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Spontaneous scale-free structure in adaptive networks with synchronously dynamical linking
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Inspired by the anti-Hebbian learning rule in neural systems, we study how the feedback from dynamical
synchronization shapes network structure by adding new links. Through extensive numerical simulations, we
find that an adaptive network spontaneously forms scale-free structure, as confirmed in many real systems.
Moreover, the adaptive process produces two nontrivial power-law behaviors of deviation strength from mean
activity of the network and negative degree correlation, which exists widely in technological and biological
networks. Importantly, these scalings are robust to variation of the adaptive network parameters, which may
have meaningful implications in the scale-free formation and manipulation of dynamical networks. Our study
thus suggests an alternative adaptive mechanism for the formation of scale-free structure with negative degree
correlation, which means that nodes of high degree tend to connect, on average, with others of low degree and
vice versa. The relevance of the results to structure formation and dynamical property in neural networks is
briefly discussed as well.
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I. INTRODUCTION

Many real-world systems, such as biological metabolic up-
takes and information transmission in society, can be featured
by a complex network [1,2]. To explore its basic mechanism,
a great number of studies have been proposed from theoretical
viewpoints and application of technology [3–11]. In particular,
the adaptive network (AN), which is a dynamical entity with
interplay between topology structure and dynamics, attracted
great interest in recent years [12,13]. Along this line, some
scholars began to focus on the synchronization by considering
the coevolution of dynamical states and topological structures
in the AN [14–21]. A typical example is to identify schemes
of enhancing or stabilizing synchronization via changing the
coupling strengths [16–20,22–25].

Moreover, since real systems grow by adding new connec-
tions [1,26–29], the dynamical features of a complex network
have also been extensively studied under the growth model by
the preferential attachment mechanism [30–34]. However, the
addition of links in connection with synchronization in AN
has been investigated little (namely, the feedback of network
dynamics has not been considered) [35–38]. Thus, it becomes
of particular interest to expect that the growth of links may have
a certain adaptive relationship with dynamical synchronization
behavior [39–41]. For example, Ref. [39] showed that the
locking process was associated with the emergence of a
scale-free degree distribution in the network connectivity.
Reference [40] further unveiled that the emergence of modular
and scale-free structures was associated with a striking
enhancement of local synchronization. Motivated by the anti-
Hebbian learning rule in neural systems, i.e., the synaptic
links (or coupling strengths) are established (or strengthened)
between two neurons when asynchronous states occur between
them [42–45], in the present work, we propose a simple yet
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generic adaptive model to achieve global synchronization of
the network. We investigate the spontaneous structure in the
adaptive model and how structure and dynamics coevolve
during the course of achieving synchronization. By means
of systematic and scientific investigation, we show that (1)
when global synchronization (i.e., the same dynamical process
for all the nodes) is achieved, the AN spontaneously forms
a scale-free structure and (2) the adaptive process produces
two nontrivial power-law behaviors of average dynamical
deviation from mean activity of the network and negative
degree correlation. Moreover, we show that the vertices
whose dynamics approaches the mean activity of the network
ultimately become hub nodes. In the remainder of this paper
we will first describe the adaptive model; subsequently, we
will present the main results of numerical simulations, and
finally we will summarize our conclusions.

II. ADAPTIVE MODEL

We consider N coupled identical chaotic oscillators, and
the state of oscillator i can be expressed as follows:

Ẋi = F (Xi) + c

N∑
j=1

Gij [H (Xj ) − H (Xi)], (1)

where F (X) denotes the dynamics of an individual oscillator,
H (X) is the coupling function, c represents the coupling
strength, and G = (Gij ) is the coupling matrix. If Gij is
adopted directly by the binary adjacency matrix A = (Aij ),
the possibly resulting heterogeneity in the degree distribution
will suppress synchronization [46]. In order to enhance the
synchronizability of the possibly resulting heterogeneous
network, Gij is normalized by the degree ki of node i,
as adopted in Ref. [7]. Namely, Gij = Aij/ki for ki �= 0;
otherwise, Gij = 0. Actually, the normalization will not affect
the following qualitative results. In the AN, the adjacency
matrix A is determined by the collective synchronization
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properties of the network. Thus, A is a matrix with time-
dependent connection [i.e., Aij (t)].

To achieve global synchronization of the network, it is
reasonable to assume that each node tries to synchronize with
the mean field of the network by increasing its connections.
We assume that the nodes whose dynamics is far from the
mean field are more likely to be linked. With respect to the
adaptive rule of link growth, the following mechanisms exist.

(i) Growth. Start from a nonconnected network with an
initial dynamical condition which is randomly chosen from
the chaotic attractor. At every time step h, two random nodes
i and j are selected if no link exists between them.

(ii) Preferential attachment. The probability of producing
a new connection between nodes i and j is proportional to the
rate of their dynamical differences with the mean activity of
the network, namely,

p = �i

�j

/
∑
i,j

�i

�j

(�i � �j ), (2)

where �i = 〈|H (Xi) − 1
N

∑N
k=1 H (Xk)|〉 and �j =

〈|H (Xj ) − 1
N

∑N
k=1 H (Xk)|〉. Here, 〈·〉 denotes the average

over the time scale h of making connections. In Eq. (2), we
take the node with the large dynamical difference as node i

and take the other node as node j , and hence, �i � �j .
Based on the above rule, it is clear that the node whose

dynamics is far from the mean activity of the network is more
likely to connect with a node whose dynamics approaches
the mean activity, which is very consistent with the behavior
characteristics in real-world systems, such as technological
and biological networks [47,48]. This means that the two
nodes are likely to form a link if one node is synchronous
and the other node is asynchronous (comparing with the
mean field). In the sense of dynamical difference from the
mean field, the adaptive rule can be regarded as an extension
of the anti-Hebbian learning rule in neural systems, which
could make a contribution to the complete hierarchical syn-
chronization in a heterogeneous network [16]. Indeed, many
extensions of the original anti-Hebbian learning rule have
been experimentally found in real neural systems [42–45], and
today, the anti-Hebbian learning rule is often rephrased [49]. In
addition, motivated by the Barabási-Albert scale-free network
model [30,31], we expect that our adaptive scheme can
spontaneously produce a heterogeneous scale-free structure
due to hierarchical synchronization within the anti-Hebbian
linking rule.

In general, given a complex network with a fixed number of
vertices, its synchronizability can be improved by increasing
the number of edges [6]. In addition, the synchronizability
depends strongly on coupling strength and coupling function
[50–53]. Here, we consider that the adjacency matrix A is
always symmetrical, namely, Aij (t) = Aji(t). The matrix Aij

is adaptively acquired with one large enough coupling strength
c, which can lead to global synchronization in the dynamical
network. To broaden the region of coupling strength c leading
to the global synchronization [16], the coupling function
H (X) = X = (x,y,z) is adopted in the present work. In our
model, when the system is synchronizable, it will approach
the global synchronization state for many large networks.
This general character could be illustrated by a chaotic

FIG. 1. (Color online) The synchronization error E(t) for dif-
ferent coupling strengths c, indicating transition to synchronization
in the ANs of (a) Rössler oscillators and (b) the food web model.
Depicted results are obtained for N = 1000 and h = 0.02. Here,
for simplicity, we suppose that the new connection is always added
between the nodes with the maximum difference �max and the
minimum difference �min if the connection does not already exist;
otherwise, there is no new connection at this time step.

Rössler oscillator, X = (x,y,z) and F (X) = [−0.97y −
z,0.97x + 0.15y,z(x − 8.5) + 0.4], and a chaotic food web
model, F (X) = [x − 0.2xy/(1 + 0.05x), − y + 0.2xy/(1 +
0.05x) − yz, − 10(z − 0.006) + yz], whose chaotic diagrams
are similar [54]. Irrespective of either form for F (X), we
believe that qualitatively similar behavior would be displayed.

III. RESULTS AND ANALYSIS

In this work, we use the fourth Runge-Kutta method
with a time step equal to 0.02. When the synchronization
error E(t) satisfies the condition E(t) = 〈|Xi − 〈Xi〉|〉 < 10−8

(where 〈·〉 denotes the average over the whole network), the
global synchronization is realized [55–57]. We first inspect
how the synchronization behavior depends on the coupling
strength in the network. Figure 1 features the characteristic
results obtained for different values of coupling strength c. As
evidenced in both panels, for small value of c the appearance
of synchronization in ANs is very difficult. However, with
increasing coupling strength, both oscillator models can reach
global synchronization, especially for large value of c. These
results thus suggest that the strong coupling is beneficial for the
synchronization of networks. In what follows we will further
examine the characteristics of the synchronization state.

Results presented in Fig. 2 depict the generated network
structure under the state of global synchronization. Clearly,
Fig. 2(a) shows, in the region with a large degree, that
the network coevolves spontaneously into a heterogeneous
structure with the same power-law degree distribution P (k) ∼
k−γ for both oscillator models. This is because the network
gradually achieves global synchronization under our proposed
connections rule (see Fig. 1). Importantly, this scaling is robust
to different network sizes N , as demonstrated in Fig. 2(b),
indicating that the system organizes itself into a scale-free
stationary state similar to the model of Barabási et al. [30,31].
Note that we show the degree distribution corresponding to a
nonsynchronous state (c = 0.001; see Fig. 1) in the inset of
Fig. 2(a). Clearly, the distributions are exponential for both
Rossler and food web models. This exponential decrease is
faster than power-law depression with the increase of the
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FIG. 2. (Color online) (a) Degree distributions P (k) as a function
of k in a log-log plot for our ANs of Rössler (upward triangles) and
food web (downward triangles) models at N = 1000 and h = 0.02
and (b) their dependence on different network size N at h = 0.2.
Results in (a) and (b) are averaged over 20 realizations of the
ANs with random initial conditions. For clarity, only the results of
Rössler oscillators are shown in (b). The solid lines in (a) and (b) are
linear fittings, which respectively confirm their scale-free properties.
Depicted results are obtained for c = 1.0, which can lead to global
synchronization of the network (see Fig. 1). For comparison, the
inset in (a) gives the degree distributions p(k) in a linear-log plot for
our ANs of Rössler (upward triangles) and food web (downward
triangles) models at N = 1000, h = 0.02, and c = 0.001, which
cannot lead to global synchronization of the network (see Fig. 1).
The solid lines in the inset in (a) are linear fittings, which confirm
their exponential properties.

degree. This is because the selected nodes for each connection
are more random under the nonsynchronous state. Therefore,
the resulting network is less heterogeneous. Namely, the
degree distribution demonstrates a faster decrease with the
degree.

Next, we focus on the property of power-law degree
distribution corresponding to the global synchronization state
of the network. It is found that the degree distribution exponent
γ depends on two parameters: coupling strength c and time
step h of making connections. One can see from Fig. 3 that
the exponent γ monotonously increases with the coupling
strength c. This can be attributed to the fact that the oscillators
achieve faster synchronization under stronger coupling (see
Fig. 1 for better understanding). In this sense, the nodes
with the minimum difference �min are often selected to build
connections with those hub nodes, which in turn accelerates
the formation of a more heterogeneous structure. However,
with continuous increase of coupling strength c, the exponent
γ will reach a saturation value due to the saturation of the
synchronization velocity under sufficiently large values of c.
Moreover, we show in Fig. 3 that the value of γ at large h is
greater than that of small h. This is because, for a large linking
time step h, a more heterogeneous network is formed within the
longer coevolution time for achieving global synchronization.

In the coevolutionary model, an interplay exists between the
dynamical synchronous process and network topology. It thus
becomes interesting to investigate how the final structure of
the network depends on the synchronous precess in our work.

FIG. 3. (Color online) The degree exponent γ as a function of
coupling strength c under different values of the linking time step
h. Results are averaged over 20 independent realizations. Since the
results for the Rössler oscillators and the food web model are nearly
the same as shown in Fig. 2(a), we only show the results for the
Rössler oscillators. The depicted results are obtained for N = 1000.

Here, we pay much attention to the dependence of degree
k on the dynamical synchronous difference with the mean
activity of the network (for the vertices possessing degree k).
To simplify the discussion, we define an average dynamical
difference as follows:

〈�(k)〉 = 1

Np(k)

∑
i∈(ki=k)

1

τ

∫ τ

0
�i(t)dt, (3)

where τ is the time length for achieving global synchroniza-
tion. The average difference 〈�(k)〉 represents the average
deviation strength (ADS) of the vertices possessing degree
k from the mean activity of the network during the course

o..

o..

FIG. 4. (Color online) (a) The ADS 〈�(k)〉 of vertices with degree
k from the mean activity of the whole network and (b) the mean
degree 〈knn〉 of the nearest neighbors of the vertices as a function of
the degree k in a log-log plot for Rössler oscillators (upward triangles)
and food web model (downward triangles). Results are averaged over
20 independent realizations. The dotted line represents the thresholds
kt = 14 in (a) and (b) for both oscillator models. The solid lines give
slopes 1.91 in (a) and 2.43 in (b), which confirms their power-law
decreases. The depicted results are obtained for N = 1000, c = 1.0,
and h = 0.14.
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FIG. 5. (Color online) (a) The ADS 〈�(k)〉 as a function of 〈knn〉
in a log-log plot for Rössler oscillators (upward triangles) and the
food web model (downward triangles) with N = 1000, c = 1.0, and
h = 0.14 and (b) ADS 〈�(k)〉 vs 〈knn〉 for different coevolutionary
network parameters N , c, and h. Results in both panels are averaged
over 20 realizations on the ANs with random initial conditions. The
dotted line denotes the thresholds of 〈knn〉 at kt = 14 in (a) for both
oscillator models. For clarity, only the results of the Rössler oscillators
are shown for different coevolutionary network parameters in (b).
The solid lines in (a) and (b) have a slope of 0.78, confirming the
power-law behaviors.

of achieving synchronization. In Fig. 4(a), it is clear that a
degree threshold point kt exists for both oscillator models.
When k < kt (i.e., in the small k region), the ADS 〈�(k)〉
only has a small variation with degree k. However, for
k > kt , an almost-power-law 〈�(k)〉 ∼ k−s decrease appears
with s = 1.91 ± 0.02, which indicates that the vertex with
larger degree processes the less ADS during the course
of achieving synchronization. In such a case, the vertices
possessing the least deviation from the mean activity of the
network ultimately become hub vertices of the network. This
result is very consistent with real-life systems, such as an
acquaintance network [58], where people are more likely to
make a connection with people whose view is popular (i.e.,
being close to the mean case of most views, which is the
so-called law of “the minority is subordinate to the majority”).

To characterize the degree correlation in the ANs, we also
measure the mean degree 〈knn〉 of the nearest neighbors of
a vertex as a function of degree k [48], and we find that the
degrees of adjacent vertices appear to be negatively correlated,
as demonstrated in Fig. 4(b). Thus, vertices with a large degree
tend to connect, on average, with ones with a small degree.
Particularly, 〈knn〉 displays an almost-power-law decrease as
〈knn〉 ∼ k−q , with q = 2.43 ± 0.02, in the large k > kt region.
This negative power-law degree correlation exists widely in
a great number of networks, including technological and
biological networks [47,48,59]. However, the negative degree
correlation in our work is caused by the anti-Hebbian adaptive
connecting rule.

It is worth remarking that for two different kinds of
oscillators, Rössler and food web models, the threshold point
kt is the same [see the dotted line in Figs. 4(a) and 4(b)].
Moreover, with the degree k above the threshold value kt ,

the average dynamical difference 〈�(k)〉 [see Fig. 4(a)] and
the mean degree 〈knn〉 [see Fig. 4(b)] also display the same
power-law decrease for the two oscillator models, respectively.
This interesting result is consistent with the same power-law
degree distribution [see Fig. 2(a)] for the two oscillators, which
could be due to similar chaotic diagrams of their oscillators
[54].

Combining the above 〈�(k)〉 ∼ k−s and 〈knn〉 ∼ k−q , we
can easily gain a nontrivial power-law behavior:

〈�(k)〉 ∼ 〈knn〉θ , (4)

with the exponent θ = s/q in the region of k > kt (i.e., 〈knn〉 <

〈knn〉|k=kt
). Figure 5(a) features an obvious scale-free property

[for 〈�(k)〉 vs 〈knn〉] with the exponent 0.78 ± 0.02 in both
oscillator models, which is fully in agreement with the value
of θ = s/q. Finally, it is worth remarking that the scale-free
property is robust to variation of coevolutionary parameters
[including system size N , the coupling strength c, and the
linking time step h; see Fig. 5(b)]. In fact, this robust property
is caused by the robustness of power-law relations 〈�(k)〉 ∼
k−s and 〈knn〉 ∼ k−q with exponents s = 1.91 ± 0.02 and q =
2.43 ± 0.02.

IV. CONCLUSION AND DISCUSSION

In sum, motivated by the anti-Hebbian learning rule in
neural systems, we have studied the dynamical organization
of connections via adding new links. The feedback from the
dynamical synchronization shapes the network into a scale-
free structure with negative degree correlation, as confirmed
in many real networks, such as technological and biological
networks [47,48,59]. Moreover, we show that the vertices
whose dynamics approach the mean activity of the network
ultimately become hub nodes, consistent with real systems
as well [58]. Therefore, our model provides an alternative
adaptive mechanism for the formation of scale-free structure
with negative degree correlation by introducing the anti-
Hebbian-like learning rule.

Our study also indicates that such an anti-Hebbian synap-
tic growth during neural development [42] could play an
important role in generating a neuronal scale-free structure
[60,61] and firing synchronization [62–64]. To focus on the
effect of the addition of links induced by the anti-Hebbian
learning rule, we do not consider here the removal and
rewiring of links. In the future, when addition and removal
or rewiring of links are both considered in ANs governed by
the anti-Hebbian-like learning rule, further investigations are
expected to clarify more structural and dynamical properties.
In particular, the anti-Hebbian scheme from the plasticity
of synaptic strengths [43–45] may provide a useful tool for
understanding the mechanism of self-organized criticality
described by power-law structural and dynamical properties
in neural systems [65–67], which is still an unaddressed
fundamental issue regarding the cellular mechanism.
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