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Correlation properties of exactly solvable chaotic oscillators
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We derive exact expressions for the autocorrelation and cross-correlation functions of wave forms generated
by two exactly solvable chaotic systems. For each system, an analytic expression exists for chaotic solutions,
which we use to evaluate correlation integrals explicitly. For some specific parameter values, we calculate the
mean and variance of the correlation functions averaged over all possible solutions. The mean autocorrelation
is shown to decay at a rate equal to the Kolmogorov-Sinai entropy. All derived results are shown to agree with
numerical calculations of the corresponding quantities.
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I. INTRODUCTION

Conventional wisdom holds that chaotic dynamical systems
cannot be solved analytically. Although there have always been
exceptions to this rule, a class of discontinuous differential
equations has recently been shown to have exact chaotic
solutions that can be written in a particularly simple form,
i.e., a convolution of a single basis function with a train of
regularly timed, random binary amplitudes [1,2]. Physical
implementations of these systems include electronic circuits
and electromechanical oscillators [1,3–7]. These solvable
systems are of fundamental scientific interest because they can
be analyzed with an unusual degree of rigor. For example, in
at least two cases, an exact topological conjugacy between
a solvable system and the Bernoulli shift map has been
identified, which constitutes rigorous proof of chaos [1,2].
The same cannot be said for such paradigms of nonlinear
dynamics as the Lorenz and Rossler systems [8,9]. Moreover,
statistical properties such as Lyapunov exponents, fractal
dimension, and metric entropy, which are typically estimated
by lengthy numerical analysis, can be determined exactly for
these systems. Solvable systems are of practical interest in
applications for the very same reason. Technologies based
on these oscillators can be analyzed more thoroughly than
those based on better known chaotic oscillators. For example,
exact expressions have been derived for bit error rates in
communication schemes that use solutions of solvable chaotic
systems as communication wave forms [1,10,11]. In addition,
detailed knowledge of the wave form allows for the design
of simple yet optimal receivers for communication and radar
[1,11–14].

Here we exploit the analytic solutions of two solvable
systems to determine exactly the correlation properties of the
chaotic oscillations. In general, the correlation properties of a
system reveal important aspects of its dynamics, such as the
degree to which the system can be treated as stochastic versus
deterministic [15], or the degree to which the system interacts
with others [16]. Chaotic oscillations typically display large
short-time correlations followed by exponentially decaying
long-term correlations, a phenomenon known as correlation
splitting that is related to mixing [17]. In contrast, intermittent
dynamics are characterized by power law correlation decay
[18–20]. In analyzing experimental data, correlations are often
more easily estimated than other properties such as Lyapunov

exponents or fractal dimension. Finally, correlation properties
are often directly relevant to performance of technologies
based on chaos. For example, in a chaos-based random number
generator correlations determine the amount of postprocessing
necessary to extract truly random bits [21,22]. In a chaotic
radar system, the autocorrelation function of the transmitted
wave form determines the range resolution and ambiguity,
while cross correlations with other wave forms determine the
ability of multiple users to operate simultaneously [23,24].
In digital watermarking with chaotic sequences, correlation
is used as a test statistic to distinguish a watermarked image
from an unmarked image [25]. Many studies of correlations in
chaotic systems can be found in the literature. Most significant
theoretical progress has been made with regard to a class of
systems known as Anosov flows [15,17,26–34]. However, it is
quite rare to find results as explicit as those we present here.

In Sec. II, we introduce two solvable chaotic dynamical
systems and give their analytic solutions. In Sec. III, we
derive an exact expression for the autocorrelation of wave
forms generated by these oscillators, and in Sec. IV, we do
the same for the cross correlation. In Sec. V, we show that
at certain parameter values, exact expressions can be derived
for statistics of the autocorrelation and the cross correlation
averaged over the ensemble of all possible solutions. In one
case, the mean autocorrelation is shown to decay at a rate
equal to the Kolmogorov-Sinai entropy. Finally, in Sec. VI
we discuss the significance of these results for some potential
technological applications.

II. EXACTLY SOLVABLE CHAOTIC OSCILLATORS

Here we introduce two examples of chaotic dynamical sys-
tems for which an exact solution is known. Both oscillators are
hybrid dynamical systems defined by a differential equation
along with a guard condition as follows. For both oscillators,
the differential equation is the linear, second order equation,

d2u

dt2
− 2β

du

dt
+ (ω2 + β2)(u − s) = 0, (1)

where u(t) is a continuous state variable and s(t) is a discrete
state. In experimental implementations, u(t) may represent a
voltage across a capacitor [1,3–6] or a mass on a spring [7].
Throughout this paper, we fix ω = 2π in order to conveniently
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FIG. 1. (Color online) Phase projections of typical trajectories of
the (a) exact folded-band oscillator with β = 0.81 × ln2 and (b) exact
shift oscillator with β = ln2.

scale time. In addition, β is a positive constant whose value
will be discussed further below.

The discrete state s(t) is updated when a guard condition is
satisfied. The choice of guard condition distinguishes between
the two oscillators considered here. First, a Rossler-like
oscillation results from the condition,

du

dt
= 0 ⇒ s(t) = H (u(t) − 1), (2)

meaning whenever the derivative of u(t) vanishes the discrete
state s(t) is set to H (u(t) − 1), where H (x) is the left-
continuous Heaviside function. The state s(t) maintains this
value until the guard condition is next met. A phase projection
of a typical trajectory of this hybrid system is shown in
Fig. 1(a). Due to the Rossler-like, folded-band topology of
this orbit, we refer to this system as the exact folded-band
oscillator [2].

For a chaotic solution valid for all t that passes through
the point u(0) = u0, du/dt(0) = 0, and s(0) = H (u0 − 1) for
some u0, the continuous state u(t) can be expressed by the
infinite sum,

u(t) =
∞∑

m=−∞
σmQ(t − m

2
), (3)

where each term is a basis pulse of shape Q(t) defined as

Q(t) =

⎧⎪⎨
⎪⎩

Q1(t), t < 0

Q2(t), 0 � t � 1
2

0, 1
2 � t

, (4)

where

Q1(t) = (1 + e−β/2)eβt

(
cos ωt − β

ω
sin ωt

)
, (5)

and

Q2(t) = 1 + eβ(t−1/2)

(
cos ωt − β

ω
sin ωt

)
. (6)

Each pulse is weighted by a coefficient σm, the value of which
is either 1 or 0.

A topologically distinct oscillation results from the guard
condition,

du

dt
= 0 ⇒ s(t) = sgn(u(t)), (7)

meaning the discrete state s(t) is set to the sign of u(t)
whenever the derivative of u(t) vanishes. A phase projection
of a typical trajectory of this system is shown in Fig. 1(b). This
system displays a return map which is a shift map; therefore,
we refer to this system as the exact shift oscillator [1].

For a chaotic solution valid for all t that passes through the
point u(0) = u0, du/dt(0) = 0, and s(0) = sgn(u0) for some
u0, the continuous state u(t) can be expressed by the infinite
sum,

u(t) =
∞∑

m=−∞
σmP (t − m), (8)

where the basis pulses in this case are

P (t) = Q(t) + Q
(
t − 1

2

)
, (9)

and each coefficient σm is either +1 or −1.

III. AUTOCORRELATION

The autocorrelation of a wave form u(t) is typically defined
as

R(τ ) = lim
T →∞

1

T

∫ T/2

−T/2
u(t)u(t + τ )dt, (10)

where τ is a lag parameter [35]. The value of R at τ = 0 is
interpreted as the average signal power. Due to the structure of
the wave forms of interest here, we introduce an alternative,
but equivalent limit to define the correlation. First, note that
for these solvable oscillators, a finite segment of a solution of
the form of Eqs. (3) and (8) containing 2N + 1 terms can be
expressed as

uN (t) =
N∑

m=−N

σmF (t − mT0), (11)

where F is the appropriate basis pulse, and T0 is the
period between pulses, or pulse spacing. Then we define
autocorrelation as

R(τ ) = lim
N→∞

1

(2N + 1)T0

∫ ∞

−∞
uN (t)uN (t + τ )dt. (12)

As with the conventional definition for R, the value at zero
lag gives the average signal power. Substituting Eq. (11) into
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Eq. (12) gives the expression,

R(τ ) = lim
N→∞

N∑
m=−N

N∑
n=−N

σmσnK(mT0 − nT0 + τ )

(2N + 1)T0
, (13)

where

K(τ ) =
∫ ∞

−∞
F (t)F (t + τ )dt (14)

is the overlap integral for two displaced instances of the basis
pulse function F (t). Thus, calculation of the autocorrelation is
reduced to evaluation of overlap integrals of the corresponding
basis pulse.

For the exact folded-band oscillator, F (t) = Q(t) and T0 =
1/2, so Eq. (13) gives the autocorrelation as

R(τ ) = lim
N→∞

N∑
m=−N

N∑
n=−N

2σmσnJ
(

m
2 − n

2 + τ
)

2N + 1
, (15)

where

J (τ ) =
∫ ∞

−∞
Q(t)Q(t + τ )dt (16)

is the overlap integral for two instances of the basis pulse
function Q(t) displaced by a lag τ . For 0 < τ < 1/2, using
Eq. (4), this integral can be expressed as

J (τ ) =
∫ −τ

−∞
Q1(t)Q1(t + τ )dt

+
∫ 0

−τ

Q1(t)Q2(t + τ )dt

+
∫ 1

2 −τ

0
Q2(t)Q2(t + τ )dt, (17)

while for τ > 1/2,

J (τ ) =
∫ −τ

−∞
Q1(t)Q1(t + τ )dt +

∫ 1
2 −τ

−τ

Q1(t)Q2(t + τ )dt.

(18)

In these expressions, the integrals should be interpreted as
having zero value if the lower limit exceeds the upper limit.
Explicit expressions for these integrals are

∫ −τ

−∞
Q1(t)Q1(t + τ )dt = (1 + e−β/2)2e−βτ

4(β2 + ω2)

{(
ω2

β
+ 5β

)
cos(ωτ ) +

(
3β2

ω
− ω

)
sin(ωτ )

}
, (19)

∫ 0

−τ

Q1(t)Q2(t + τ )dt = (1 + e−β/2)e−βτ

β2 + ω2

{
2βeβτ +

[(
ω2

4β
+ 5β

4

)
(eβ(2τ−1/2) − e−β/2) − 2β

]
cos(ωτ )

+
[(

ω

4
− 3β2

4ω

)
(eβ(2τ−1/2) + e−β/2) + ω − β2

ω

]
sin(ωτ )

}
, (20)

∫ 1
2 −τ

0
Q2(t)Q2(t + τ )dt = 1

2
− τ + eβ(τ−1)

β2 + ω2

{
− 2β

(
eβ(1−τ ) + eβ( 1

2 −τ )

)

+
[(

3ω

4
− β2

4ω

)
eβ(1−2τ ) −

(
ω − β2

ω

)
e

β

2 + 3β2

4ω
− ω

4

]
sin(ωτ )

+
[(

ω2

4β
− 3β

4

)
eβ(1−2τ ) − 2βeβ/2 − ω2

4β
− 5β

4

]
cos(ωτ )

}
, (21)

and ∫ 1
2 −τ

−τ

Q1(t)Q2(t + τ )dt = (1 + e−β/2)e−βτ

β2 + ω2

{[(
ω2

4β
− 3β

4
+ β3 − β2

4ω2

)
eβ/2 −

(
5β

4
+ ω2

4β

)
e−β/2 − 2β

]
cos(ωτ )

+
[(

3ω

4
− β2

4ω

)
eβ/2 +

(
ω

4
− 3β2

4ω

)
e−β/2 + ω − β2

ω

]
sin(ωτ )

}
. (22)

Altogether, these results provide an explicit expression for the
autocorrelation function of a folded-band oscillation of the
form of Eq. (3).

Figure 2 shows an example illustrating our results for the
exact folded-band oscillator with β = 0.81 × ln2. In Fig. 2(a),
a truncated wave form of the form of Eq. (11), with N = 50,
is shown. In Fig. 2(b), the autocorrelation function given by
Eq. (15) is plotted. The explicit expression was verified by
the numerical quadrature of Eq. (12). The numerical result
coincided with the analytical result to such a degree that
the two are indistinguishable on the scale of the figure. The
autocorrelation function in this example displays the expected
large peak at τ = 0, along with small fluctuations at larger lags

dependent on the detailed shape of the particular oscillation
chosen.

For the exact shift oscillator, F (t) = P (t) and T0 = 1, so
the autocorrelation is

R(τ ) = lim
N→∞

N∑
m=−N

N∑
n=−N

σmσnI (m − n + τ )

2N + 1
, (23)

where

I (τ ) =
∫ ∞

−∞
P (t)P (t + τ )dt (24)
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FIG. 2. (Color online) (a) A randomly selected wave form of
the exact folded-band oscillator with β = 0.81 × ln2, truncated with
N = 50. (b) The autocorrelation for the wave form in (a) given by
Eq. (13).

is the overlap integral for basis functions of the shift oscillator.
Using Eq. (9) it can be shown that

I (τ ) = 2J (τ ) + J (τ − 1/2) + J (τ + 1/2). (25)

A typical autocorrelation function for the exact shift oscillator
is shown in Fig. 3. A wave form truncated with N = 50 is
shown in Fig. 3(a). The autocorrelation given by Eq. (23) for
this wave form is shown in Fig. 3(b). A quantitative difference
is apparent between these results and those for the exact folded
band. Note the peak at zero lag is more prominent than in the
folded-band case. This peak is larger because the exact shift
oscillator has a basis pulse at every integer time step. Thus the
average power is roughly equal to the energy of one bit per
unit time. In contrast, in a folded-band wave form basis pulses
may or may not be present at each half-integer time. So the
average power is less than the energy of one pulse per half
time unit.

FIG. 3. (Color online) (a) A randomly selected wave form of the
exact shift oscillator with β = ln2, truncated with N = 50. (b) The
autocorrelation for the wave form in (a) given by Eq. (23).

IV. CROSS CORRELATION

The definition of cross correlation follows predictably from
that of autocorrelation as

C(τ ) = lim
T →∞

1

T

∫ T/2

−T/2
u(t)u′(t + τ )dt, (26)

where u(t) and u′(t) are distinct wave forms. As we did for the
autocorrelation, we introduce an equivalent definition of cross
correlation that can be evaluated exactly, i.e.,

C(τ ) = lim
N→∞

1

NT0

∫ ∞

−∞
uN (t)u′

N (t + τ )dt, (27)

where uN (t) and u′
N (t) are two wave forms from the same

solvable chaotic system and defined analogously to Eq. (11).
For such wave forms, this expression becomes

C(τ ) = lim
N→∞

N∑
m=−N

N∑
n=−N

σmσ ′
nK(mT0 − nT0 + τ )

(2N + 1)T0
, (28)

where σm is the mth coefficient of the wave form uN , σ ′
n is

the nth coefficient of the wave form u′
N , and K is the overlap

integral of the appropriate basis pulse.
For two wave forms of the exact folded-band oscillator,

Eq. (28) gives the cross correlation as

C(τ ) = lim
N→∞

N∑
m=−N

N∑
n=−N

2σmσ ′
nJ

(
m
2 − n

2 + τ
)

(2N + 1)
. (29)

Two such wave forms, each with N = 50, are shown in
Figs. 4(a) and 4(b). Their cross correlation is shown in Fig. 4(c)
given by Eq. (29). Typical of folded-band wave forms, the
cross correlation in this case has a periodicity corresponding
to the two wave forms coming in and out of phase as the lag
increases.

For wave forms of the exact shift oscillator, the cross
correlation is given by

C(τ ) = lim
N→∞

N∑
m=−N

N∑
n=−N

σmσ ′
nI (m − n + τ )

2N + 1
. (30)

Two such wave forms, each with N = 50, are shown in
Figs. 5(a) and 5(b). Their cross correlation, given by Eq. (30),
is shown in Fig. 5(c). In contrast with the folded-band case,
no periodicity is apparent, consistent with the lack of a
monotonically increasing phase in the chaotic set of Fig. 1(b).

V. STATISTICAL PROPERTIES OF CORRELATIONS

The correlation functions of the preceding sections charac-
terize individual wave forms of each solvable system. It is often
of interest to determine statistical properties of correlation
functions for a dynamical system, as well. Such properties are
derived from averaging over the ensemble of all possible wave
forms a single oscillator can produce, properly weighted by the
natural invariant density. In general, it is not easy to express
the natural invariant density of a chaotic oscillator exactly.
However, for some specific values of β, the solvable systems of
interest here have uniform natural invariant densities allowing
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FIG. 4. (Color online) Randomly selected wave forms [(a) and
(b)] of the exact folded-band oscillator with β = 0.81 × ln2 truncated
with N = 50. (c) Cross correlation for these wave forms given by
Eq. (28).

for exact determination of the ensemble average properties of
the wave forms they generate. In this section, we derive the
mean and variance of the correlation functions for the exact
shift and exact folded-band oscillators with specific parameter
values.

FIG. 5. (Color online) Randomly selected wave forms [(a) and
(b)] of the exact shift oscillator with β = ln2 truncated with N = 50.
(c) Cross correlation for these wave forms given by Eq. (30).

A. Statistical properties of the exact shift oscillator

For the exact shift oscillator with β = ln2 a return map
based on samples at integer times is the Bernoulli shift map [1].
This map has a uniform invariant density over the interval [0,1]
and a Markov partition at 1/2. The σm coefficients in Eq. (8)
directly correspond to the symbol sequences generated by this
Markov map. Thus, we can conclude that for solutions of the
form of Eq. (8), the sequence of coefficients σm can be any
infinite sequence of +1’s and −1’s, and every sequence is
equally likely. Equivalently, we can say that the coefficients
are independent random variables with equal probability of
being a +1 or a −1, so that

〈σmσn〉 = δmn, (31)

and

〈σkσlσmσn〉 = δmnδkl + δlmδkn + δlnδkm − 2δklmn, (32)

for any non-negative integers k, l, m, and n. Here the angle
brackets signify an average over all possible chaotic solutions
of the exact shift oscillator, δmn is the Kronecker delta function,
and δklmn is equal to 1 if and only if k = l = m = n, and is
0 otherwise. Using this information, we can determine the
ensemble mean autocorrelation function to be

〈R(τ )〉 = lim
N→∞

N∑
m=−N

N∑
n=−N

〈σmσn〉I (m − n + τ )

2N + 1

= I (τ ). (33)

In Fig. 6(a), 〈R(τ )〉, given by Eq. (33), is plotted (solid red
line) along with the numerical estimate of 〈R(τ )〉 (dashed blue
line) derived from an ensemble of 100 randomly generated
wave forms. The sample wave forms are truncated with N =
50. Apparent in the figure is the phenomenon of correlation
splitting where the mean correlation function has a peak
at zero followed by an exponentially decaying oscillatory
tail. Decaying long-term correlations are known to be a
consequence of mixing in a dynamical system. Typically, for

FIG. 6. (Color online) Statistical properties of the autocorrelation
function of wave forms of the exact shift oscillator of length N = 100.
(a) Mean value of the autocorrelation function estimated numerically
(dashed blue line) from a sample of 100 wave forms, and calculated
exactly (solid red line). (b) Variance of the autocorrelation function
estimated numerically (dashed blue line), and calculated exactly
(solid red line).
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chaotic systems it has been observed that the tail of the mean
autocorrelation function lies within an envelope that decays
exponentially [36].

Through Eq. (33) the correlation splitting can be viewed
as a direct consequence of the shape of the overlap integral
[Eq. (24)]. Specifically, for τ < 1, I (τ ) contains terms of the
form of Eqs. (21) and (22) which do not decay with increasing
τ . In contrast, for τ > 1, I (τ ) contains only terms of the form of
Eqs. (19) and (23), both of which take the form of an oscillatory
amplitude multiplied by a factor e−βτ . We can immediately
conclude that 〈R(τ )〉 decays at a rate equal to β = ln2, which is
exactly the value of the Kolmogorov-Sinai entropy, as follows
from the full shift in the symbolic dynamics of the system [1].

Using Eq. (32), the variance of the autocorrelation can be
determined to be

Var(R(τ )) = 〈R(τ )2〉 − 〈R(τ )〉2

= lim
N→∞

1

(2N + 1)2

×
N∑

m=−N

N∑
n=−N

I (m − n + τ ){I (n − m + τ )

+ I (m − n + τ )} − lim
N→∞

2
I (τ )2

(2N + 1)
. (34)

The last term vanishes in the limit as N goes to infinity, but
must be retained in any approximation using finite length wave
forms. In Fig. 6(b), the theoretical variance is plotted (solid
red line) along with the numerically estimated variance of the
autocorrelation (dashed blue line) derived from the ensemble
of 100 randomly generated wave forms mentioned earlier.

Similar reasoning can be used to find the statistical
properties of the cross correlation, as well. Assuming we
have two solutions u(t) and u′(t) with coefficients σm and
σ ′

m, respectively, then

〈σmσ ′
n〉 = 0, (35)

and

〈σkσ
′
l σmσ ′

n〉 = δkmδln. (36)

The mean value of the cross correlation is

〈C(τ )〉 = lim
N→∞

N∑
m=−N

N∑
n=−N

〈σmσ ′
n〉I (m − n + τ )

2N + 1

= 0. (37)

The variance is

Var(C(τ )) = lim
N→∞

N∑
m=−N

N∑
n=−N

I (m − n + τ )2

(2N + 1)2
. (38)

These results compare well to numerical estimates of the
same quantities based on an ensemble of 100 wave forms with
N = 50. In Fig. 7(a), the vanishing of the mean predicted by
Eq. (37) (red line) agrees with the numerically estimated mean
cross correlation (blue line). A vanishing cross-correlation
function can be interpreted as a kind of statistical orthogonality

FIG. 7. (Color online) Statistical properties of the cross-
correlation function of wave forms of the exact shift oscillator of
length N = 50. (a) Mean value of the cross-correlation function
estimated numerically (dashed blue line) from a sample of 100 wave
forms, and calculated exactly (solid red line). (b) Variance of the
cross-correlation function estimated numerically (dashed blue line),
and calculated exactly (solid red line).

that is often a significant advantage in signal processing [35].
In Fig. 7(b), the periodic oscillation of the variance given
by Eq. (38) (red line) agrees with the numerically estimated
variance (blue line).

B. Statistical properties of the exact folded-band oscillator

For the exact folded-band oscillator with β = β1 where β1

satisfies the equation,

eβ1 = 1 + e−β1/2, (39)

the peak return map is a skewed tent map on the interval [0,eβ1 ]
[2]. The numerical value of β1 is approximately 0.81 × ln2.
This map has a uniform invariant density over [0,eβ1 ], and
a Markov partition at 1. The partition separates the region
[0,1), with which we associate the symbol A, from the region
(1,eβ1 ], with which we associate the symbol B. Together, the
uniform density and the Markov property imply that each
symbol generated by the return map is an independent random
variable with the probability of an A being generated as

p(A) = e−β1 , (40)

and the probability of a B,

p(B) = 1 − e−β1 . (41)

In contrast to the case of the exact shift oscillator, the returns
of this map do not have a single fixed return time. So the σm

coefficients in Eq. (3) do not directly correspond to the symbol
sequences generated by the return map. However, it has been
shown that the following correspondence does hold:

A → 00, B → 100. (42)

Thus, beginning with a sequence of As and Bs generated using
the probabilities of Eqs. (40) and (41), we can construct a
sequence of σm coefficients that corresponds to a randomly
selected valid solution of the exact folded-band oscillator. For
such sequences, the probability of any given σm coefficient

022909-6



CORRELATION PROPERTIES OF EXACTLY SOLVABLE . . . PHYSICAL REVIEW E 88, 022909 (2013)

being equal to 1 is

p(1) = 1 − e−β1

3 − e−β1
. (43)

However, unlike the A and B symbols, the σm coefficients are
correlated due to the grammar imposed by Eq. (42).

These correlations must be taken into account in determin-
ing 〈σmσn〉. The trivial case where n = m is simply

〈σmσm〉 = p(1). (44)

For some integer k � 3,

〈σmσm±k〉 = p(1) ×
∑

i

p({σ1, . . . ,σk−3}i)p(B), (45)

where {σ1,σ2, . . . ,σk−3}i is the i th distinct sequence of length
k − 3, and the sum gives the total probability for all sequences
of length k − 3. This expression follows from recognizing
that a product of the form σmσm±k can only be nonzero if
both σm and σm±k are nonzero, which requires both to be
derived from B symbols. There is only a finite number of
sequences of a given length that can fit between two B symbols.
These can be constructed systematically using Eq. (42), and
assigned probabilities using Eqs. (40) and (41) as detailed in
the appendix. The mean autocorrelation is then

〈R(τ )〉 = lim
N→∞

N∑
m=−N

N∑
n=−N

2〈σmσn〉J
(

m
2 − n

2 − τ
)

2N + 1
. (46)

The function 〈R(τ )〉 given by Eq. (46) is shown in Fig. 8
(solid red line) along with a numerical estimate (dashed blue
line) of the mean autocorrelation derived from an ensemble of
100 wave forms with N = 50. As was the case with the exact
shift oscillator, correlation splitting can be seen and directly
connected to the exponential tails of the overlap integrals J (τ ).

Following similar reasoning, an expression for the variance
of the autocorrelation can also be derived. Unfortunately, due
to the correlations between the σm coefficients, the resulting
expression is quite cumbersome and impractical. Therefore,
we omit it here.

The mean and variance of the cross correlation are much
simpler to derive since there are no correlations between the
σm coefficients of two separate wave forms. Assuming we
have two solutions u(t) and u′(t) with coefficients σm and σ ′

m,
respectively, then

〈σmσ ′
n〉 = p(1)2, (47)

FIG. 8. (Color online) Mean value of the autocorrelation function
for wave forms of the exact folded-band oscillator with N = 50
estimated numerically (dashed blue line) from a sample of 100 wave
forms, and calculated exactly (solid red line).

and

〈σkσ
′
l σmσ ′

n〉 = p(1)2p(B)2
∑

i

p({σ1, . . . ,σ|k−m|−3}i)

×
∑

j

p({σ1, . . . ,σ|l−n|−3}j ), (48)

where the first sum gives the total probability for all sequences
of length |k − m| − 3, and the second sum gives the total
probability for all sequences of length |l − n| − 3.

It follows immediately that

〈C(τ )〉 = lim
N→∞

N∑
m=−N

N∑
n=−N

2p(1)2J
(

m
2 − n

2 − τ
)

2N + 1
, (49)

and

Var(C(τ ))

= lim
N→∞

N∑
k=−N

N∑
l=−N

N∑
m=−N

N∑
n=−N

× 4{〈σkσ
′
l σmσ ′

n〉 − p(1)4}J (
k
2 − l

2 − τ
)
J
(

m
2 − n

2 − τ
)

(2N + 1)2
.

(50)

Again, these expressions are verified by comparison to
numerical estimates of the mean and variance. The function
〈C(τ )〉 is shown in Fig. 9(a) along with a numerical estimate
of the mean derived from an ensemble of 100 wave forms with
N = 50. Notably, the mean cross correlation appears to have
a constant, nonzero value. This property can be attributed to
the nonzero mean of the folded-band wave forms. The same
value is approached by the mean autocorrelation given by
Eq. (46) for large lags where the correlations between the σm

coefficients are negligible. The variance given by Eq. (50) is
shown in Fig. 9(b) along with a numerical estimate which
agrees closely.

FIG. 9. (Color online) Statistical properties of the cross-
correlation function of wave forms of the exact folded-band oscillator
with N = 50. (a) Mean value of the cross-correlation function
estimated numerically (dashed blue line) from a sample of 100 wave
forms, and calculated exactly (solid red line). (b) Variance of the
cross-correlation function estimated numerically (dashed blue line),
and calculated exactly (solid red line).
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VI. CONCLUSION

In this paper, we derived exact formulas for correlation
functions of wave forms of the exact folded-band oscillator
and the exact shift oscillator. We first showed that evaluation of
the autocorrelation and cross-correlation functions for specific
wave forms could be reduced to evaluating overlap integrals
for the appropriate basis pulse of each oscillator. Next, we
showed that for specific parameter values, average properties
of these functions could be calculated exactly as well. Both the
mean and variance of the autocorrelation and cross-correlation
functions were derived. Observed correlation splitting was
shown to be a result of the decaying tail of the basis function
overlap integral.

These results have direct practical consequences for ap-
plications of these solvable chaotic oscillators. For example,
consider a radar based on these chaotic systems. In such
a system, an electronic oscillator outputs a voltage that is
the solution of a solvable chaotic system to be used as
the transmitted wave form. The half-width of the mean
autocorrelation functions provides a measure of the range
resolution these wave forms could achieve in a radar system.
In the case of the exact shift oscillator, the half-width is
approximately 0.37, in time units scaled to make the pulse
repetition rate equal 1. For an oscillator circuit with a pulse
repetition rate of 100 MHz emitting radio waves, the width
of the autocorrelation would be 3.7 ns, corresponding to a
range resolution of 3.7 ns × 3 ×108m/s = 1.1 m. On the
other hand, the width of the mean autocorrelation for the
folded-band oscillator is approximately 0.21, in time units
scaled to make the pulse repetition rate equal 1/2. For an
electronic folded-band oscillator with a pulse repetition rate of
100 MHz, the range resolution would be 1.3 m, slightly larger
than that of the shift oscillator. As another example consider

the vanishing of the mean cross correlation for the exact shift
oscillator. This statistical orthogonality enables the use of
multiple chaotic radars in close proximity without significant
interference.

An important area for future work is the search for other
solvable chaotic systems. For example, perhaps solvable
oscillators with chaotic sets of distinct topologies may be
found. Perhaps a solvable delay dynamical system is possible.
If so, it is reasonable to expect the wave forms of such systems
would be of the form of Eqs. (3) and (8), in which case
the correlation functions could be determined exactly through
derivations along the lines of those presented here.

APPENDIX

As a result of the coding in Eq. (42), for any positive
integer k > 3, a symbol sequence (made up of As and Bs)
corresponding to a sequence of k − 3 coefficients (i.e., 1s and
0s) must satisfy the equation,

2m + 3n = k − 3, (A1)

where m is the number of As in the symbol sequence and n is
the number of Bs. The value of n for any solution must be a
member of the set of integers from zero to (k − 3)/3. Any value
in this range gives a solution (m = (k − 3 − 3n)/2,n) if and
only if (k − 3 − 3n)/2 is a whole number. The potential values
of n can be checked sequentially. For a given solution (m,n),
there are (m + n)!/(m! + n!) sequences including all possible
permutations of the As and Bs. Each of these sequences has
probability p(A)mp(B)n. By summing up these probabilities,
the total probability of all sequences of a given length can be
determined.
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