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Synchronization of a Josephson junction array in terms of global variables
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We consider an array of Josephson junctions with a common LCR load. Application of the Watanabe-Strogatz
approach [Physica D 74, 197 (1994)] allows us to formulate the dynamics of the array via the global variables
only. For identical junctions this is a finite set of equations, analysis of which reveals the regions of bistability
of the synchronous and asynchronous states. For disordered arrays with distributed parameters of the junctions,
the problem is formulated as an integro-differential equation for the global variables; here stability of the
asynchronous states and the properties of the transition synchrony-asynchrony are established numerically.
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I. INTRODUCTION

Synchronization in populations of coupled oscillators is
a general phenomenon observed in many physical systems
(cf. recent experimental studies of optomechanical, microme-
chanical, electronic, mechanical, and chemical oscillators [1]).
Synchronization effects are also ubiquitous in biology and
social sciences. One of the basic examples of oscillating
physical systems that being coupled synchronize are Josephson
junctions [2]. In theoretical studies of the Josephson junction
arrays one typically either performs direct numerical simula-
tion of the microscopic equations (see, e.g., Ref. [3]) or reduces
the problem to the standard Kuramoto-type model [4—6].

Quite remarkable in this respect is Ref. [7], where a
careful comparison of the microscopic modeling and the
reduced Kuramoto-type model has been performed. The
authors demonstrated that a hysteretic transition to synchrony
in an array of Josephson junctions can be explained by a
Kuramoto-type modeling (where usually the transition is not
hysteretic), if in its derivation one self-consistently accounts
for changes of the oscillator parameters.

Our aim in this paper is to shed light on the hysteretic
transitions to synchrony in Josephson arrays by studying the
equations for global variables. In this approach, which is based
on the seminal papers by Watanabe and Strogatz (WS) [8,9],
it is possible to formulate exact low-dimensional equations
for the array, without using approximate reduction to the
Kuramoto model. The paper is organized as follows. First,
we formulate the equations for the array of identical junctions
via the global variables. Analysis of these equations shows
regions of bistability asynchrony-synchrony and the hysteretic
transitions. Then we proceed to nonidentical junctions, where
the equations are of more complex form. Here we analyze
stability of asynchronous states and show numerically that the
transition to synchrony is also hysteretic.

II. IDENTICAL JUNCTIONS

A. Formulation in terms of global variables

We start with formulating the system of equations for the
Josephson junction series array with a LCR load. Our setup
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is the same as in Refs. [4-6]; the equations for the junction
phases ¢; and the load capacitor charge Q read

h de; . dQ .
I =1 —-— =1,...,N,
2er dt +lesing dt !
0 d0 Q0 I ~dg,
L—4+R—+==—-Y 2, 1
dt? + dt + C 2e P dt M

Here N is the number of junctions, described by a resistive
model with critical current /. and resistance r, while L, C, R
are parameters of the LCR load. It is convenient to introduce
dimensionless variables according to

w. = 2erl./h, *= w.t,
Q*=wlL*Q/I.,, I"=1/I, 2)
R*=R/rN, L*=w.L/rN, C*= Naw.rC,

and to rewrite the system (1) in a dimensionless form (dropping
the asterisks for simplicity):
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Furthermore, to have equations in the canonical form with
all derivatives on the left-hand side, it is suitable to substitute
the expressions for ¢; from (3a) into the equation for the load
(3b). Thus, the system (4) is obtained from the system (3):

¢ =1—€Q —sing,
X
Q+VQ+w3Q=1—N;Sm¢i, 4)
wheree = 1/L*, y = (R*+ 1)/L*, and wy = 1/~ L*C*.

The global coupling can be represented through the com-
plex mean field (Kuramoto order parameter)

N
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and the equations for the junction phases can be written as
¢i=1—eQ+Im(e ™). (©)

This form of the phase equation allows us to use the Watanabe-
Strogatz ansatz [8,9], applicable to general systems of phase
equations driven by a common force and having form

g = f(t)+Im[G(t)e ] (7)

with arbitrary real f(¢) and complex G(¢) (in our case f =
I —€Q, G =1). We use the formulation of the WS theory
presented in Ref. [10]. The ensemble is characterized by three
global time-dependent WS variables p, ®, W, and N constants
of motion ¥; (of which only N — 3 are independent), which
are related to the phases ¢; as

oo _ g0 P T exp [i(yi — W] @)

pexpli(y; — W)+ 1

with  additional ~ conditions ), cosy; =) siny; =
> i cos2y; = 0. The equations for the global WS variables
read [8-10]

1— p?

o= Re(e™'®),

b= L e, ©)

d=1-€0+ L+
2p

To close the system we need to add the equation for Q, where
the imaginary part of the order parameter Z enters, so Z
should be represented through the WS variables. In general,
the expression for Z is rather complex (cf. Refs. [10,11]),
but in the case of a uniform distribution of the constants v;,
the order parameter is just Z = pe'®. This important case,
where WS global variables p,® have a clear physical meaning
as the components of the Kuramoto order parameter, will be
treated below. Additionally, we notice that the variable W does
not enter other equations, so we obtain a closed system of
equations that describes the array

Z2
?a
O+y0+wiQ=1-1Im2). (10)

Z:i(I—eQ)Z+%—

B. Bistability and hysteretic transitions

Analysis of system (10) is our goal in the rest of this section.
Before proceeding, some remarks are in order. First, in the
derivation of (10) no approximation except for an assumption
of a uniform distribution of constants v; has been made.
The latter is a restriction on initial conditions; we discuss
its relevance below. Second, the order parameter Z does
not vanish in the case of full asynchrony of junctions: for
noncoupled junctions with € = 0 we get a steady state Zy =
i(I — +/I? — 1). This nonvanishing value appears because free
junctions rotate nonuniformly, and the “natural” distribution
of the phases in the asynchronous state is not uniform.

We start the analysis of (10) by finding its steady states.
Because at such a state Q = 0, the coupling vanishes and
the steady state describing the asynchronous regime with
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FIG. 1. (Color online) Domains of stability of synchronous
(above lower dashed line) and asynchronous (below upper solid line)
states on the plane of parameters (w3, $2?), where Q = +/I2 — 1 is the
natural frequency of the junctions. Here € = 0.5, and y = 1.0 (a),
1.7 (b), 2.7 (c).

Zo=1(I — /12 —=1), Qp = wazx/lz — 1 is the only station-
ary solution. Stability of this solution is determined by the
fourth-order characteristic equation

Mty + (g + P = D)A+ [y —ed* = 1)
eIV =1 +0dU*—1)=0. (11)

The stability border can be easily found by assuming A = iw:
A= - D+ VP10 -VIr -1, (12
14

The fully synchronous solution of (10) corresponds to the
case |Z| = 1, so that only the phase ® changes, according to
the system

O+y0+0}Q=1—sind, d=1-—eQ—sind. (13)

We have found the limit cycle in Eq. (13) numerically and
determined its stability by finding the largest multiplier.
Together with expression (12) this allows us to find the
domains of stability of the asynchronous and synchronous
states, together with the region of bistability of these regimes;
see Fig. 1.

In Fig. 2 we give another illustration of the bistability,
presenting the dependence of Z; on parameter I, together
with the value |Z| = 1 in the synchronous case. Here we also
show what happens if our basic assumption at derivation of
Eqgs. (10), namely, of a uniform distribution of constants v;, is
not satisfied. We have simulated an ensemble of 100 junctions,
preparing the initial conditions with a nonuniform distribution
of constants y; as described in Ref. [10], appendix C. Instead
of leading to a stable state Z, the desynchronous population
now shows an oscillating variable Z(¢), minima and maxima
of which are marked with squares. In the synchronous regime,
|Z| = 1 as before, and the information on the constants v; gets
lost as synchrony establishes.

In conclusion of this consideration we mention that we
found only the fully synchronous and the fully asynchronous
states in the system (10), but no partial synchronous state like
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FIG. 2. (Color online) Dependence of the order parameter |Z| on
the current / for 100 junctions. Line: uniform distribution of constants
V¥;, squares: nonuniform distributions.

those, e.g., described in Ref. [12]. In partial synchrony the
mean fields do not vanish, although the oscillators are not
perfectly synchronous but form a bunch. The difference to
a quite similar setup in Ref. [12] is that here we consider a
linear load, while in Ref. [12] the load was nonlinear. While
we cannot exclude that partial synchrony is possible for linear
loads as well, our numerical study, as well as the study of
Ref. [7], did not show such states.

III. NONIDENTICAL JUNCTIONS

A. Formulation of the model

There are two parameters of individual junctions that
can differ: the critical current I. and the resistance r
(cf. Refs. [5,6]). In order to be able to apply the WS approach
as above, we will assume that they are organized in groups,
each of the size P, and the parameters of all junctions in a
group are identical: the critical current is I.(1 + &) and the
resistance is r(1 + 1), where index k = 1, ..., M counts the
groups. The total number of junctions is N = M P. In this
setup the equations for the junctions read

@i = L+l — €0 — (1 + &) singgi,

M P
. . 1
20 _ 7 s
O+yQ0+wj0=1-~ ;a +no +sk)i;sm¢k,.
(14)
To each group the WS ansatz as described in the previous

section can be applied, and as a result instead of the identical
array equations (10) we obtain a system

O+y0+wi0 =1—((1+n)(1+&)Im(Zy)),

: , . 1-27?
Zr=(l +77k)|:1(I_EQ)Zk+(] +t8)— ]

(15)

where average () is taken over all groups. Starting from (15)
one can easily take a thermodynamic limit of an infinite
number of groups M — 00, in this limit Z; — Z(n,£). Then
(15) reduces to an integro-differential equation that includes
the distribution function W(n,£) of disorder parameters &,
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(cf. Ref. [10]):
0+y0+wj0
=1 —// dndg§ W(n,&) (1 +n)(1 + §)Im[Z(n,8)],

. ) 1—22
Z(n,€)=(1+n)[i(1—eQ)Z+(1+€) > } (16)

B. Asynchronous state and its stability

The asynchronous state is the steady state of the system
(16):

-/ = (1487

1+
Q0 = wy” // dndg W(n.&) (1 + v 12 — (1 +&)2,
(17)

Zo(n,8) =i

’

where we assume (§) = () = 0. Remarkably, the disorder in
the junction resistances (parameter 1) does not influence the
value Zj, only the disorder in critical currents (parameter &).
However, the stability of this asynchronous state depends on
distributions of  and &. We consider two cases, with a disorder
in one parameter only.
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FIG. 3. (Color online) Real part of the maximum eigenvalue A
as a function of the dimensionless current / for the different values
(shown on the panels) of u (a) and ¢ (b).
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(1) Disorder in resistances. Here we assume that W(n,&) =
8(5)W,(n) where W, is a uniform distribution in the interval
(=, ). To study the perturbations in the integral equation
(16) at the steady solution (17), we discretized the integral
using 500 nodes and found the eigenvalues of the resulting
matrix. The results for the maximal eigenvalue are shown in
Fig. 3(a). One can see that, with increasing the external current
I, the asynchronous state loses stability almost at the same
critical value as for identical junctions (expression (12)), but
for large values of I the stability is restored. The region of
instability decreases for larger disorder p.

(2) Disorder in critical currents. Here we assume that
Wn,8) = 8(m)W,(§), where ¢ is the width of the uniform
distribution. With the same procedure as in case (i) we
found the stability eigenvalues that are shown in Fig. 3(b).
Qualitatively, the pictures look similar: both disorders result in
a finite (in terms of the external current /) region of instability
of the asynchronous state.

Both calculations presented in Fig. 3 show, that the main
effect of disorder in arrays is in the establishing of stability of
the asynchronous state for large values of current /, while only
in some range (which decreases with disorder) the asynchrony
is unstable. We illustrate the appearing synchrony patterns in
disordered arrays in the next subsection.

C. Numerical simulations

Dynamics of the nonhomogeneous arrays of Josephson
junctions is illustrated in Fig. 4. As above, we consider
not a general situation where both the critical current and
the resistance are spread, but cases where one of these
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FIG. 4. (Color online) Panels (a) and (d) Dependence of the
averaged order parameter |z| on current /, u =0.01,¢ =0, and
n =0,¢ = 0.05, respectively. Three lines show the maximal (upper
dashed line), the average (solid line), and the minimal (lower dashed
line) value of variations of |z| in time, in the asynchronous states these
lines coincide. Panels (c), (d), (e), and (f) show enlargements of the
regions near the synchrony-asynchrony transitions, to demonstrate
the hysteresis.
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parameters has a distribution. In numerical simulations we
use the discrete representation (15). In order to avoid spurious
nonsmooth solutions, an additional very small viscous term
~ (Zys1 + Zx—1 —2Z;) was added to the equation for Z;
that ensures numerical stabilization of the integro-differential
equation.
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FIG. 5. (Color online) Results of simulations of an ensemble of
200 junctions for w? = 1.2, € = 0.5, ¢ = 0. In panels (b,d,f) we
show only 20 phases out of 200, for better clarity. Panels (a,b): full
synchrony for u =0, I = 2.5. Panels (c,d): synchronous state in
disordered array for u = 0.01, I = 2.5. Panels (e,f): asynchronous
state for array with large disorder © = 0.1, I = 1.2.
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To characterize synchrony we calculated the average over
the array order parameter z = M~' Y, Z; and plot it versus
parameter / in Fig. 4. In the asynchronous state this parameter
attains the fixed point [cf. Eq. (17)], while in the synchronous
state it oscillates arround some mean value (because of disorder
the synchrony is not complete, so |z| < 1). Remarkably, also in
the case of disorder, the transition to synchrony demonstrates
hysteresis for both small and large values of /, as can be seen
in panels (b), (c), (e), and (f) of Fig. 4.

To get a flavor of how the synchronous and desynchronous
states appear on the macroscopic and the microscopic level,
we illustrate the dynamics of the load fields Q, O (solid and
dashed curves, respectively) and of the Josephson phases ¢;
in Fig. 5. Panels (a) and (b) show complete synchrony of
identical junctions. Here all the phase coincide. Panels (c) and
(d) show synchronous state of junctions with a distribution of
their resistances 7. Here the phases are not identical, but form
a bunch. All of them have the same frequency. In panels (e)
and (f) we show an asynchronous state for larger mismatch
of the resistances. Here the load fields do not oscillate what
means effective absence of the coupling, and the phases of the
junctions diverge, because they have different frequencies.

IV. CONCLUSION

In this paper we applied the approach by Watanabe and
Strogatz to the description of the synchronization transition in
an array of Josephson junctions with an LCR load. For identical
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junctions a closed low-dimensional system of equations for
global variables (the WS variables for the junctions and
two variables describing the load) demonstrates a region of
bistability at the transition from asynchrony to full synchrony,
so that this transition shows hysteresis. This confirms previous
results based on the approximate self-consistent reduction
to the Kuramoto model [7]. For nonidentical junction the
method yields an integro-differential system, as each group
of junctions having certain parameters is described by the
WS variables. Here, with the growth of the variability of
parameters, the region of synchronization shrinks. Transition
to synchrony in this case is also hysteretic.

Validity of the WS approach to the Josephson junction array
is based on the fact, that for standard junctions the dependence
of the superconducting current on the phase is a simple sine
function. Therefore, the theory is also valid for so-called &
junctions [13], where the current has an opposite direction but
nevertheless is propotional to sin(¢). However, for recently
constructed so-called ¢ junctions [14], where the phase
dependence of the current contains the second harmonics, the
WS approach is not applicable, and synchronization of such
junctions remains a challenging problem.
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