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Intermittent explosions of dissipative solitons and noise-induced crisis
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Dissipative solitons show a variety of behaviors not exhibited by their conservative counterparts. For instance,
a dissipative soliton can remain localized for a long period of time without major profile changes, then grow and
become broader for a short time—explode—and return to the original spatial profile afterward. Here we consider
the dynamics of dissipative solitons and the onset of explosions in detail. By using the one-dimensional complex
Ginzburg-Landau model and adjusting a single parameter, we show how the appearance of explosions has the
general signatures of intermittency: the periods of time between explosions are irregular even in the absence
of noise, but their mean value is related to the distance to criticality by a power law. We conjecture that these
explosions are a manifestation of attractor-merging crises, as the continuum of localized solitons induced by
translation symmetry becomes connected by short-lived trajectories, forming a delocalized attractor. As additive
noise is added, the extended system shows the same scaling found by low-dimensional systems exhibiting crises
[J. Sommerer, E. Ott, and C. Grebogi, Phys. Rev. A 43, 1754 (1991)], thus supporting the validity of the proposed
picture.
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I. INTRODUCTION

In nonlinear systems, the onset of chaotic behaviors is
usually accompanied by some form of intermittency [1]: a
more or less regular dynamics that becomes punctuated by
short bursts of different, wilder behavior. For instance, in fluid
experiments, the laminar state is interrupted by short-lived
turbulent currents that break the order and symmetry of the
flow. The durations of these bursts are not all equal, but
are highly irregular. Intermittent bursts can also interrupt
chaotic behavior. Such dynamics can be described as a sudden
enlargement or destruction of the chaotic attractor, and has
received the name crisis [2].

Dissipative solitons modeled by the complex Ginzburg-
Landau (CGL) equation can show chaos and intermittency
[3–5]. In particular, explosions are irregular periods of rapid
growth that are followed by sudden collapse to the initial
profile. They have been studied by many types of theoretical
methods and also found experimentally in the context of
nonlinear optics [6].

As this article shows, the mechanism behind the onset
of explosions is an instance of crisis: the chaotic attractors
that represent the localized solitons at different points in
space become connected by trajectories and now form a
single delocalized attractor, within which the system wanders
ergodically.

The analogy can be further expanded using additive noise,
which forces the system to escape from the attractors. Noise-
induced explosions were reported by the authors in [7]. As
an outcome of the addition of noise, the distribution of times
between explosions becomes wider and more concentrated at
smaller times. As in low-dimensional cases, there is a scaling
relation between characteristic time, distance to criticality, and
noise intensity [8]. Therefore, noise intensity can play a similar
role to distance to criticality.
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II. THE MODEL

As discussed in Sec. I, we are interested in the dynamics of
dissipative solitons. We will use the one-dimensional complex
Ginzburg-Landau equation with cubic and quintic terms for
the complex amplitude A(x,t). As it is normally written in
nonlinear optics,

iAt + D̃

2
Axx + |A|2A + ν̃|A|4A

= iδ̃A + iε̃|A|2A + iβ̃Axx + iμ̃|A|4A, (1)

where |A|2 = A∗A, and t,x are the propagation and spatial
variables, respectively. This equation is invariant under the fol-
lowing transformations: spatial reflection A(x,t) → A(−x,t);
spatial translation A(x,t) → A(x + �,t); and phase rotation
A(x,t) → A(x,t) exp(iθ ),(�,θ ∈ R). Equation (1) has been
proposed as a model of passively mode-locked lasers (see,
for instance, the review by Grelu and Akhmediev [9] and its
references). Parameters D̃,ν̃,δ̃,ε̃,β̃,μ̃ are all real and constant,
and reflect the properties of the nonlinear media as well as
the injection and the dissipation of energy. This equation has
proved to be a valuable model, in particular in the study of
dissipative solitons. In recent years, it has shown a variety of
very complex phenomena [3,4,10], some of them observed in
experiments [6].

Now we consider a more convenient way to write Eq. (1)
in a form that is more familiar to hydrodynamics,

∂tA = D∂2
xA + μA + β|A|2A + γ |A|4A, (2)

with parameters that are directly related to those of
Eq. (1): D = β̃ + iD̃/2,μ = δ̃,β = ε̃ + i,γ = μ̃ + iν̃, which
are constant and homogeneous. All of these parameters are
complex with the exception of μ, which measures the distance
to the onset of linear instability (also known as linear growth
rate) that is going to be used as our main bifurcation parameter.
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For the purpose of numerical integration, we work on a
periodic domain,

x ∈ [−L/2,L/2),

with L large enough so the solutions remain truly localized
at all times. Any other choice of boundary conditions would
be equally effective as long as the soliton stays far from the
boundaries (the effect of boundary conditions on localized
solutions was studied in [11]).

Localized and symmetric initial profiles without phase
singularities were used:

A(x,0) = A0(x)

(the effect of initial conditions with phase singularities has
been studied in [12]).

There are wide regions in the space of parameters
(μ,D,β,γ ) where stable localized solutions exist. Such lo-
calized solutions have tails that decay to zero at least expo-
nentially fast, so their properties are essentially independent
of the domain size L or the boundary conditions.

We will focus on two quantities that will be essential in the
characterization of the solitons: the “energy” of the soliton,

Q(t)
def=

∫ L/2

−L/2
|A(x,t)|2dx, (3)

and the coordinate of the “center of mass” of the soliton,

xcm(t)
def= L

2π
arg

(∫ L/2
−L/2 |A(x,t)|2 exp

(
i2πx

L

)
dx∫ L/2

−L/2 |A(x,t)|2dx

)
. (4)

This definition respects the periodicity of the domain and
works also when the background [the value of A(x,t) away
from the core of the soliton] is nonzero.

As reported in Refs. [13,14], the quantities Q,xcm will
exhibit constant, oscillatory, quasiperiodic, or intermittent
behaviors depending on the value of parameter μ. In particular
for generic explosions, the coordinate of the center of mass
will show rapid jumps followed by long periods of time with
very little or no changes. In two spatial dimensions, localized
structures exhibiting similar phenomena have recently been
reported [15].

Other works, most notably [5], have pushed the idea that
explosions are essentially a manifestation of low-dimensional
phenomena, such as Shilnikov bifurcation. Although the pic-
ture presented here is different, we do use a low-dimensional
description based on Q,xcm.

The strategy followed in the next section is the study
of the onset of explosions when parameter μ is inside the
neighborhood of the critical value μc.

III. NUMERICAL SCHEME

The one-dimensional CGL equation was integrated from a
localized initial condition A0(x) (basically a Gaussian profile)
using a split-step Fourier method. With the exception of μ, all
of the other parameters were kept fixed in all of the simulations
reported in this article. The size of the domain L was chosen
large enough so that the amplitude was identically zero outside
the core of the dissipative soliton, and thus its tails do not
interact (no finite box effects).

FIG. 1. (Color online) Evolution of the profile of a dissipative soliton exhibiting a typical strong asymmetric explosion. The parameter
μ = −0.2137 was chosen slightly larger than the critical value μc = −0.213 75. Other parameters are specified in the text. Four snapshots are
shown: (a) the soliton begins exhibiting oscillating tails, (b) one of the tails grows and develops a secondary peak, (c) the two peaks coalesce
and form a taller and broader symmetric pulse, and (d) the large pulse decays and becomes a soliton similar to the original profile but shifted
in space.
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(a () b) (c)

FIG. 2. (Color online) Phase-plane representation of the time evolution of three different explosions (a)–(c), at a single point in space
xk ≈ 20 and for a fixed parameter μ = −0.2130. Real and imaginary parts of the amplitude A(xk,t) at that point xk show, for all of the
explosions, a common pattern: a small meandering oscillation of frequency 2.6 Hz, then a sudden growth to a larger oscillation of radius
|A| ≈ 3.2 and frequency 5.6 Hz, followed by a decay to another small oscillation. Maxima differ because the point xk is not always located
where the explosions reach their peaks.

The simulations were carried out using a 1024-node spatial
grid of size dx ≈ 0.05. The time discretization was dt = 0.005
and the runs typically involved 2 × 106 iterations, so the
total time was of the order of T = 1 × 104, including several
thousands of explosions in each run. By removing the first
half of the time series, we checked that our results were not
contaminated by transients.

We also checked that the spatial grid was fine enough and
that the results were not artifacts of the spatial and temporal
discretizations. First, we verified that the spatial power spec-
trum converged exponentially fast at all times, thus indicating
that finer structures (not captured in the current discretization)
were not relevant. Second, we repeated some of the simulations
using a finer spatial discretization (the number of grid points
was doubled, so dx was reduced to a half and dt was conse-
quently decreased to a fourth to enforce numerical stability),
resulting only in tiny changes in the location of the transitions.

Although for some specific cases we used other localized
initial shapes, and obtained basically the same results, no
systematic effort was developed to find other stable solutions;
hence we could not say that the explosive solitons are the only
stable solutions.

IV. EXPLOSIONS

Explosions of dissipative solitons were found numerically
by Akhmediev’s and Soto-Crespo’s groups several years ago
and experimentally by Cundiff et al. [6] more recently. In
general, they appear for negative and small μ.

For β = 1 + 0.8i,γ = −0.1 − 0.6i, and D = 0.125 + 0.5i

(this choice is held throughout the article), explosions are
observed, μc < μ < 0, with μc = −0.213 75.

The details of the transition have been published elsewhere
[13,14] and for μ > μc can be described as a sequence of
the following behaviors: Fig. 1(a) shows the initial dissipative
soliton, the base or silent state, with tails that oscillate wildly;
Fig. 1(b) shows a secondary peak that grew from the right tail,
breaking the left-right symmetry; Fig. 1(c) shows a short-lived,
large, roughly symmetric pulse that appears when the two
peaks nucleate; and Fig. 1(d) shows the final dissipative
soliton, shifted in space with respect to the initial profile, but

otherwise similar. The explosions repeat again and again at
irregular times, even in the absence of noise. As far as the
outcomes of our simulations have shown, the above-mentioned
picture is generic. Perfectly symmetric explosions have only
been observed transiently, and are eventually followed by
asymmetric explosions [5]. For parameter μ closer to zero,
double or almost symmetric explosions have been observed
with both tails growing at roughly the same time [16].

Of particular relevance in the present context is Fig. 1(c),
which depicts a large pulse of maximum amplitude, |A| ≈ 3.
Similar large transient pulses have been shown in [5, Fig. 1]
and [16, Fig. 8(c)]. They show that the explosive growth is not
unbounded, but approaches a well-defined state: for a given set
of parameters, the tall pulses achieved during the explosions
were consistently similar in height, width, and duration. We
claim that in Fig. 1(c), the state A(x,t) is in the neighborhood
of an unstable periodic orbit. In Fig. 2, representations of
the complex oscillations are depicted for three explosions,
showing how the radius (for a fixed point in space) grows and
apparently approaches an unstable orbit.

The onset of explosions as μ is increased is depicted in
Fig. 3. For μ < μc [see Fig. 3(a)], the soliton has oscillating
tails (actually quasiperiodic) but does not explode, so its
energy Q(t) remains bounded. For μ � μc [see Fig. 3(b)],
the tails become weakly chaotic and so does Q(t) [14]. For
μ � μc [see Fig. 3(c)], the soliton develops large symmetric
oscillations that punctuate the regime of oscillating tails. After
some transients (some thousands of time units), symmetric
explosions are followed by strongly asymmetric explosions.
For μ > μc [see Fig. 3(d)], explosions become more frequent,
but always irregular.

One of the typical effects of explosions is a shift in the
location of the soliton. We tracked the center of mass of the
soliton as defined by Eq. (4). Figure 4 shows the location of
the center of mass of the soliton, as it switches during the
fast explosions. Jumps make the soliton wander randomly in
space, therefore in the long run the soliton location follows a
“deterministic” diffusion [17,18]. Figure 5 considers a longer
time horizon and several slightly different initial conditions
with time evolutions that diverge and wander in the periodic
spatial domain.
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(a)

(b)

(c)

(d)

FIG. 3. (Color online) Time evolution of energy Q(t), defined in
Eq. (3), for four different values of parameter μ (other parameters take
constant values specified in the text): (a) μ = −0.2140, quasiperiodic,
no explosions; (b) μ = −0.213 85, weakly chaotic, no explosions;
(c) μ = −0.2137, explosions at irregular intervals; and (d) μ =
−0.2130, frequent irregular explosions.

FIG. 4. (Color online) Evolution of the location of the center of
mass of the dissipative soliton, defined in Eq. (4), in the regime
of frequent explosions, for μ = −0.213. Most explosions follow an
alternating left-right-left-right pattern.

FIG. 5. (Color online) Trajectories of the center of mass for
several nearly identical initial conditions, for linear parameter μ =
−0.213. Assuming normal diffusion, one can estimate a diffusion
coefficient Dcm ≈ 0.11 from measurements of �x2

cm/�t . Trajectories
in the periodic domain of size L = 50 were “unwrapped” to make
their separation more apparent. Dotted curves represent xcm =
xcm(0) ± √

Dcmt .

The jumps experienced by the center of mass can be
analyzed using the framework of continuous-time random
walks (CTRW) introduced by Montroll and Weiss [19]. In its
basic form, the theory of CTRW assumes that the size of the
jumps and the waiting times between jumps are independent.
In our case, both distributions have bounded moments: there
are typical length (comparable to the width of the soliton) and
time scales (see Fig. 6), so the motion of the center of mass is
essentially diffusive, |�xcm|2 ∼ �t , and characterized solely
by an effective diffusion coefficient Dcm. In Fig. 5, we also
plotted xcm = xcm(0) ± √

Dcmt with coefficient Dcm estimated
from the samples. A more complete analysis of the diffusive
motion of the soliton will be the subject of a forthcoming
article.

The distribution of observed times depicted in Fig. 6 shows
a large variability, induced by the weak chaos of the “silent”
behavior and not by the explosion itself that, as we will see,
has a fairly deterministic structure.

The characteristic time between explosions must clearly
depend on the distance to the transition point. For μ slightly
larger than μc = −0.213 75, explosions are very rare, and as
values of μ get closer to zero, explosions become more and
more frequent.

FIG. 6. (Color online) Distribution of times between explosions
(residence times of precrisis attractor) for μ = −0.213. This distribu-
tion is far from exponential and suggests that there is some memory
effect induced by the structure of the attractor.
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FIG. 7. (Color online) Characteristic time τ between explosions
as a function of μ − μc, distance to the critical parameter μc =
−0.213 75. The + symbols and the blue dot in each vertical line
are the quartiles of the observed histogram for each value of μ. Very
close to the onset of explosions μ � μc (left-hand side of this figure),
the histograms are rather broad and their medians do not follow a
trend, but farther away from μc, a linear trend with slope α = 0.204
can be identified (indicated by thin red line).

Collecting the statistics for a variety of μ values, one could
verify in Fig. 7 that there are two main regions: immediately
after the transition the characteristic times depend sensitively
on μ in a nonmonotonic way, and for small but finite μ − μc,
the expected time follows a power relation,

τ ∼ |μ − μc|−α, (5)

at least in a region not too close to μc. As the distribution of
times between explosions is far from Gaussian, we use the
median as a measure of characteristic time τ .

In [5], the authors have proposed the idea that explosions
are essentially a manifestation of low-dimensional phenomena
such as Shilnikov bifurcation: a homoclinic bifurcation of
a saddle-focus equilibrium state. The Shilnikov mechanism
provides an explanation for the intermittency and chaos.
However, in [14], we have shown that the “base” soliton is not
a hyperbolic point, but is already a chaotic state. Also, typical
explosions are strongly asymmetric, so after one explosion the
soliton does not return to the original profile but to a shifted
copy.

A more plausible mechanism behind the explosions could
be a “bubbling” transition [20–22] that results from changes in
the basin of a chaotic attractor that make the attractor transver-
sally unstable and susceptible to small noise. Trajectories no
longer remain in a small neighborhood of the attractor, but
develop sporadic excursions away from it. On the contrary,
our chaotic solitons do not require noise to explode [3–5,16].
Changes in the numerical precision of the time integration do
not significantly shift the location of μc, nor the dynamics
of the solitons before or after the transition. This fact gives
support to the idea that the onset of explosions is a structural
change of the chaotic attractor.

The bubbling transition can take place when an invariant
manifold exists, typically induced by certain symmetry of the
system. Assuming that in our case the invariant manifold where
the chaotic attractor lies is induced by reflection symmetry, the
departures from the attractor would be asymmetric and lead
to shifts in the position of the soliton. However, the soliton
is chaotic and instantaneously asymmetric, even before it

becomes explosive. As shown in [14], the symmetric soliton
loses stability in a Neimark-Sacker bifurcation, and a non-
symmetric soliton emerges with quasiperiodic and then chaotic
tails (through a cascade of torus-doubling bifurcations), before
the onset of explosions (as parameter μ is increased). Therefore
the onset of explosions does not break the reflection symmetry,
but only “magnifies” the instantaneous asymmetry of the
chaotic soliton.

Equation (5) has been deduced heuristically for low-
dimensional systems and suggests a connection with the theory
of crises [2]. (For a comparison between crises and bubbling
transitions, we refer the reader to [23].) The fit, although
limited, suggests that localized structures may have many
features of low-dimensional systems. Several limitations may
hinder the quality of the fit. In the first place, infrequent
explosions make it difficult to estimate τ reliably and therefore
the identification of best-fit parameters becomes difficult.
In the second place, close to μc, the system becomes very
sensitive to the discretization and the choice of numerical
scheme.

It is interesting to notice that even if characteristic times
depend on the structure of the chaotic attractor, i.e., the dissi-
pative soliton, the exponent α in Eq. (5) depends basically on
the eigenvalues of the unstable periodic orbit [2]. Estimations
of the critical exponent α from time series could be obtained
using the procedure explained in [2] based on expanding and
contracting eigenvalues of the mediating unstable periodic
orbit [cf. Fig. 1(c)]. The expanding eigenvalue has already
been estimated in [16] from the characteristic time it takes for
the exploded soliton to collapse to its original profile.

The aforementioned theory of crises [2] may provide a
mechanism of attractor destruction at μc responsible for the
onset of explosions. The sudden changes (as parameter μ is
varied) of the structure of the attractor (that in Ref. [14] was
shown to be representable as a torus) can be explained by the
theory to be collisions of the chaotic attractor with unstable
periodic orbits or other attractors. The intermittency of the
soliton explosions is precisely one of the signatures of crisis.

Three types of crises have been documented: attractor de-
struction, attractor enlargement, and attractor merging. In the
first type, trajectories remain in the chaotic precritical attractor
only during a transient period and then move somewhere else.
For the second type, trajectories stay close to the precritical
attractor for some time and then burst into larger chaotic
motion before being reinjected into the precritical attractor.
The evidence presented in this work indicates that the onset of
explosions of dissipative solitons corresponds to the third type,
attractor merging, that takes place in the presence of some
symmetry, when two or more chaotic attractors simultaneously
collide with one or more unstable periodic orbits.

In the case of explosions of dissipative solitons, translation
symmetry allows the existence of an infinite number of
radiating solitons (weakly chaotic attractors) connected by ex-
plosions (long trajectories) that pass close to large symmetric
pulse (unstable periodic orbit). As it can be appreciated from
Figs. 1 and 2, the explosions are fairly regular trajectories that
go first along the stable manifold and then along the unstable
manifold of an unstable periodic orbit, until they reach their
final attractor. A more thorough study of the unstable periodic
orbits using continuation techniques could potentially reveal
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subtle connections with other localized states and will be the
subject of future research.

As both the numbers of precrisis attractors and unstable
periodic orbits are infinite (every translated copy of a soliton
solution is also a solution), a graphical representation of the
merging is not as easy as in systems with only two attractors.

Crises have been found behind the onset of spatiotemporal
chaos. Reference [24] presents a crisis that explains chaotic
bursts in a reaction-diffusion system. Reference [25] shows
a chaotic pulse that appears at the center of a finite domain
with reflection symmetry. References [26–28] show a chaotic
attractor captured by a truncated Fourier expansion of the
Kuramoto-Sivashinsky equation. We believe the present work
has the additional feature of capturing a crisis that results from
the collision of an infinite number of chaotic attractors in the
presence of a continuous symmetry.

In the context of symmetry-breaking transitions, explosions
can be understood as an increase in the symmetry of a chaotic
attractor [29]: a chaotic soliton that was reflection invariant on
average becomes also translation invariant on average after
the transition.

In the next section, we test the applicability of the crisis
framework by adding weak noise to the CGL.

V. NOISE AND SCALING

Some level of noise is always present in physical phe-
nomena. Numerical noise can also present a challenge in
the study of physical models. For instance, in this work,
we have shown how even when using a symmetric initial
condition, in the long term the accumulative noise (induced
by numerical discretization of space and time) can break
the reflection symmetry and lead to asymmetric soliton
explosions.

Now the addition of noise in a controlled manner, modeled
by fluctuations in the parameters or as an additional term in the
governing equation, can serve to emphasize the applicability
of crises theory to the phenomena of soliton explosions. As
proved by Sommerer et al. [8,30] (see also Arecchi et al.
[31]), close to criticality, the characteristic times between
explosions, the distance to the criticality, and the intensity
of the added noise are connected through a generic scaling
relation.

We will be studying the effects of additive noise,

∂tA = D∂2
xA + μA + β|A|2A + γ |A|4A + ηξ, (6)

with ξ (x,t) being a complex white noise in space and time,

〈ξ ∗(x,t)ξ (x ′,t ′)〉 = 2δ(x − x ′)δ(t − t ′)

and

〈ξ (x,t)ξ (x ′,t ′)〉 = 0.

Parameter η controls the intensity of the noise. In [7], it was
shown how additive noise induces the soliton escape from
its chaotic attractor via explosive trajectories (see [14] for
a characterization of the soliton as a chaotic attractor) even
before criticality. That work suggested the use of η as a new
bifurcation parameter.

A first effect of noise is the increased “porosity” of the
precrisis attractor [14]. For the noise-free scenario, depicted
by Fig. 6, the state of the soliton followed trajectories of certain
duration before making large excursions, i.e., explosions. Now
in the presence of noise, points inside the attractor are all
equally likely at any time to lead to excursions, so the residence
times τ become exponentially distributed, as indicated in
Fig. 8.

Sommerer et al., in [8,30], proposed a scaling relation for
the typical residence time,

τ ∼ η−αg

(
μ − μc

η

)
, (7)

where η is the noise intensity and g(·) is a nonuniversal function
that depends on the system and the distribution of the noise.
The exponent α is the same one that appears in Eq. (5).

Several sets of simulations are summarized in Fig. 9(a). As
we plot (μ − μc)/η versus τηα in Fig. 9(b), points for different
values of η should fall on a single curve that gives the graph
of the function g(·).

Although the fit of the relations deduced by Sommerer et al.
to the intermittent onset of explosions is only approximate, it
indicates that the general picture of crises theory is correct.

A number of explanations behind the lack of a more precise
fit between the restricted scaling of Eq. (7) and our numerical
results come to mind. First of all, one should mention that
the present model is an extended system, so any analogy with
low-dimensional systems should be qualified. Sommerer et al.
[8,30] mentioned other several possible complications that

(a) (b)

FIG. 8. (Color online) (a) Distribution of times between explosions for μ = −0.2200,η = 0.001. Compare with the noiseless results in
Fig. 6. (b) The cumulative distribution function F̂ (τ ) = ∫ τ

0 f (t)dt clearly shows a decay characteristic of an exponential distribution: noise
smears the details of the chaotic precrisis attractor and induces explosions at a constant rate.
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(a) (b)

FIG. 9. (Color online) (a) Characteristic time between explosions τ as a function of parameter μ and noise intensity η. (b) Scaled
representation suggested by Eq. (7) for μc = −0.213 75,α = 0.204. Most of the points fall within the graph of a nonuniversal function g(·) as
predicted by Eq. (7).

may render the scaling an oversimplification: true data points
may have a large dispersion, and distribution of times may
not be exponential; there could also be other competing routes
of escape besides attractor merging. And even if the scaling
is correct, it is not easy to estimate correctly α and μc, so
the scaling would always seem approximate (one could make
changes to μc and α in order to improve the fit, but this choice
would obviously make the whole approach meaningless).

Nonetheless, we believe that the overall picture provided
by crises theory is correct: dissipative solitons show some
weak chaos before the onset of explosions, and explosions
appear when two or more of these attractors merge; explosions
transiently approach a large symmetric pulse that corresponds
to an unstable periodic orbit; intermittency is a signature of the
crisis; the anticipation of explosions by noise is an instance
of noise-induced crisis; and there exists a nontrivial scaling
between interexplosion times, noise intensity, and distance to
criticality.

The addition of noise makes clear that the mechanism
behind intermittent explosions is the same transition to chaos
observed in many other chaotic low-dimensional systems.

VI. CONCLUSIONS

In previous works, we have studied the dynamics of
dissipative solitons and their transitions between stationary,

periodic, quasiperiodic, and then weakly and strongly chaotic
regimes, in which explosions play a major role. In this work,
the main focus was the onset of explosions and its intermittent
character, with and without external noise.

This intermittency was presented as a strong suggestion of
the presence of an attractor-merging crisis. This phenomenon
appears when the multiple chaotic attractors induced by
translational symmetry collide and merge. The resulting
attractor restores the translational symmetry and includes the
precritical attractors (localized solitons) and the explosion
trajectories.

This mechanism was emphasized by the controlled addition
of noise. A scaling relation between the characteristic time
between explosions, noise intensity, and distance to criticality
was found. This relation was deduced in the context of crises
theory, and its verification in the case of soliton explosions
gives another compelling evidence to the hypothesis that
explosions result from interactions of chaotic attractors.

Finally, although rich and complex, the explosive behavior
of dissipative solitons can be effectively described using the
theoretical framework of low-dimensional systems.
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