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Chaos and ergodicity of two hard disks within a circular billiard
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We investigate dynamical properties of the system of two interacting hard disks within a circular billiard
numerically in the case of zero total angular momentum. Varying the radius of two identical disks, we examine
chaotic irregularity and ergodicity of the system. Single-particle configuration and velocity distributions are
obtained from dynamical trajectory calculations and compared with those in the microcanonical ensemble. We
also analyze properties of trajectories by calculating the finite-time maximum Lyapunov exponent and clarify
the existence of sticky motions around Kolmogorov-Arnold-Moser (KAM) tori even for small radii of disks. It is
shown that the present system is almost ergodic in spite of the existence of tori for small radii of disks since the
ratio of tori to the whole phase space is extremely small. On the other hand, a number of tori increase abruptly
as the radius of disks increases beyond some value and tori prevent trajectories to run over the phase space
uniformly, which makes the ergodicity of the system broken down.
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I. INTRODUCTION

There have been numerous studies on ergodicity and chaos
in conservative Hamiltonian systems through both analytical
and numerical approaches. Those studies are very important
to understand the mechanism of irregular and unpredictable
behaviors of Hamiltonian systems and their ergodicity, which
provides the validity of the statistical mechanics [1–4].
Numerical studies of ergodicity are over various systems, e.g,
Henon-Heiles system, a few-body hard core system, Fermi-
Pasta-Ulam model, and so on [5,6]. On the other hand, rigorous
mathematical investigations are very limited. There are a small
number of systems whose ergodicity has been proved, e.g., the
stadium billiard, the Sinai billiard, the Lorentz gas, etc. [3–
5,7,8]. Typical Hamiltonian systems exhibit mixed dynamics,
whose phase spaces contain islands of stability, Kolmogorov-
Arnold-Moser (KAM) tori, in a chaotic sea. However, rigorous
mathematical methods have not been well developed to reveal
dynamical structures of such systems. Therefore, numerical
studies on mixed systems are still very important.

Billiard systems are primary examples used to study
classical and quantum chaos of the Hamiltonian systems [7–9].
However, in spite of an accumulation of studies on billiard
systems, most of them are limited to the systems of a single
point particle or a single disk confined in billiards. There
exist much fewer works on billiards which contain mutually
interacting few-body particles. On the other hand, from both
the theoretical and experimental points of view, systems of
a few particles are getting increasing attention because of
nanoscience and possible applications in nanotechnology.
Especially on the theoretical side, a remarkable point is that a
few-particle billiard exhibits possibly both regular and chaotic
features depending on the geometry of the billiard boundary
and the confined particles [10–12]. Statistical mechanical
properties of systems with a few hard disks or spheres have
been studied by several authors [13]. This paper is rather
concerned with chaotic dynamics and ergodic properties of
such systems.
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The system consisting of two identical hard disks in a
rectangular billiard have been shown to be ergodic for smaller
radii of disks numerically by Zheng et al. [14]. Later, the
ergodicity of this system has been proved analytically and
rigorously by Simányi [15]. Simányi’s result has been extended
to several billiard systems having polygon boundaries by
other authors [16]. On the other hand, as for the system
consisting of two identical hard disks in a circular billiard,
its ergodicity (or nonergodicity) has not been clarified yet.
This system is considered to have mixed dynamics and
its analytical investigation is quite difficult. Lansel et al.
examined its dynamics numerically and obtained asymmetric
distributions of incident angles at collisions between hard disks
and a boundary, from which they suggested nonergodicity of
this system [11]. Uranagase compared the pressure of this
system evaluated by trajectory calculations with that derived
from the microcanonical ensemble [17]. He found a large
statistical fluctuation of the pressure evaluated by trajectory
calculations for a relatively large radius of disks and suggested
nonergodicity of this system. However, these two works
have not revealed its nonergodicity clearly. Nakazono et al.
calculated the maximum Lyapunov exponent as a function
of the radius of disks in this system and found it to depend
on initial conditions [18]. It has a maximum value for the
radius of disks σ � 0.25 (the radius of a billiard is unity),
above which its standard deviation increases as a radius
increases. From this fact they claimed that the ergodicity is
not guaranteed for σ � 0.25. They just mentioned without
showing any numerical evidences that there exist tori in the
full range of σ and, however, their ratio to the whole phase
space is extremely small. The main subject of their work
is a quantum dynamics of this system. They found that the
energy-level-space distribution is consistent with the Wigner
distribution in the full range of σ , which suggests a strong
chaotic property of this system.

In this paper, we investigate classical dynamical properties
of the system of two identical hard disks within a circular
billiard numerically. We confine our studies to the case of
zero total angular momentum. Varying the radius of each disk,
we examine chaotic irregularity and ergodicity of the system.
In order to analyze dynamical properties of the system, we
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compare single-particle configuration and velocity distribu-
tions obtained from dynamical trajectory calculations with
those derived from the microcanonical ensemble for various
radii of the hard disks. We also calculate time evolution of the
finite-time maximum Lyapunov exponents along trajectories.
From those results we show that for even small radii of disks
this system exhibits mixed dynamics including sticky motions
around tori. Moreover, we examine whether the trajectories
run over the phase space uniformly. Consequently, we show
that this system is not fully chaotic but still almost ergodic
for smaller radii of disks, while it has a strongly nonergodic
property for larger radii of disks.

The organization of the paper is as follows: In Sec. II, we
introduce the model system and describe some methods for
analyzing its dynamics. The results for numerical calculations
are given in Sec. III. Section IV is concerned with summary
and discussion.

II. MODEL AND METHOD

We consider a system of two identical hard disks within
a circular billiard. The disks make a ballistic motion except
bouncing with each other and with the billiard boundary. We
choose a radius of the billiard to be unity without loss of
generality. Varying the radius of each disk σ , we examine the
chaotic irregularity and ergodicity of the system. The total
energy E and total angular momentum of the system L are
given by

E = 1
2m

(
v2

x,1 + v2
y,1 + v2

x,2 + v2
y,2

)
(1)

and

L = m(x1vy,1 − y1vx,1 + x2vy,2 − y2vx,2), (2)

respectively, where m, (xi,yi) and (vx,i ,vy,i)(i = 1,2) are
the mass, coordinates, and velocities of the hard disks,
respectively. The total angular momentum is conserved due
to circular symmetry of the system. In this paper, we are
concerned with only the case of zero total angular momentum
and scale velocities by

√
E/m. Thus, Eqs. (1) and (2) are

reduced to

v2
x,1 + v2

y,1 + v2
x,2 + v2

y,2 = 2 (3)

and

x1vy,1 − y1vx,1 + x2vy,2 − y2vx,2 = 0, (4)

respectively. If the system is ergodic, both configuration and
velocity distributions obtained from a single trajectory with
almost any initial condition are consistent with those derived
from the microcanonical ensemble. The microcanonical en-
semble distribution is written as

ρ(x1,y1,x2,y2,vx,1,vy,1,vx,2,vy,2)

= CNδ
(
2 − v2

x,1 − v2
y,1 − v2

x,2 − v2
y,2

)
× δ(x1vy,1 − y1vx,1 + x2vy,2 − y2vx,2), (5)

where CN is a normalization constant. The single-particle
configuration and velocity distribution functions are given by

F (x,y) =
∫

. . .

∫
ρ(x1,y1,x,y,vx,1,vy,1,vx,2,vy,2)

× dvx,1dvy,1dvx,2dvy,2dx1dy1 (6)

and

G(vx,vy) =
∫

. . .

∫
ρ(x1,y1,x2,y2,vx,1,vy,1,vx,vy)

× dvx,1dvy,1dx1dy1dx2dy2, (7)

respectively. We compare single-particle distribution functions
obtained from dynamical trajectory calculations with them.

In order to characterize the chaotic property of the system,
we calculate the finite-time maximum Lyapunov exponent
(FTMLE) defined by

λ(t0,t) = 1

t − t0
lim
d0→0

ln
d(t)

d0
, (8)

where d0 and d(t) are the separations between two adjacent
trajectories at time t0 and t , respectively. The ordinary (i.e.,
infinite-time) Lyapunov exponent is given in the limit of
t → ∞ in Eq. (8). However, the convergence is quite slow in
the generic system and, moreover, values of FTMLE depend
on the initial condition. This is the case in the present system
as shown in the next section. It implies that chaotic and regular
motions coexist even along a single trajectory in the present
system. We display this point clearly by examining FTMLE
and relating it with the ergodicity of the system.

Now, we turn back to the single-particle distribution
functions and derive their detailed expressions. First, we
calculate the two-particle configuration distribution function

f (x1,y1,x2,y2)

∝
∫ ∞

−∞
. . .

∫ ∞

−∞
δ
(
2 − v2

x,1 − v2
y,1 − v2

x,2 − v2
y,2

)
δ(x1vy,1

− y1vx,1 + x2vy,2 − y2vx,2)dvx,1dvy,1dvx,2dvy,2. (9)

Changing the variables vx,i and vy,i to Ui and Vi defined
by Ui = (yivx,i − xivy,i)/ri and Vi = (xivx,i + yivy,i)/ri with

ri =
√

x2
i + y2

i (i = 1,2), we have

f (x1,y1,x2,y2) ∝
∫ ∞

−∞
. . .

∫ ∞

−∞
δ(2 − U 2

1 − V 2
1 − U 2

2 − V 2
2 )

× δ(r1U1 + r2U2)dU1dV1dU2dV2. (10)

We further change U1 and U2 to ξ and η defined by
ξ = (r2U1 − r1U2)/R and η = (r1U1 + r2U2)/R with R =√

r2
1 + r2

2 . Then, we obtain

f (x1,y1,x2,y2)

∝
∫ ∞

−∞
. . .

∫ ∞

−∞
δ
(
2 − ξ 2 − η2 − V 2

1 − V 2
2

)

× δ(Rη)dξ dη dV1dV2

∝ 1

R

∫ ∞

−∞
· · ·

∫ ∞

−∞
δ
(
2 − ξ 2 − V 2

1 − V 2
2

)
dξ dV1dV2

∝ 1

R

∫∫∫
δ(Q2 − ξ 2)dξ dV1dV2

∝ 2

R

∫∫
1

Q
dV1dV2, (11)
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FIG. 1. (Color online) The single-particle configuration distributions (upper panels) and velocity distributions (lower panels). The solid
and broken curves are from sampling and the microcanonical ensemble, respectively.

where Q =
√

2 − V 2
1 − V 2

2 . Consequently, Eq. (9) is reduced
to

f (x1,y1,x2,y2) ∝ 1√
r2

1 + r2
2

. (12)

The single-particle configuration distribution function (6) is
given by

F (x,y) ∝
∫∫

D

1√
r2 + r2

2

dx2dy2, (13)

where r =
√

x2 + y2 and r2 =
√

x2
2 + y2

2 . The domain of
integration D is the accessible area of the second disk centered
at (x2, y2) when the first disk is centered at (x, y) within

the circular billiard. Detailed numerical techniques of the
integration are described in Appendix A. Hereafter, we use
the expression F (r) instead of F (x,y) since it has circular
symmetry.

Next, we calculate the single-particle velocity distribution
function

G(vx,vy) ∝
∫

. . .

∫
δ
(
2 − v2

x,1 − v2
y,1 − v2

x − v2
y

)
× δ(x1vy,1 − y1vx,1 + x2vy − y2vx)

× dvx,1dvy,1dx1dy1dx2dy2. (14)

Changing the variables vx,1 and vy,1 to U and V defined by
U = (y1vx,1 − x1vy,1)/r1 and V = (x1vx,1 + y1vy,1)/r1 with
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FIG. 2. The averaged values (a) and standard deviation (b) of FTMLE λ(0,T ) for various σ .

022907-3



SHIN-ICHI SAWADA AND TOORU TANIGUCHI PHYSICAL REVIEW E 88, 022907 (2013)

0.1

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

0.2
0.1

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

0.2
(a) case 1 (b) case 2

(c) case 3

 

(d)
 

0.1

0.3
0.4
0.5
0.6
0.7
0.8
0.9

0

0.2

-0 .1

Disk  1

Disk  2

0 5 10 15

x 105t
0 5 10 15

x 105t

0 5 10 15

x 105t

FIG. 3. (Color online) FTMLE as functions of the final time t, λ(0,t), in the typical three cases for σ = 2: (a), (b), and (c) for the cases 1,
2, and 3, respectively. (d) The trajectories of centers of two disks in the case 3.
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FIG. 5. (Color online) (a) FTMLE in each interval λ(ti ,ti+1) for the case 2. (b) The trajectories in the region 2.

r1 =
√

x2
1 + y2

1 , we obtain

G(vx,vy) ∝
∫

. . .

∫
δ(2 − U 2 − V 2 − v2)δ(−r1U + x2vy

− y2vx)dU dV dx1dy1dx2dy2

∝
∫

. . .

∫
1

r1
δ
[
2 − (x2vy − y2vx)2/r2

1 − V 2 − v2]
× dV dx1dy1dx2dy2

∝
∫

. . .

∫
1

r1
δ(S2 − V 2)dV dx1dy1dx2dy2

∝
∫∫ ∫∫

D′

1

r1S
dx1dy1dx2dy2, (15)

where v =
√

v2
x + v2

y and S =
√

2 − (x2vy − y2vx)2/r2
1 − v2.

The four-dimensional domain of integration D′ is the accessi-
ble area of the first and second disks centered at (x1, y1) and
(x2, y2), respectively, within the circular billiard. G(vx,vy)
should have circular symmetry, which is verified as follows.
If we change xi and yi to x ′

i = (xivx + yivy)/v, y ′
i = (yivx −

xivy)/v (i = 1,2), Eq. (14) is reduced to

G(vx,vy) ∝
∫

. . .

∫
D′

1√
(2 − v2)r2

1 − y ′2
2 v2

dx ′
1dy ′

1dx ′
2dy ′

2.

(16)
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FIG. 6. (Color online) The configuration distributions in the upper panels and the velocity distributions in the lower panels for the case 2:
(a) and (d) for the region 1, (b) and (e) for the region 2, (c) and (f) for the region 3, respectively.
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(a) (b)

FIG. 7. (Color online) The trajectories of centers of two disks in two different types of quasiregular motions.

(Note that r1 =
√

x2
1 + y2

1 =
√

x ′2
1 + y ′2

1 .) Hereafter, we use
the expression G(v) instead of G(vx,vy). The detailed numer-
ical technique of the integration is described in Appendix B.

In order to study a statistical character of the system, we
prepare samples of initial conditions which are uniformly
distributed in the phase space under the restriction of zero
total angular momentum. For this purpose, we introduce
the four-dimensional polar coordinates in the velocity space
(v,θ,ϕ1,ϕ2) defined by [19]

⎧⎪⎨
⎪⎩

vx,1 = v sin θ cos ϕ1

vy,1 = v sin θ sin ϕ1

vx,2 = v cos θ cos ϕ2

vy,2 = v cos θ sin ϕ2

⎛
⎜⎝

0 � v < ∞
0 � θ � π/2
0 � ϕ1 � 2π

0 � ϕ2 � 2π

⎞
⎟⎠ . (17)

The infinitesimal volume element in the velocity space can be
written as

dvx,1dvy,1dvx,2dvy,2 = v3 sin θ cos θ dv dθ dϕ1dϕ2. (18)

Then, the microcanonical ensemble distribution, Eq. (5), is
rewritten as

ρ(x1,y1,x2,y2,v,θ,ϕ1,ϕ2)v3 sin θ cos θ dv dθ dϕ1dϕ2dx1

× dy1dx2dy2

= CNδ(2 − v2)δ(vK)2v3 sin θ cos θ dv dθ dϕ1dϕ2

× dx1dy1dx2dy2, (19)

where

K = l1 sin θ + l2 cos θ (20)

0 0.1 0.2 0.3 0.4
10-5

10-4

10-3

10-2

10-1

100

γ

σ

FIG. 8. Ratio of resident time in regular (or quasiregular) motions
for various σ .

with l1 = x1 sin ϕ1 − y1 cos ϕ1 and l2 = x2 sin ϕ2 − y2 cos ϕ2.
Integrating (19) with respect to v, we get the reduced
distribution:

P (x1,y1,x2,y2,θ,ϕ1,ϕ2) sin θ cos θ dθ dϕ1dϕ2dx1dy1dx2dy2

∝ δ(K) sin θ cos θ dθ dϕ1dϕ2dx1dy1dx2dy2. (21)

If we introduce a variable z = sin2 θ , Eq. (21) is written as

P (x1,y1,x2,y2,ϕ1,ϕ2,z)dϕ1dϕ2dzdx1dy1dx2dy2

∝ δ(K)dϕ1dϕ2dzdx1dy1dx2dy2, (22)

with

K = l1
√

z + l2
√

1 − z. (23)

Equation (22) suggests that we can use some generator
of uniform random numbers for all variables to get initial
conditions distributed uniformly in the phase space. The
ranges of variables are as follows: −1 � x1,x2,y1,y2 � 1,0 �
ϕ1 � 2π, 0 � ϕ2 � 2π , and 0 � z � 1. After generating
uniform random numbers and getting values of these vari-
ables, we pick up only sets of values satisfying the con-
dition x2

1 + y2
1 � (1 − σ )2, x2

2 + y2
2 � (1 − σ )2, (x1 − x2)2 +

(y1 − y2)2 � 4σ 2, and K = 0. The last condition, K = 0, is
hard to get relevant values easily since they are quite rare.
Therefore, we reduce it to a weaker condition |K| < ε with
some small value ε. After obtaining relevant values for all
variables, we correct only the values of z to satisfy K = 0
exactly as follows. Solving the equation K = 0 with respect
to z with the given values for other variables we have a unique
solution for z,

z0 = l2
2/

(
l2
1 + l2

2

)
, (24)

which is used instead of the original value of z.
We also employ the four-dimensional polar coordinates

for velocities of two disks to examine whether trajectories
run over the phase space uniformly. In the six-dimensional
space of coordinates (x1,x2,y1,y2,ϕ1,ϕ2), we divide the re-
gion within −1 � x1,x2,y1,y2 � 1,0 � ϕ1 � 2π, 0 � ϕ2 �
2π into a number of cells with an equal width in each
dimension. When the values of x1, x2, y1, y2, ϕ1, and ϕ2 of a
point on a trajectory are given, the value of z is automatically
determined as (24). If a trajectory runs over the phase space
uniformly, its density in each cell should be proportional to∫∫∫∫∫∫

cell

[∫ 1

0
δ(K)dz

]
dx1dy1dx2dy2dϕ1dϕ2.

(25)
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FIG. 9. The distributions of λ(ti ,ti+1) for σ = 0.2, 0.3, 0.35, and 0.4, respectively.

The integration (25) is over only a region of the
cell satisfying the conditions x2

1 + y2
1 � (1 − σ )2, x2

2 + y2
2 �

(1 − σ )2, (x1 − x2)2 + (y1 − y2)2 � 4σ 2. Using the relation

δ(K)dz =
∣∣∣∣∂K

∂z
(z0)

∣∣∣∣
−1

δ(z − z0), (26)

(25) is reduced to

∫∫∫∫∫∫
cell

∣∣∣∣∂K

∂z
(z0)

∣∣∣∣
−1

dx1dy1dx2dy2dϕ1dϕ2. (27)

It should be noted that the integration (27) is restricted to the
region where the equation K(z) = 0 has a solution (24), i.e.,
l1l2 � 0.

III. NUMERICAL RESULTS

In order to study a statistical character of the system, we
first prepare samples of initial conditions which are uniformly
distributed in the phase space under the restriction of zero total
angular momentum. The sampling method has been described
in the previous section. We chose 10−5 for ε in the constraint
condition |K| < ε. We have prepared 105 initial conditions for
each value of σ . The solid curves in Fig. 1 represent the single-
particle configuration and velocity distributions produced by
the sampling for several values of σ . The broken curves denote
the microcanonical distributions. We see that the present
sampling reproduces the microcanonical distributions very
well. Note that the distributions produced by sampling do not
necessarily have circular symmetry in general. We have aver-
aged the original distributions over the angular direction to plot
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FIG. 10. (Color online) The results for σ = 0.33: (a) FTMLE in each interval λ(ti ,ti+1), (b) and (c) the velocity autocorrelation functions
for the regions 1 and 2, respectively, (d) and (e) the trajectories around t = 2.00 × 105 and 2.05 × 105 in the region 2, respectively.
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FIG. 11. (Color online) The distributions for σ = 0.2 from a trajectory with the running time of 5 × 107: (a) The velocity distribution. The
angular dependence is shown in (b) and (c) for the configuration and velocity distributions, respectively.

the above distributions. We also take similar averages to plot
distributions from dynamical trajectories calculations below.

We calculate FTMLE λ(0,T ) for each trajectory running
over 106 collisions with the above initial condition, where T is
the running time during 106 collisions. The values of λ(0,T ) for
each σ depend on the initial conditions and distribute in some
extent. The averaged values and standard deviation of λ(0,T )
for various σ are plotted in Figs. 2(a) and 2(b), respectively. It is
seen that the averaged value of λ(0,T ) increases as σ increases
from 0 to around 0.225 and then decreases with further increase
of σ . The standard deviation is relatively small for σ < 0.2
and increases as σ increase except in 0.33 < σ < 0.35.

Now we examine the detailed evolution of FTMLE. We
show FTMLE as functions of the final time t, λ(0,t), in the
typical three cases for σ = 0.2 in Fig. 3. In the case 1, λ(0,t)
is almost constant and seems to converge. Its value is positive,
which implies the motion is chaotic. In the case 2, its evolution
makes an abrupt change twice. In the case 3, λ(0,t) is almost
constant and nearly equal to zero, which implies the trajectory
stays in a torus. For the case 3, the trajectories of centers of
two disks are illustrated in Fig. 3(d). The two disks vibrate
regularly and symmetrically bouncing with each other. If we
truncate the evolution of FTMLE at t = T , the three cases
yield different values of λ(0,T ) in general. This is a main

(a) (b)
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FIG. 12. (Color online) The distributions for σ = 0.1: (a) the configuration distribution and (b) the velocity distribution from a trajectory
with running times of 5 × 107. The angular dependence is shown in (c) and (d) for the configuration and velocity distributions, respectively.
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FIG. 13. (Color online) The same as Fig. 12 except for σ = 0.01 and different running times.

reason for the values of λ(0,T ) distributing in some extent for
each σ . In Fig. 4, we show the single-particle configuration
distributions in the upper panels and the velocity distributions
in the lower panels produced by the trajectories in the three
cases: Figs. 4(a) and 4(d) for the case 1, Figs. 4(b) and 4(e)
for the case 2, Figs. 4(c) and 4(f) for the case 3, respectively.
We see that the distributions produced by the trajectory in the
case 1 (the solid curves) are in a good agreement with the
microcanonical distributions (the broken curves).

Let us analyze the trajectory in the case 2 in detail. We
divide the total period into multiple short-time intervals, each
of which includes 104 collisions. We calculate FTMLE in each
interval λ(ti ,ti+1), where ti is the initial time for the ith interval.
Then, we obtain a sequence of λ(ti ,ti+1), which is shown in
Fig. 5(a). We see that the total period is composed of three time
regions. In the regions 1 and 3, λ(ti ,ti+1)’s have positive values
fluctuating around 0.77, which is almost equal to the constant
value of λ(0,t) in the case 1. On the other hand, they are almost
equal to zero in the region 2. This fact implies that the system
exhibits chaotic motions in the regions 1 and 3 while it exhibits
a sticky motion, i.e., a quasiregular motion trapped around a
torus in the region 2. The trajectories of centers of two disks in
the region 2 are illustrated in Fig. 5(b). This sticky motion of
two disks is quite similar to the one in the case 3. We calculate
single-particle distributions produced by the trajectory in each
region separately. The results are shown in Fig. 6, where
the configuration distributions are in the upper panels and
the velocity distributions in the lower panels : Figs. 6(a)
and 6(d) for the region 1, Figs. 6(b) and 6(e) for the region 2,
Figs. 6(c) and 6(f) for the region 3, respectively. We see that the

distributions produced by the trajectories (the solid curves)
in the regions 1 and 2 are in a good agreement with the
microcanonical distributions (the broken curves). Let us call
trajectories similar to those in the cases 1, 2, and 3 trajectories
of the types 1, 2, and 3, respectively. For σ = 0.2, several
percent of the 105 trajectories are of the type 2, in which we
have found a lot of other kinds of quasiregular motions trapped
around tori. However, most of them are similar to the one
illustrated in Fig. 5(b). Only two of them are illustrated in Fig. 7
as essentially different types. In Fig. 7(b), two disks move inde-
pendently without any pair collisions. Only about 0.1% of tra-
jectories are of the type 3 for σ = 0.2. Trajectories of the type 2
are found even for σ = 0.01 and their number increases as σ in-
creases. The number of the type 3 also increases as σ increases.

We calculate a ratio of resident time for trajectories in
regular (or quasiregular) motions to a total running time for
each value of σ . We assume that the motion in an interval
[ti , ti+1] is regular (or quasiregular) if the value of λ(ti ,ti+1)
is less than some small value, for which we choose 0.01.
We accumulate time intervals corresponding to regular (or
quasiregular) motions over all trajectories (105 trajectories)
and get a total resident time in regular (or quasiregular) motions
Tr. On the other hand, we sum up running times over all
trajectories and get a total running time Ttot. Then, we obtain
the ratio γ = Tr/Ttot. The results of γ for various values of
σ are shown in Fig. 8. The values of γ for σ < 0.2 are of
the order of 10−4. It begins to increase exponentially around
σ = 0.2, where the average of λ(0,T ) has a maximum value
(see Fig. 2). From this fact, we can guess that tori in the
phase space increase abruptly around σ = 0.2. It is seen that
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FIG. 14. (Color online) The same as Fig. 12 except for σ = 0.25 and different running times.

γ decreases as σ increases around σ = 0.33. This is not due
to a statistical error. We have calculated γ for several different
sets of initial conditions in this region of σ and obtained almost
the same results. Figures 9(a)–9(d) show the distributions of
λ(ti ,ti+1) for σ = 0.2, 0.3, 0.35, and 0.4, respectively. It is seen
that the deviation of the distribution increases as σ increases.
It does not necessarily mean that there are various kinds of
trajectories having different specific values of λ(ti ,ti+1). It
rather means that values of λ(ti ,ti+1) along a single trajectory
fluctuate more strongly as σ increases. Figure 10(a) shows the
evolution of λ(ti ,ti+1) along a typical trajectory for σ = 0.33.
We see that there are two regions (the regions 1 and 2) in which
the values of λ(ti ,ti+1) are close to zero while they fluctuate
strongly in other regions [cf. Fig. 5(a) for σ = 0.2]. In order
to analyze motions in the regions 1 and 2, we calculate the
velocity autocorrelation function given by

Cv(t) = lim
T →∞

1

T

∫ T

0
v(τ ) · v(τ + t)dτ, (28)

where v is a four-dimensional velocity vector for two disks,
v = (vx,1,vy,1,vx,2,vy,2). The results are shown in Figs. 10(b)
and 10(c) for the regions 1 and 2, respectively. These figures
show that the amplitude of Cv(t) does not decrease in the
region 1, where the values of λ(ti ,ti+1) are almost equal to
zero, so that the motion is almost regular. On the other hand,
the amplitude of Cv(t) decreases quite slowly in the region 2,
where λ(ti ,ti+1) has small positive values, so that the motion is
quite weakly chaotic. The trajectories of centers of two disks in
the region 1 are similar to Fig. 5(b). The motion in the region
2 is somewhat complicated. Figures 10(d) and 10(e) show
the trajectories in two different short time regions around t =

2.00 × 105 and 2.05 × 105, respectively, within the region 2,
each of which includes about 1500 collisions. The disks vibrate
quasiperiodically and the centers of the vibration move slowly.
The traces of these motions are shaped in the form of a
fan in both regions. The fan-shaped areas rotate gradually
in a long time so that the amplitude of Cv(t) decreases
slowly.

In order to find any relation between the above fact
and ergodicity of the system, we examine single-particle
distributions from trajectories and compare them with the
microcanonical distributions for various values of σ . Hereafter,
we show not a statistical result but one for a single trajectory
of the type 1, i.e., a nonsticky trajectory, in each case. We have
already shown one of results for σ = 0.2 in Figs. 4(a) and 4(d),
where we see that the single-particle distributions from the
trajectory (the solid curves) are in a good agreement with the
microcanonical distributions (the broken curves). Especially,
the configuration distribution from the trajectory converges
quite well to that in the microcanonical ensemble. We show
a result of the velocity distribution for a longer trajectory
with the same initial condition in Fig. 11(a). The running
time of this trajectory is 5 × 107 while that of Fig. 4(d) is
1.5 × 105. We see that it also converges quite well to that in
the microcanonical ensemble though its convergence is slower
than that of the configuration distribution. Remember that we
have averaged the original distributions from the trajectories
over the angular direction to plot the above distributions. The
angular dependence is shown in Figs. 11(b) and 11(c) for the
configuration and velocity distributions, respectively. They are
from the trajectory of the running time of 5 × 107. We see that
they have almost completely circular symmetry.
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FIG. 15. (Color online) The same as Fig. 12 except for σ = 0.3 and different running times.

We have found similar results for σ < 0.2. For example,
Figs. 12(a) and 12(b) show the results of the configuration
and velocity distributions, respectively, for σ = 0.1. The
solid curves denote the distributions from a trajectory with
a running time of 5 × 107 while the broken curves denote the
microcanonical distributions. Figures 12(c) and 12(d) show
their angular dependence. We also show the results for a very
small value of σ , σ = 0.01, in Fig. 13, where (a) and (b)
show the results of the configuration and velocity distributions,
respectively. The solid curves in Figs. 13(a) and 13(b) denote
the configuration and velocity distributions from a trajectory,
respectively. The running times are 5 × 107 and 5 × 108 in
Figs. 13(a) and 13(b), respectively. Both of the distributions
converge well to those in the microcanonical ensemble (the
broken curve), although it takes more running time for the
velocity distribution to converge. Figures 13(d) and 13(e)
show their angular dependence. In this case, the number of
pair collisions is about 2.4% of that of all collisions. In the
time period of 5 × 108 pair collisions occur several 106 times,
which yields a velocity distribution consistent with that in the
microcanonical ensemble.

Now, we show results for σ = 0.25 in Fig. 14. The solid
curve in Fig. 14(a) denotes the configuration distribution from
a trajectory with a running time of 1.5 × 105. We see that it
converges quite well to that in the microcanonical ensemble
(the broken curve) similarly to the case of σ = 0.2. The solid
curve in Fig. 14(b) denotes the velocity distribution from a
trajectory with a running time of 5 × 108. While the velocity
distribution from the trajectory is found to converge already at
the running time 5 × 107, there is a slight discrepancy between
those from a trajectory and in the microcanonical ensemble,
i.e., the former has a small depression around v = 1.0. The

angular dependence is shown in Figs. 14(c) and 14(d) for the
configuration and velocity distributions, respectively. We see
that they have almost completely circular symmetry similarly
to the case σ = 0.2.

Next we show results for σ = 0.3 in Fig. 15. The solid
curve in Fig. 15(a) denotes the configuration distribution
from a trajectory with a running time of 5 × 107, which
converges quite well to that in the microcanonical ensemble
(the broken curve). The solid curves in Fig. 15(b) denotes
the velocity distribution from a trajectory with a running
time of 5 × 109, respectively, while the broken curve denotes
that in the microcanonical ensemble. Although the velocity
distribution converges at the running of 5 × 108, it has a
larger depression around v = 1.0 than in the case of σ = 0.25.
The angular dependence is shown in Figs. 15(c) and 15(d)
for the configuration and velocity distributions. We see that
the velocity distribution also has almost completely circular
symmetry in spite of inconsistency with the microcanonical
ensemble.

Finally, we show results for σ = 0.33, 0.35, and 0.4 in
Fig. 16. The solid curves in Figs. 16(a), 16(b), and 16(c) denote
velocity distributions from trajectories for σ = 0.33, 0.35,
and 0.4, respectively, whose running times are 5 × 109. The
broken curves denote those in the microcanonical ensemble.
We see that the depression around v = 1.0, observed for
σ = 0.25 and 0.3, grows up as σ increases. Moreover, a
depression around v = 0 appears at σ = 0.33 and also grows
up as σ increases. Figure 16(d) denotes the configuration
distribution for σ = 0.4 from a trajectory with a running
time of 5 × 107, which converges quite well to that in the
microcanonical ensemble (the broken curve). The angular
dependencies of the configuration and velocity distributions
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FIG. 16. (Color online) (a), (b), (c) Velocity distributions from trajectories with running time of 5 × 109 for σ = 0.33, 0.35, and 0.4,
respectively. (d) The configuration distribution for σ = 0.4 from a trajectory with a running time of 5 × 107. (e), (f) The angular dependence
of the configuration and velocity distributions, respectively, for σ = 0.4 from the trajectory of the running time of 5 × 109.

are shown for σ = 0.4 in Figs. 16(e) and 16(f), respec-
tively, which are from the trajectory of the running time of
5 × 109. We see that they have almost circular symmetry even
for σ = 0.4.

We further examine how trajectories spread over the ener-
getically accessible region in the phase space. As described
in the previous section, we employ the four-dimensional
polar coordinates for velocities of two disks. The points on
the trajectories are represented by the the six-dimensional
coordinates (x1,y1,x2,y2,ϕ1,ϕ2). We divide the region within
−1 � x1,x2,y1,y2 � 1, 0 � ϕ1 � 2π, 0 � ϕ2 � 2π into 206

cells (the region in each dimension is divided into 20 equal
segments). Under the conditions of zero total angular mo-
mentum and nonoverlapping of two disks, each cell should
be considered to have the volume given by (27), which is

calculated numerically by the interpolatory quadrature method
with the Chebyshev polynomials [20]. First we calculate time
evolution of an occupied volume in the phase space. This is
done by adding volumes of the cells one by one every time
when the trajectory visits them for the first time. Actually, we
pick up a point on a trajectory at every time interval �t = 0.01
and examine which cell it is in. We do not count volumes of any
cells twice. Figure 17(a) shows the results for time evolution
of occupied volume normalized by the total volume of the
energetically accessible region for σ = 0.01, 0.1, 0.2, 0.3, and
0.4, respectively. These results are for nonsticky trajectories
whose configuration and velocity distributions are shown in
Figs. 11–16. We see that their values do not increase smoothly
but stay for a while and then suddenly increase. Therefore,
one might imagine that the trajectories sometimes stay within
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FIG. 17. The time evolution of occupied volume and a number of occupied cells in (a) and (b), respectively.
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FIG. 18. The time evolution of the population for various values of σ .

some areas for a long time. However, it is not the case. The
volumes of cells have a very wide distribution. Although
the trajectories almost keep on going into another new cell,
they enter sometimes into cells having smaller volumes and
in other time into those having larger volumes. This causes
unsmooth increase of the occupied volume. It is verified as
follows. We calculate time evolution of a number of occupied
cells instead of their volumes. Figure 17(b) shows the results
for σ = 0.01, 0.1, 0.2, 0.3, and 0.4, respectively. We see
that a number of occupied cells increase rather smoothly. It
saturates very slowly since there are a lot of cells having
small volumes and it takes a long time for the trajectories
to pass all of them. From these figures, we can expect that
a number of occupied cells tend to a total number of cells
in the energetically accessible region in the limit of infinite
time even for σ = 0.4. This suggests that tori are thinner
than the present cells and possibly extend over a number of
cells.

We also examine whether the trajectories run over the phase
space uniformly. This time we accumulate a number of points
on the trajectory in each cell every time when the trajectory
visits it. Then, we divide each accumulated number by the
volume of each cell given by (27). If a population of these ratios
has a sharp peak around its mean value, we can conclude that
the trajectory spreads over the phase space uniformly. The
time evolution of the population is shown in Fig. 18, where
the horizontal axis denotes the above ratio normalized by its
mean value. These figures show that the trajectories for σ =
0.01, 0.1, 0.2, and 0.3 gradually spread over almost uniformly
while that for σ = 0.4 spreads nonuniformly. This is consistent
with the results for the configuration and velocity distributions
obtained from trajectories, although the discrepancy in the
velocity distribution for σ = 0.3 seen in Fig. 15 is not well
reflected in this result.

IV. SUMMARY AND CONCLUSION

We have investigated dynamical properties of the system
of two identical hard disks within a circular billiard having a
radius of unity. We confined our studies to the case of zero
total angular momentum. Varying the radius of each disk σ ,
we have examined the chaotic dynamics and ergodicity of
the system. We have found that the present system has a lot
of KAM tori situated in a chaotic sea even for small values
of σ . This causes chaotic and quasiregular motions possibly
to coexist even in individual trajectories and the convergence
of the maximum Lyapunov exponent to be quite slow. We
used the finite-time maximum Lyapunov exponent (FTMLE)
instead of the infinite-time one to characterize the dynamics
of the system. Numerical results showed that there are three
types of trajectories. In the case of the type 1, FTMLE is
almost constant and seems to converge. Its value is positive,
which implies the motion is chaotic. In the case of the type 2,
there are two kinds of regions. FTMLE has positive values
fluctuating around some value in the region of the chaotic
irregular motion, while it has values almost equal to zero in
the region of the quasiregular motion where the trajectory is
trapped around a torus. In the case of the type 3, FTMLE is
almost constant and nearly equal to zero, which implies the
trajectory stays in a torus.

For each value of σ we calculated a sum of resident
times in regular or quasiregular motions for 105 different
trajectories and divided it by a sum of total running times for
all trajectories. This ratio is of the order of 10−4 for σ < 0.2.
It begins to increase exponentially around σ = 0.2, which
suggests that tori in the phase space increase abruptly around
σ = 0.2.

We also examined single-particle distributions from trajec-
tories and compared them with those in the microcanonical
ensemble for various values of σ . We calculated them for a
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single trajectory of the type 1 in each case, which is considered
to run without being trapped around any tori. We found
that the configuration distributions obtained from trajectories
are in a good agreement with those in the microcanonical
ensemble for σ = 0.01 through 0.4. On the other hand, the
velocity distributions obtained from trajectories are in a good
agreement with those in the microcanonical ensemble for
σ � 0.2, while some discrepancies between them are found
for σ � 0.25.

Consequently, we conclude that a number of tori in the
phase space increase abruptly as σ increases beyond around
0.2 and tori prevent trajectories to move over the phase
space uniformly, which makes the ergodicity of the system
broken down. On the other hand, the present system is almost
ergodic for σ � 0.2. This was also confirmed by showing that
nonsticky trajectories run over the phase space uniformly for
σ � 0.2.

We can extend this study on a circular billiard to the cases of
nonzero total angular momentum and/or more than two hard
disks. Uranagase found in the case of nonzero total angular
momentum a smaller statistical fluctuation of the pressure
evaluated by trajectory calculations even for a large value of σ

than in the cases of zero total angular momentum (see Fig. 2 in
Ref. [17]), which may imply ergodicity in such cases. Lansel
et al. suggested nonergodicity in the cases of three and four
disks [11]. Detailed studies in those cases are left for future
works.

Finally, we refer to one more extension of this study.
Recently, various billiards with time-dependent boundaries
have been studied. If the billiard boundary is perturbed in time,
depending on the geometry of the billiard boundary and on the
initial conditions, the particle can accumulate energy along its
trajectory, leading to a phenomenon called Fermi acceleration
[21]. The following conjecture, known as Loskutov-Ryabov-
Akinshin conjecture, has been proposed [22]: The Fermi
acceleration will be observed in time-dependent billiards if
the corresponding fixed-boundary billiards exhibit chaotic
properties. This conjecture has been confirmed for various
billiards [23–26]. However, those works are limited to single-
particle systems and an extension to many-particle systems
should be an interesting study.

APPENDIX A

In this Appendix, we describe the numerical technique for
calculating the integral

I (r) =
∫ ∫

D

1√
r2 + r2

2

dx2dy2, (A1)

where r2 =
√

x2
2 + y2

2 . The domain of integration D is the
accessible area of the second disk centered at (x2, y2) when
the first disk is centered at (x, y) within the circular billiard
(r =

√
x2 + y2). This two-dimensional integral is reduced to

a one-dimensional integral as follows. We rewrite I (r) as a
difference of two terms:

I (r) = I0(r) − I1(r). (A2)

σ−1

2xr

2y

α

FIG. 19. The domain of integration.

I0(r) is the integral without respect to the overlap of two disks
and given by

I0(r) =
∫∫

x2
2 +y2

2 �(1−σ )2

1√
r2 + r2

2

dx2dy2

= 2π (
√

(1 − σ )2 + r2 − r). (A3)

I1(r) is the integral over the area of (x2, y2) D in which the
second disk centered at (x2, y2) overlaps with the first disk
centered at (x, y):

I1(r) =
∫∫

D

1√
r2 + r2

2

dx2dy2. (A4)

We assume the first disk to be centered at (0,r) without loss of
generality. For 0 � r < 1 − 3σ , the domain D is an inside of
a circle having a radius of 2σ and centered at (0,r). Changing
the variables x2 and y2 to ρ and φ defined by x2 = r + ρ cos φ

and y2 = ρ sin φ, we obtain the expression

I1(r) = 2
∫ π

0
g(2σ,φ; r)dφ, (A5)

where the function g(s,φ; r) is given by

g(s,φ; r) =
∫ s

0
dρ

ρ√
ρ2 + 2r cos φρ + 2r2

=
√

s2 + 2r cos φs + 2r2 −
√

2r − r cos φ ln

×
∣∣∣∣∣
s + r cos φ +

√
s2 + 2r cos φs + 2r2

r cos φ + √
2r

∣∣∣∣∣ .
(A6)

For 1 − 3σ < r < 1 − σ, D is the shadowed part illustrated
in Fig. 19. The integral I1(r) can be written as

I1(r) = 2

(∫ α

0
g[R(φ),φ; r]dφ +

∫ π

α

g(2σ,φ; r)dφ

)
(A7)

with

R(φ) = −r cos φ +
√

r2(cos2 φ − 1) + (1 − σ )2 (A8)

and

α = cos−1

(
(1 − σ )2 − r2 − 4σ 2

4σr

)
. (A9)
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APPENDIX B

In this Appendix, we describe the numerical technique for
calculating the integral

J (v) =
∫∫∫∫

D′

1√
(2 − v2)r2

1 − y2
2v2

dx1dy1dx2dy2,

(B1)

where r1 =
√

x2
1 + y2

1 . The domain of integration D′ is the
accessible area of the first and second disks centered at (x1, y1)
and (x2, y2), respectively, within the circular billiard. This four-
dimensional integral is reduced to a one-dimensional integral
plus a two-dimensional integral as shown below.

We rewrite J (r) as a difference of two terms:

J (v) = J0(v) − J1(v). (B2)

J0(v) is the integral without respect to the overlap of two disks
and given by

J0(v) =
∫∫

x2
1 +y2

1 �(1−σ )2
dx1dy1

∫∫
x2

2 +y2
2 �(1−σ )2

× dx2dy2
1√

(2 − v2)r2
1 − y2

2v2
. (B3)

J1(v) is the integral over the four-dimensional area D′ in which
the first and second disks overlap with each other:

J1(v) =
∫∫∫∫

D′

1√
(2 − v2)r2

1 − y2
2v

2
dx1dy1dx2dy2.

(B4)

The integral J0(v) is reduced to a one-dimensional integral as
follows:

J0(v) =
∫

dy2

∫ √
r2
c −y2

2

−
√

r2
c −y2

2

dx2

∫∫
x2

1 +y2
1 �r2

c

× dx1dy1
1√

(2 − v2)r2
1 − y2

2v2

= 4

vc

∫ rc

0
dz

√
r2
c − z2

( ∫∫
x2

1 +y2
1 �r2

c

dx1dy1√
r2

1 − z2v2/v2
c

)
,

(B5)

where rc = 1 − σ and vc = √
2 − v2. Introducing the polar

coordinates r1 and θ1 (x1 = r1 cos θ1 and y1 = r1 sin θ1),
we obtain an analytical expression for the integral in the

parentheses of Eq. (B5). Then, we have

J0(v) = 8π

vc

∫ rc

0

√
r2
c − z2

√
r2
c − z2v2/v2

c dz. (B6)

Next, we consider J1(v). Introducing the polar coordinates r1

and θ1 (x1 = r1 cos θ1 and y1 = r1 sin θ1) again, we have

J1(v) = 2π

vc

∫ 1−σ

0
h(r)dr, (B7)

with

h(r) =
∫∫

D

r√
r2 − y2

2v2/v2
c

dx2dy2. (B8)

The domain of integration D is the area of (x2, y2) in which
the second disk centered at (x2, y2) overlaps with the first
disk centered at (0,r). Equation (B8) is reduced to the one-
dimensional integral as shown below, so that J1(v) is reduced
to the two-dimensional integral. We need somewhat tedious
geometric consideration to derive those expressions. We just
show the results without derivation. In the case of σ < 1/3,
Eq. (B8) is reduced to

h(r) = 2
∫ π

0
ρc(r,φ)

(
ρc(r,φ) −

√
ρ2

c − Min(2σ,ρc)2
)
dφ

(B9)

for r < 1 − 3σ , and

h(r) = 2

(∫ α

0
ρc(r,φ)

(
ρc(r,φ) −

√
ρ2

c − Min[R(φ),ρc]2
)
dφ

+
∫ π

α

ρc(r,φ)
(
ρc(r,φ) −

√
ρ2

c − Min(2σ,ρc)2
)
dφ

)

(B10)

for r > 1 − 3σ , where

ρc(r,φ) = rvc

v sin φ
, (B11)

α = cos−1

(
(1 − σ )2 − r2 − 4σ 2

4σr

)
, (B12)

and

R(φ) = −r cos φ +
√

r2(cos2 φ − 1) + (1 − σ )2. (B13)

In the case of σ > 1/3, Eq. (B8) is reduced to

h(r) = 2
∫ π

0
ρc(r,φ)

(
ρc(r,φ) −

√
ρ2

c − Min(1 − σ,ρc)2
)
dφ

(B14)

for r < 3σ − 1 and Eq. (B10) for r > 3σ − 1.
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