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Persistence of uphill anomalous transport in inhomogeneous media
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For systems out of equilibrium and subjected to a static bias force it can often be expected that particle transport
will usually follow the direction of this bias. However, counterexamples exist where particles exhibit uphill motion
(known as absolute negative mobility, ANM), particularly in the case of coupled particles. Examples in single
particle deterministic systems are less common. Recently, in one such example, uphill motion was shown to
occur for an inertial driven and damped particle in a spatially symmetric periodic potential. The source of this
anomalous transport was a combination of two periodic driving signals which together are asymmetric under time
reversal. In this paper we investigate the phenomena of ANM for a deterministic particle evolving in a periodic
and symmetric potential subjected to an external unbiased periodic driving and nonuniform space-dependent
damping. It will be shown that this system exhibits a complicated response behavior as certain control parameters
are varied, most notably being enhanced parameter regimes exhibiting ANM as the static bias force is increased.
Moreover, the solutions exhibiting ANM are shown to be, at least over intermediate time periods, superdiffusive,
in contrast to the solutions that follow the bias where the diffusion is normal.
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I. INTRODUCTION

The dynamics of systems modeling the evolution of single
driven and damped particles continues to be of interest. One
reason is the rich behavior present in such models. Another is
that these relatively simple systems allow for the analysis and
observation of real physical phenomena with only minimal
resources. In particular, the transport of particles in symmetric
and periodic potential landscapes has attracted considerable
interest [1,2]. Such potentials lend themselves to a vast number
of applications including Josephson junctions [3], charge
density waves, nanoengines [4], and transport in biological
systems [5].

The prototypical equation for such models takes the form

q̈ = −γ q̇ − V ′(q) + F (t), (1)

where γ is the damping parameter, V (q) is the system
potential, and F (t) is a time-dependent driving; V and F

are both usually bounded and periodic. The dot and prime
denote differentiation with respect to time t and coordinate
q, respectively. The symmetry properties of these models are
now well understood [6,7]. In short, if the system potential
and the external driving satisfy certain spatial and temporal
symmetries, then each trajectory will have a counterpart whose
velocity is of the same magnitude but of different sign. This
has important consequences for the net flow (often called the
current and defined more precisely later) as, if each trajectory
has a counterpart whose velocity differs only by a change
of sign, then the net flow will be zero. Thus, a number
of studies have investigated the effects, with respect to the
net flow, when these symmetries are broken. For example,
numerous studies have considered the driven and damped
dynamics of a particle evolving in a periodic but asymmetric
potential [8–11]. They observed a nonlinear response behavior
to changes in the driving amplitude, including multiple current
reversals. In the Hamiltonian limit γ = 0, the focus has been
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on how these asymmetries influence the sticking episodes to
regular transport supporting islands in the chaotic part of phase
space [12–14]. Obtaining directed particle transport in systems
with zero-average forces has become known as the ratchet
effect [15].

Recently, [16] considered an alternative to the more com-
mon spatially uniform damping. They studied a system of the
form given by Eq. (1), with symmetric potential and driving,
where the constant coefficient of friction γ was replaced by
a space-dependent term. They found that the frictional inho-
mogeneity mimics the role played by asymmetric potentials
and/or external driving forces, resulting in nonzero net flow,
i.e., the ratchet effect. Motivations for such studies come from
a variety of sources. For example, in Josephson junctions a
phase-dependent damping can represent an interference term
between the pair and quasiparticle currents [17,18] (in the
latter the authors also give a thorough phase-space analysis of
such a junction).

An interesting extension to problems with an externally
modulated potential comes when a dc bias is introduced,
serving as a constant tilt to the potential landscape [19–25].
These studies have examined the fascinating phenomena of
absolute negative mobility (ANM) where a particle can travel
in the direction opposite to a constant applied force. Most of
the studies so far have looked at noise-induced ANM. Further,
it was proven that for the overdamped dynamics of Brownian
particles, where inertial effects are negligible, the solutions
may not exhibit ANM [22].

Studies of these inherently biased systems are important as
they find application in a number of areas. For example, in the
transport of biomolecules where the separation of particles
may be desirable [26], this separation becomes inherently
difficult when the particles are working against an additional
load. Therefore, finding regimes where particles move against
an applied load becomes extremely important. Further, ANM
has recently been observed experimentally in the domain of
Josephson junctions where the related phenomenon is known
as negative absolute resistance [27]. The authors were able
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verify theoretical predictions obtained from a model of a
damped Brownian particle in one dimension [22,23].

Less common are works on the ANM phenomena in single
particle deterministic systems, i.e., the noiseless case. This has
been detailed in only a few studies, for example [19,22–24].
A recent study [28], in an attempt to mimic the roll played by
noise in previous works, considered a “vibrational motor”—a
system where additional driving terms yield stochastic-like
(yet deterministic) dynamics. ANM was observed in this
system in regimes where it was solely induced by noise (when
the additional driving terms are absent).

To the author’s knowledge, the effect of absolute negative
mobility has not been observed in systems with a frictional
inhomogeneity. Illustrating such an effect will be the focus of
the present study. In particular, we investigate the transport
processes of single particles evolving in a symmetric and
periodic potential, subjected to an unbiased external ac driving
and a static dc bias. It will be shown that a frictional
nonuniformity can induce the phenomena of absolute negative
mobility. Moreover, the mechanism that allows for such an
astonishing effect is different from those presented to date,
and this will also be discussed.

The paper is organized as follows. In the next section we
outline the system under investigation, and discuss some of
its important properties. Here, the main observable of interest,
i.e., particle current, will also be presented. Numerical results,
pertaining to the particle current, will then be presented in
Sec. III. A discussion then follows in Sec. IV on the mechanism
and phase-space structures that allow for the occurrence of
ANM in the system under consideration. Further, the dynamics
will be characterized in terms of rates of diffusion. We finish
with a summary of the results.

II. SYSTEM

We study the dynamics of a driven and damped particle
evolving in a symmetric and periodic “washboard” potential.
The potential, in addition to the time-periodic modulations of
its inclination, will also be subjected to a static dc-bias force.
Further the strength of the damping will be space dependent.
The equation of motion for this system is given by

q̈ = −γ (q)q̇ + A cos(ωt) + cos(q) + F, (2)

where q = q(t) represents the spatial coordinate of the particle
at time t , and with potential V (q) = − sin(q), and γ (q) =
γ [1 − λ sin(q + φ)], both of spatial period L = 2π . The
particle is driven by a zero average time-periodic driving
force of amplitude A and frequency ω, and the magnitude
of the static bias force is represented by the parameter F . In
addition, the space-dependent damping is regulated by three
parameters, namely γ , λ, and φ, which control the maximal
amplitude of the damping coefficient, determine the systems
inhomogeneity, and determine the phase difference between
the potential and the damping coefficient (which are of the
same period).

As a physical realization of such a system consider
a resistively and capacitively shunted Josephson junction
subjected to ac and dc currents. The corresponding equations
of motion, shown in dimensionless form in Eq. (2), model the
phase difference across the junction. The first and third terms

on the right-hand side model the quasiparticle and Josephson
currents, respectively, while the second and fourth terms
model the ac and bias currents, respectively. The φ-dependent
term (often called the “cos ϕ” term) accounts for interference
between the Cooper-pair and quasiparticle currents [17,18].
The term φ can be regarded as a phase shift in the tunneling
of quasiparticles across the junction. As mentioned in the
introduction, ANM has been observed in a Josephson junction
experimentally [27].

It is worth examining the symmetry properties of this
system for the special cases related to F = 0. These properties
determine whether or not a current (defined in this section)
can emerge in the ensemble dynamics. As stated in [6],
the breaking of each system symmetry is required before a
current can emerge. Consider these special cases: first F = 0
and λ = 0, and second F = 0, λ �= 0, and φ = nπ (n ∈ Z).
In both cases the transformation q → −q + π , t → t + T/2
(T = 2π/ω) yields a new trajectory with an average velocity
which differs from that of the original only by sign. Thus a
zero current results. This transformation for λ �= 0 and φ �=
nπ (n ∈ Z) does not necessarily produce counterpropagating
trajectories and thus the necessary conditions for the ratchet
effect to occur have been created. The dynamical effects of
φ �= nπ (n ∈ Z) are now discussed.

Following similar lines to the discussion of [29], we outline
how the frictional nonuniformity can be used to induce the
ratchet effect in the absence of a dc-bias force. Figure 1
shows the potential V (q), and the strength of the coefficient of
damping (for two values of the phase φ) over one spatial period
L. With φ = 0 the damping coefficient is symmetric about the
potential minimum with the result that neither motion to the
left nor to the right is favored with respect to the nonlinear
damping term. With a nonzero phase (φ = 0.35 in the this
case) symmetry with respect the potential minimum is broken.
Looking at the curve corresponding to φ = 0.35 in Fig. 1
it can be seen that the damping coefficient to the left of the
potential minimum is, on average, smaller than that to the right
of the potential minimum, thus favoring motion to the left. It
is this mechanism that allows for the emergence of a nonzero
current [16]. The ratchet effect, induced by this mechanism,
will be exploited in the present work.
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FIG. 1. (Color online) Shown, over one spatial period L, are the
potential V (q) (bottom curve) and the corresponding nonuniform
coefficient of friction γ (q) for two values of the phase φ; the curve
with minimum centered at q = 0 corresponds to phase φ = 0, while
the curve with a minimum centered to the left of q = 0 results when
φ = 0.35; here λ = 0.9.
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To gain a quantitative perspective of how the frictional
inhomogeneity parameter λ influences the dynamics we
compute the current v. That is, we calculate the time-averaged
mean velocity for an ensemble of initial conditions, i.e.,

v = 1

Ts

∫ Ts

0
dt〈p(t)〉, (3)

where Ts is the simulation time and the ensemble average is
given by

〈p(t)〉 = 1

N

N∑
n=1

pn(t), (4)

with N being the number of initial conditions. Numerical
results related to the current will be presented in the next
section.

III. CURRENT

In this section we discuss the numerically computed current.
The initial conditions have been chosen such that the qn(0)
are uniformly distributed in the potential well centered at
the origin, with pn(0) = 0 for all n ∈ N . For computation
of the long-time average, numerical integration is performed
using a fourth-order Runge-Kutta method, over a simulation
time interval Ts = 105 (≈1.6 × 104 × T0 with T0 = 2π being
the period duration of harmonic oscillations about a potential
minimum) with step size dt = 0.01. The ensemble average is
calculated using an ensemble of N = 1000 initial conditions.

Figure 2 shows the current, as a function of λ, for different
values of the static bias force F . For F = 0 the current is in the
main close to zero. However, there exists a window of λ values
such that motion to the left is promoted (0.37 � λ � 52).
The direction of the current in this window is most certainly
induced, not only by the choice of λ, but also by the specific
choice of the phase φ = 0.35 (see Fig. 1). Moreover, another
choice of φ can induce a current that moves to the right. The
sharp transitions to/from the window of nonzero current relate
to the existence of different attractors in phase space. This
can be observed in the corresponding bifurcation diagram
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FIG. 2. (Color online) The current, computed for three values
of the static bias force F , as a function of λ. The curve with dots
corresponds to a dc bias of F = 0.0, the middle curve to F = 0.1, and
the upper curve to F = 0.2. The remaining parameters are γ = 0.108,
φ = 0.35, A = 1.512, and ω = 0.58.
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FIG. 3. (Color online) Bifurcation diagram, as a function of λ,
for F = 0.1. The remaining parameters are given in Fig. 2.

(not shown). See below for details in the case F = 0.1.
Note that motion to the left in this case does not qualify as
negative mobility as the particle is not working against an
external load. This can only happen for F �= 0. Increasing the
bias force to F = 0.1, we see that a window, of significant
extent, opens which supports ANM. Outside of this window
the current follows the bias; i.e., there is a positive current.
Importantly, most of the λ values inside this window of
negative mobility produce a zero current when the static bias
force is switched off. Thus, one can conclude that this effect
of negative mobility is induced by the static bias force, rather
than through a carefully chosen phase φ; i.e., it is the tilting of
the potential that results in uphill motion [30]. The reason for
the fluctuations of v in this window is due to the coexistence
of attractors supporting transport in opposite directions (see
Fig. 3). However, for 0.95 � λ � 1.08 there is single attractor
in phase space supporting uphill motion. This helps explain
why the current remains constant within this window, and
further why the current has an increased magnitude.

Such windows of absolute negative mobility exist for F <

Fcrit ≈ 0.17. Remarkably, as F is increased from F = 0, the
size of the window supporting ANM grows (with respect to
its extent in the λ domain) approaching almost three times
the F = 0 size. However, this behavior eventually ceases and
as F → Fcrit from below, the windows become of smaller
and smaller extent. Beyond Fcrit, solutions exhibiting negative
mobility no longer exist, and instead follow the direction of
the bias force, resulting in a positive current. An example
of this is shown for F = 0.2 where the current is ν ≈ 1.75 for
the entire range of λ.

To see that the occurrence of ANM in this system is indeed
dependent on the frictional inhomogeneity, consider again the
curve related to F = 0.1 in Fig. 2. Starting from zero frictional
inhomogeneity (λ = 0), the current is positive; i.e., the current
is in the direction of the bias. Upon increasing λ this remains
true until λ ≈ 0.51 where there is an abrupt change in the
direction of the current. The current then remains negative
with increasing λ until a second critical value λ ≈ 1.08 where
the current again becomes positive. Thus, for the constant dc
bias F = 0.1, ANM is possible only for certain values of the
frictional inhomogeneity parameter λ.
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In the next section, we will discuss the phase-space struc-
tures that allow for such counterintuitive motion. Moreover, the
mechanism that produces uphill motion will also be discussed.

IV. ABSOLUTE NEGATIVE MOBILITY

In this section it is our aim to gain further understanding
of the phase-space structures that facilitate this uphill motion,
and to look more closely at the underlying mechanism that
allows for negative mobility.

Let us first consider the bifurcation diagram for the
curve related to F = 0.1 in Fig. 2. The results, obtained by
stroboscopically sampling trajectories after each period of the
driving (omitting a transient), are contained in Fig. 3. It can be
seen that for the range of λ considered, this system supports
aperiodic chaotic solutions and periodic solutions. With regard
to the window of ANM observed in Fig. 2, the corresponding
window in Fig. 3 supports only periodic solutions. In contrast,
it would appear that the solutions following the direction of the
dc-bias evolve chaotically. This behavior would help explain
why, for the majority of λ values (with F = 0.1), the current
in the window of ANM is of greater magnitude than for the λ

values corresponding to a positive current.
Just like for the current, the transition from chaotic motion

to periodic motion is abrupt. Sharp transitions from chaotic
to periodic motion (and vice versa) related to the transition
from downhill to uphill motion have been observed before in
the case of coupled particle [31]. Moreover, the exact reasons
behind current reversals in general single-particle systems of
the form Eq. (1) remains open to debate [8,10,32].

Now let us turn our attention to the actual mechanism that
allows a particle to run uphill. For simplicity, we will look
at a parameter set corresponding to the window of period 1
orbits seen in Fig. 3. An example trajectory, with starting time
t ≈ 9958.3 coinciding with a change from positive to negative
external driving, for this parameter set is given in Fig. 4 (top
panel). Initially the driving (middle panel) becomes negative
[F (t) < 0], while at the same time the damping strength
(bottom panel) is approaching its minimum. Importantly, when
the damping strength reaches its minimum, the driving strength
is also close to its minimum of −A; that is, the driving
strength has attained almost its maximal amplitude, but in
the direction opposite to the bias. This coordination between
driving and damping allows the particle to run almost freely
uphill. Subsequently, at t ≈ 9961 the damping coefficient
attains its maximal value. However, the particle is being driven
against the bias (by a driving force that is still close to it
minimum value), and continues to be so even after the damping
coefficient has oscillated once more between its minimum and
maximum values.

As the driving becomes positive at t ≈ 9963.5 (indicated
by the vertical lines in the figure), the damping coefficient is
approaching its minimum. This results in a slowing down of
the particle’s ascent. Eventually the particle’s uphill motion
ceases and it then follows the direction of the bias (see inset
in Fig. 4). Importantly, this turning point occurs in the final
stages (in the course of a single period of the external driving)
of positive driving, resulting in only short intervals of downhill
motion. This behavior continues in a periodic fashion allowing

FIG. 4. (Color online) The constituent parts of a solution ex-
hibiting negative mobility over the course of a single period of the
external driving for F = 0.1, λ = 1.0, and the remaining parameters
as in Fig. 2. The top panel shows the evolution of the coordinate q,
the middle panel shows the time-periodic driving, and the bottom
panel shows the space-dependent damping. The vertical line in each
panel divides the figures into two segments; left segments correspond
to F (t) < 0, and the right segments F (t) > 0. The coordinate q in
the top panel is shown mod(8360). The inset in the top panel is
a magnification of the portion of the curve between the two small
vertical lines.

the particle to travel large distances in the direction opposite
to the applied dc-bias force.

This mechanism, while sharing some of the characteristics
of absolute negative mobility seen in previous studies in that
it depends on fine tuning of the external driving for said effect
to occur, is unique as it relies on the nonuniform damping to
aid the uphill motion.

To further characterize the motion we now look at the mean-
squared displacement for ensembles of particles, i.e., the rate
of diffusion, given by

σ 2
q (t) = 〈(q − 〈q〉)2〉, (5)

where 〈. . .〉 indicates averages over ensemble. Typical normal
diffusion processes exhibit a linear relationship with time, that
is,

σ 2
q (t) ∼ tα (6)

with α = 1. However, with α �= 1 the diffusion becomes
anomalous—either superdiffusive (α > 1) or subdiffusive
(α < 1) [33]. Figure 5 shows the temporal evolution of
σ 2

q (t) for five representative λ values taken from Figs. 2
and 3. These values are λ = 0 (zero frictional inhomogeneity,
chaotic motion), λ = 0.2 (nonzero frictional inhomogeneity,
chaotic motion), λ = 0.67 (regular coexisting attractors, uphill
motion), λ = 1 (single periodic attractor, uphill motion), and
λ = 1.3 (chaotic motion).

The early temporal evolution of σ 2
q , starting with every ini-

tial condition in the same potential well, is similar in all cases.
Subsequently, at around t ≈ 102 different regimes become
apparent. The three λ values associated with chaotic (downhill)
dynamics quickly settle into normal diffusive motion with an
exponent α ≈ 1 (lines A, B, and E in Fig. 5). Interestingly, for
the λ values where ANM was observed, the fitted exponent
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FIG. 5. (Color online) Log-log plot showing the temporal evolu-
tion of the particle mean-squared displacement for five values of the
inhomogeneity parameter λ: (A) λ = 0, (B) λ = 0.2, (C) λ = 0.67,
(D) λ = 1.0, and (E) λ = 1.3. The curves A, B, and E are only
distinguishable upon magnification. The (red) fitted lines indicate
normal diffusion (lower line) and superdiffusion (upper line).

(α ≈ 2.1) shows that the motion is superdiffusive over a
number of decades. In fact, superdiffusion persists for the
entire simulation in the case of λ = 0.67. This is not the case for
λ = 1, where, after a number of decades, there is no diffusion.
The reason for this is that in phase space, when λ = 1, only
a single period 1 attractor exists, meaning that eventually all
initial conditions evolve to this attractor. Thus, each trajectory
undergoes the same motion resulting in the rate of diffusion
becoming zero. In contrast, for λ = 0.67 there exists three
attractors in phase space—a period 1 and a period 2 attractor
exhibiting downhill motion, and a period 1 orbit exhibiting
uphill motion. These counterpropagating attractors yield the

superdiffusive motion (remember diffusion here is ensemble
averaged).

V. SUMMARY

We have studied the driven and damped dynamics of single
particles evolving in a tilted periodic and symmetric potential
(the tilt being induced by a static dc-bias force). Unlike
previous studies of such systems where the damping coefficient
remains constant, the system explored here contains a damping
coefficient that is space dependent. It has been shown that
introducing a frictional inhomogeneity can result in some
interesting dynamics, most notably being the appearance of
absolute negative mobility, i.e., solutions that run against an
external load.

In more detail, with a zero dc bias, a phase difference
between the equally periodic potential and nonuniform damp-
ing breaks a spatial symmetry of the system and allows
for the emergence of a nonzero current, as can be seen
in Fig. 2. Increasing the (positive) dc bias from zero has
two unexpected results. First, the presence of the frictional
inhomogeneity allows the particle to work against a significant
load up to a critical value of the dc bias F = Fc. Second, the
current-response behavior as a function of the inhomogeneity
parameter λ and dc-bias value F is quite remarkable. As F

is increased from F = 0 the window of λ values exhibiting
ANM increases to almost three times its F = 0 size, before
shrinking to zero at F = Fc.

In addition, a heuristic explanation of the underlying
mechanism producing such solutions has revealed that the
uphill motion relies on the space-dependent damping, and
not just the frequency of the driving, in contrast to previous
studies. Further analysis has revealed that the uphill motion is
superdiffusive, at least on intermediate time periods, whereas
the downhill motion exhibits normal diffusion.
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