examine the exponents for time intervals corresponding to the
minimal and maximal excitation numbers of the oscillatory
mode with dependence from the parameter �/γ . The results
are depicted in Figs. 13 and 14 for the constant parameters:
�/γ and χ/γ . We observe a transition from regular to chaotic
behavior at �/γ = 12.55 for minimal and maximal excitation
number of the oscillatory mode. Note that this transition
occurs at the low oscillatory number from the minimum
n = 0.94 to the maximum n = 2.70. Thus, when the strength
of the pulse trains �/γ is low, we observe regular behavior;
and as a critical threshold is crossed, the system behaves
chaotically. Interestingly, a closer scrutiny of the dynamics
of the system reveals a regime of transient chaos in the

FIG. 13. (Color online) The largest Lyapunov exponent of the
semiclassical dynamics vs the strength of the pulse trains. The solid
(blue) curve corresponds to the moment of maximum excitation
number at γ t = 39.1 for 1 � �/γ � 19 and at γ t = 39 for 19.5 �
�/γ � 26. The dashed (red) curve corresponds to the moment of
minimum excitation number at γ t = 40.2 for 1 � �/γ � 8.5 and
at γ t = 40.1 for 9 � �/γ � 26. The rest of the parameters are
χ/γ = 0.7, �/γ = −15, T = 0.1γ −1, τ = 2π/5γ .
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FIG. 14. (Color online) The plot of the maximum and minimum
excitation number vs the strength of the pulse trains that correspond
to the case of Fig. 13. The solid (blue) curve is for the maximum
excitation number and the dashed (red) curve is for the minimum
excitation number. Note that the regular, transient chaos, and
chaos regimes of the corresponding semiclassical dynamics are also
indicated in the plot.

range 17.61 � �/γ � 19.56, whereupon the semiclassical
dynamics rattle about chaotically for some time before settling
down to regular behavior which leads to a window of negative
Lyapunov exponents. Then, beyond �/γ = 19.56, chaotic
attractors are found to emerge again in the Poincaré section.
It is important to note that analogous dynamical behavior is
observed to arise at both the moments when the excitation
number is a minimum and a maximum (see Fig. 13).

In summary, we have uncovered the parameters for which
a decrease of the excitation number leads to a transition of the
system from a chaotic to regular regime in the classical treat-
ment. Another situation is realized in the quantum treatment.
Indeed, for these regimes of low excitation, quantum noise and
quantum effects play an essential role in the formation of the
oscillatory dynamics, and in particular, in the realization of
chaotic dynamics and scenarios of transition from a chaotic
to regular regime. This statement is also confirmed by the
calculation of the Wigner function. We observe that below the
transition threshold of �/γ = 12.55, the Wigner function has
the form of a single hump. Beyond the transition threshold,
the hump starts to spread and a spiral begins to form. These
changes are found to happen continuously and smoothly in

the Wigner function as �/γ increases. However, as �/γ goes
above 19.56, the Wigner functions are observed to quickly
take the appearance of a strange attractor. Our results here
thus clearly show the presence of good quantum-classical cor-
respondence in the quantum and classical dynamical behavior.
In addition, our results also demonstrate that quantum NDO,
which is a form of quantum anharmonic oscillators, possess
a rich set of dynamical behavior and properties that may be
potentially useful for many practical purposes [67,68].

VI. SUMMARY

To summarize, we have studied the problem of quantum
chaos and bistability at the level of few excitation numbers of
NDO that is interacting with an external field and a background
environment leading to dissipation and decoherence. We have
analyzed the formation of bistable behavior and chaotic
regime of NDO at the low oscillatory excitation numbers
when the ratio χ/γ is chosen from 0.7 to 2. We perform a
systematic numerical analysis based on numerical simulation
of the master equation by using a quantum state diffusion
method of quantum trajectories, where we have varied a
number of relevant oscillatory parameters, �/γ , �/γ , and
the parameters of Gaussian pulses. Thus, the combination of
results gives a rather thorough understanding of the NDO in
the low levels of quanta, as well as a simple picture of the
formation of bistability and chaos at low levels of quanta
in phase space. We have also found unexpected features
of NDO in phase space. It has been demonstrated that the
Wigner functions of the oscillatory mode in both bistable
and chaotic regimes realized due to interaction with a train
of Gaussian pulses acquire negative values and interference
patterns in certain parts of phase space. We have demonstrated
that in the case of bistable dynamics, the Wigner functions
describe two humps corresponding to the bistable branches and
interference pattern between them in phase space, while for
the chaotic regime, the Wigner functions have spiral structures
(which correspond to a strange attractor in Poincaré sections)
with a deep well, showing negativity of the Wigner function
[Fig. 10(d)]. Quantum interference in phase space is realized in
the overtransient regime by driving the oscillator via a series of
short pulses with proper parameters for the effective reduction
of dissipative and decoherence effects. Our results can be tested
with available experimental systems as noted in Sec. I.
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