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The processes leading to change in languages are manifold. In order to reduce ambiguity in the transmission of
information, agreement on a set of conventions for recurring problems is favored. In addition to that, speakers tend
to use particular linguistic variants associated with the social groups they identify with. The influence of other
groups propagating across the speech community as new variant forms sustains the competition between linguistic
variants. With the utterance selection model, an evolutionary description of language change, Baxter et al.
[Phys. Rev. E 73, 046118 (2006)] have provided a mathematical formulation of the interactions inside a group
of speakers, exploring the mechanisms that lead to or inhibit the fixation of linguistic variants. In this paper,
we take the utterance selection model one step further by describing a speech community consisting of multiple
interacting groups. Tuning the interaction strength between groups allows us to gain deeper understanding about
the way in which linguistic variants propagate and how their distribution depends on the group partitioning. Both
for the group size and the number of groups we find scaling behaviors with two asymptotic regimes. If groups are
strongly connected, the dynamics is that of the standard utterance selection model, whereas if their coupling is
weak, the magnitude of the latter along with the system size governs the way consensus is reached. Furthermore,
we find that a high influence of the interlocutor on a speaker’s utterances can act as a counterweight to group
segregation.
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I. INTRODUCTION

Language is one of the most prominent examples of
complex systems. The phenomena underlying its emergence
and evolution, as well as cultural change, have been subject to
increased interest from the physics community over the past
two decades. An account of the insight gained from the study
of various mathematical models can be found in Refs. [1–8].
Confining our attention to the ongoing processes acting on
vocabulary, we only need to monitor our own use of language
as it changes over time to see that words emerge, modify their
shape and disappear, and sometimes even alter their meaning
or functionality. The reasons for these changes are diverse. In
order to transmit a message as efficient and unambiguous as
possible, a speaker will tend to use the conventions of her
language. (From now on we will use the convention that
when referring to the speaker, the female pronoun is used,
whereas for the hearer we employ the masculine.) However,
since language does not only communicate meaning but also
reflects the speakers’ cultural and social background, different
linguistic variants (“different ways of saying the same thing”
[1]) are used depending on the situation in which the speakers
find themselves [9]. Also, because language “needs to keep
pace with new realities, new technologies and new ideas,
from ploughs to laser printers, and from political-correctness
to sms-texting” [10], new means of expressing an idea can
enter the language of a community via innovations from its
members. Thus, linguistic variants enter a competition for
speakers [11]. It is this aspect in the change of languages
that we have a closer look at in this paper.

If speakers coming from distinct backgrounds find them-
selves united in a group, over time they will develop a common
vocabulary in order to communicate successfully [12,13].
As our society consists of many groups, defined either by
geographical location, age, profession, or other criteria, we

notice two antithetic tendencies that dominate the dynamics of
the language: on the one hand, speakers affiliated to a social
group will try to reach consensus on a variant in order to
describe a particular situation. On the other hand, since this
variant can differ from group to group, an element of rivalry
between various forms stems from the interactions between
speakers belonging to distinct social groups [9]. Our aim is
to understand how the competition among word variants is
resolved in such a society composed of several groups of
speakers connected with each other. To this end we investigate
how long it takes, on average, until only one variant is being
used throughout the speech community and which conditions
have to be met for consensus to be a realistic outcome.

In the following, the term “language” is used to describe
spoken language. It differs from written language insofar as
it changes on a faster time scale, perceivable in the course of
a human lifetime. The records of written language often do
not capture the whole spectrum of changes in a language over
shorter periods [3,14,15], the reason being that some of them
are alterations in pronunciation, which take a long time until
they become reflected in the way the words are written, and
others are short-lived vogue words.

This paper is organized as follows: we first revisit the
utterance selection model of language change in a group of
speakers introduced by Baxter et al. [1]. Then we study the
formation of consensus in a system composed of two coupled
groups. With the aid of stochastic simulations, we find a scaling
law for the fixation time of a variant and discuss its two
asymptotic regimes. We characterize the dependence of the
boundary between the asymptotic regimes on the parameters of
the model. Finally, we generalize to systems of many coupled
groups on two types of networks and again obtain scaling laws
that we explain using analogies with well-known problems of
statistical mechanics.
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II. UTTERANCE SELECTION MODEL

Baxter et al. [1] formulated an evolutionary model of lan-
guage change, termed utterance selection model of language
change, based on the ideas presented by Croft [9]. It describes
a very simple language, consisting of only one lingueme, i.e.,
one object or situation to be described, and V variants that
can be used in referring to it. The underlying social network
consists of N speakers who use these variants according
to their knowledge of language, with certain frequencies,
which are stored in the vectors �xi = (xi1,xi2, . . . ,xiV ), with
i = 1, . . . ,N . These frequencies are normalized to 1 for each
speaker:

V∑
v=1

xiv(t) = 1, ∀i,t. (1)

This probabilistic representation of vocabulary can be en-
countered in various other models of language evolution
[16–18]. The state of the population can be given at any
given time t through the entirety of agents’ vocabularies
X(v) = [�x1(t), . . . ,�xN (t)]. The speakers are placed on the
nodes of a graph, and the probability of two of them interacting
is given by the weight of the link connecting them.

The interaction algorithm between individuals relies on the
following steps: first, two speakers are chosen at random,
with the condition that they are connected by a link. In the
next step, each of the speakers produces a string of tokens of
length T . The tokens are instances of the V variants, uttered
according to frequencies x ′

iv . If token production is unbiased,
these frequencies are equal to the entries in the speaker’s
vocabulary vector, x ′

iv = xiv . If there is a bias in production,
the probabilities to utter tokens of a particular variant are a
linear transformation of these: x ′

iv = ∑
w Mwvxiw(t), where

the matrix M , same for all speakers, can be seen as the effect of
universal forces such as articulatory constraints, according to
Ref. [1]. The columns of M sum up to 1 so that the production
frequencies are properly normalized. One of the effects of
bias is that the speaker can also produce tokens of a variant
that in her vocabulary has frequency zero, thus introducing
innovations into the language. After both speakers have uttered
their tokens, their vocabularies are updated, taking into consid-
eration the old entries of the frequency vectors, the utterances
of the speaker herself, as well as those of her interlocutor:

�xi(t + δt) = �xi(t) + (λ/T )[�ni(t) + Hij �nj (t)]

1 + λ(1 + Hij )
. (2)

In this expression, �ni and �nj are the number of tokens of
each variant that have been uttered by speakers i and j ,
respectively, so that

∑V
v=1 niv = T .

The parameter λ gives the pressure for change exerted by an
interaction on the vocabulary of the speaker. Since a speaker’s
vocabulary does not undergo dramatic changes in the course
of an interaction, the value of λ is generally taken to be small.

The parameter Hij stands for the weight given by a speaker
i to her interlocutor j ’s utterances relative to her own. Thus,
for Hij smaller than 1, the interlocutor has a lower status
than the speaker herself, whereas values of Hij larger than
1 would indicate a high status ascribed to the interlocutor
by the speaker. In the update rule Eq. (2), the denominator

ensures the proper normalization of the frequencies. The
steps of the algorithm are repeated until either there is only
one variant spoken in the community (for unbiased token
production) or another stationary distribution is reached (for
biased production).

If the variant production is unbiased, with time all but one
variant will disappear, meaning that speakers will eventually
reach consensus. How this is reached and how long it takes
depends on the parameters of the model. If Hij is small, the
speaker will mostly influence herself and, thus, if she has a pre-
ferred variant, use this even more often, so that for most of the
time each speaker will favor one variant over the others, but this
preference can change due to interactions with other agents.
If a variant has frequency zero in a speaker’s vocabulary, it
means it has fallen into disuse, so this speaker will never utter
it again. For large values of Hij , speakers have great influence
on each other, and variants will spread across the community.
The system converges toward a quasistationary distribution,
from where a fluctuation will eventually drive it to consensus.

If tokens are produced with bias, the situation changes:
the bias toward a particular variant prevents it from going
extinct, but the frequency distribution can be such that either
one variant is more common than the others, or several variants
are used with more or less equal frequency [1].

In the following, we will concentrate on unbiased token pro-
duction and study a simplified version of this model: the links
between speakers have equal weight (the pairs of speakers will
interact with the same frequency), all speakers ascribe the same
weight to their interlocutor’s utterances (Hij ≡ h), and we
restrict the number of variants to V = 2. From Baxter et al. [1]
we learn that this already allows the study of the most relevant
types of behavior. They find that the time for the extinction of
one variant (and thus fixation of the other) in a group of speak-
ers is proportional to the system size squared, tc ∝ N2. In Ref.
[19], they show that the time to consensus is asymptotically
network-independent. In the limit h → ∞, one can consider
an asymmetric version of the utterance selection model, where
in an interaction each agent behaves either as a speaker or as
a listener. The case where the speaker is endowed with the
ability to invent new variants and produces one token only per
interaction is a minimal version [20] of the model known as the
“naming game” [21,22]. In the two-variant version, the dynam-
ics corresponds to the voter model [23,24], one of the simplest
models of opinion formation [25]. In contrast, the symmetric
utterance selection model, which we are considering in this
paper, exhibits a much richer dynamics stemming from each
agent being both speaker and listener at the same time.

III. MULTIPLE GROUP UTTERANCE
SELECTION MODEL

The utterance selection model gives a good insight into the
linguistic dynamics of a group. However, society consists of
many groups, with relatively weak connections among them.
Thus, to better understand the mechanisms that cause lan-
guages to change at word level, we will examine this model in
a wider context made up of several interacting nonoverlapping
groups. Blythe [26] studied the fixation probability and time
for a variant in a subdivided population for two different
spatial arrangements. For a system in which the groups are
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well-mixed, the time to consensus is proportional to the
number of groups squared. If the groups are placed on a hub-
and-spoke network, where in an interaction between groups
one of these must be the hub, the fixation time approaches a
constant, even in the limit of infinitely many groups. This is
because, although the variants of the hub spread much faster,
the large number of spokes ensures a finite fixation probability
of a variant from one of these groups. The question concerning
the influence of community structure on the emergence of
consensus has also been addressed in the context of other
models of language dynamics and opinion formation with two
competing variants like the naming game [27,28], the voter,
and the so-called AB model [29,30]. In our approach, we
analyze in detail the influence of increasingly strong separation
of the groups on the time that a variant takes to fixate in the
whole speech community.

In this context, we introduce a new parameter, f , represent-
ing the “group affinity,” that is, the probability of a speaker
choosing her interlocutor from the same group. 1 − f is then
the probability that the speaker chooses a conversation partner
from another group. Sood et al. [31] studied this kind of
varying coupling strength in the context of the voter model by
allowing each agent belonging to a fully connected “clique”
to be connected by an adjustable number of random links to
agents belonging to a second clique. A similar parameter was
employed by Baronchelli et al. [32] to describe the degree
of mixing of two speech communities as the readiness of
individuals belonging to one community to learn the language
of the other community instead of their own.

Having restricted the number of variants to two, we can
define a measure of consensus in a group, x0, as the average
over the first component of the frequency vector for all speakers
(the frequency with which the first variant is used in the group),
this being a number between zero and one. If x0 is close to the
ends of the interval, throughout that group one variant is used
for most of the time. If, however, the value of x0 is close to the
center of the interval, speakers use both variants in significant
proportions. This does not tell us, however, whether a speaker
uses one preferred variant, which differs from speaker to
speaker, or all use both variants with comparable frequencies.

Regarding the initial conditions, we will fix half of the
groups on one variant and the other half on the other variant.
This way, the average time to consensus is larger than
for uniformly distributed initial frequencies, because before
global consensus on a particular variant can be reached, the
variants have to propagate across the groups. Random initial
conditions would provide an already shuffled configuration,
thus eliminating this mixing time. The time step between
interactions, δt , is set to 1 for all simulations presented below.

A. Two groups

The first step when moving from one group of speakers to a
system composed of many groups is the coupling of two such
entities.

“Just imagine two groups living in two neighboring
villages, speaking similar varieties of one language. With
the passing of time, their language undergoes constant
transformations, but as long as the two communities

FIG. 1. (Color online) Scaling plot of the time to consensus as a
function of group size N and group affinity f for two coupled groups.
There are two asymptotic regimes, for strong and weak coupling,
respectively. The boundary is marked by the intersection N×(1 − f )
of the curves fitting the power laws. The other parameter values are
T = 1, λ = 0.01, h = 0.01. Inset: The same curves before rescaling.

remain in close contact, their varieties will change in
tandem: innovations in one village will soon spread to the
other, because of the need to communicate. Now suppose
that one of the groups wanders off in search of better land,
and loses all contact with the speakers of the other village.
The language of the two groups will then start wandering
in different directions, because there will be nothing to
maintain the changes in tandem” [10].

Since the further away they are from each other, the less
they interact, our parameter f can be seen as a measure for the
distance between the villages.

To understand the effect of the coupling, we impose the
condition that the two groups are of the same size. As
mentioned above, this scenario has been studied for the voter
model update rule by Sood et al. [31]. Varying the group size
N , we numerically investigate the dependence of the average
time to consensus on the group affinity parameter f (Fig. 1)
and obtain scaling behavior:

tc(f,N ) = N2F [(1 − f )N ]. (3)

Here the scaling function F also depends on the number of
tokens uttered by each speaker in an interaction, T , the pressure
for change on the vocabulary of a speaker, λ, and the relative
influence of the interlocutor, h.

There are two asymptotic limits for the time to consensus,
which are described by power laws. For weak coupling
between groups (large values of f ), we find

tc(f,N ) ∝ N (1 − f )−1. (4)

In contrast, if the coupling is strong, the function F is constant,
and, therefore, the average time to global consensus is given
by

tc(f,N ) ∝ N2. (5)

The boundary between these two asymptotic regimes, N×,
defined as the intersection of the above power laws, marks
the transition from the one-group to the two-group behavior.
While for group sizes N > N×, one is in the strong coupling
regime, the two groups are only weakly coupled for N < N×.
The reason for this is that for the same value of the group
affinity f , a smaller group will restore inner consensus faster
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FIG. 2. (Color online) The dependence of the boundary between
the asymptotic limits of the scaling law, (1 − f )N×, on the magnitude
of change in vocabulary λ is linear for λ < 1/h. For large values
of λ, the function η becomes independent of this parameter. Other
parameter values are N = 2 and T = 1.

and, thus, its language will remain isolated from the one of
the other group. In the case of larger groups, the new variant
propagates more easily, such that the two groups share both
variants for a longer time.

We find that the value of the crossover group size, N×,
depends on the parameters T , λ, and h as follows:

(1 − f )N× = 1

T
η(λ,h). (6)

The result of N× being inversely proportional to T , the
number of tokens uttered, is in accordance with Baxter et al.
[1], where they find that T enters the dynamics as a time scale.

Due to the scaling behavior, Eq. (3), the location of the
crossover point can either be found by varying N for fixed f

or vice versa. We choose to keep the group size N fixed and
vary the coupling strength f to determine η(λ,h), which has a
complex structure in terms of the parameters λ and h, as can
be seen in Figs. 2 and 3.

The parameter λ sets the magnitude of change in vocabulary
during an interaction. Investigating the dependence of the
function η on λ with the aid of simulations for different values
of h, we find that in the limit of small λ, η depends linearly
on this parameter. This reflects the fact that for λ → 0, when
interactions cannot change the vocabularies of the speakers

FIG. 3. (Color online) For very small values of the relative
influence of the interlocutor, h, the boundary (1 − f )N× does not
depend on this parameter. In the limit of large h, the boundary
becomes proportional to 1/h. The values of the other parameters
are N = 2 and T = 1.

any more, the number of groups makes no difference. On the
other hand, for very large λ, η becomes constant, since the
update rule Eq. (2) is now independent of λ, cf. Fig. 2.

Regarding the role that the interlocutor’s influence, h, plays
in setting the value of the crossover, we can again characterize
the limiting cases. For h very small, one is in a noninteracting
regime, where the utterances of the interlocutor hardly cause
any changes in an agent’s vocabulary. The speakers adopt the
other variant very reluctantly, and the groups will only adjust
their behavior toward each other if they are quite large, so
that enough speakers from both groups have the chance to
interact. In this limit, η is independent of h, cf. Fig. 3. In
contrast, a large h stands for a very strong influence of the
interlocutor, so that the speaker chooses these utterances as
her new vocabulary, and the old frequencies no longer play
a role. This leads to speakers easily adopting the variant
of an interlocutor from the other group and, hereby, to a
strong coupling between groups. This, however, does not
mean that consensus is reached faster, since the differences
in vocabulary between speakers do not decrease significantly.
In this last regime, the dependence of η on h is a power
law with exponent −1. This means that for h → ∞, N×
approaches zero. Thus, the dynamics becomes independent
of f , and the two groups will behave like one group. We
see, therefore, that a large h can counteract the effect of group
segregation. A further observation is that for small λ, η displays
a distinct behavior around the point h = 1. Approaching this
point from below, the interlocutor’s influence is large enough
to allow the two agents involved in the interaction to align
their vocabularies, and thus smaller group sizes are sufficient in
ensuring a well-mixed behavior between the groups. At h = 1,
the utterances of the speaker and her interlocutor have the
same weight, which enables rapid alignment of the speakers’
vocabularies through the dissemination of the variants across
the groups. For h larger than 1, the relative influence of
the speaker’s own utterances decreases, and the interlocutor’s
utterances dominate the interaction. The behavior of η in this
parameter range is symmetric with respect to h = 1.

To gain some understanding regarding the dynamics of
the two groups in the various coupling regimes, we plot the
consensus measure x0 for each group (Fig. 4), considering
three different values of the group affinity f corresponding
to weak, intermediate, and strong coupling, respectively. In
Fig. 4(a) we see a trajectory where the groups ignore each other
for most of the time. In Fig. 4(b), the more frequent interactions
of the curves representing the measure of consensus in each
group is the manifestation of a stronger coupling. Finally, in
Fig. 4(c), the groups are coupled so strongly that they share
the amount of consensus on a variant.

In the following, we will discuss the weak and strong group
coupling regimes in more detail.

1. Weak coupling

To understand Eq. (4), remember that f was the probability
for a speaker to interact inside her own group. Then 1 − f is
the probability of an interaction with a speaker from the other
group, and

τ : = 1

1 − f
(7)
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(a) (b) (c)

FIG. 4. (Color online) Typical time trajectories of the consensus measure x0 of two groups with (a) weak (f = 0.9999), (b) intermediate
(f = 0.998), and (c) strong (f = 0.9) coupling. Other parameter values: T = 1, λ = 0.01, h = 0.01.

is the average time between two interactions of this type. If τ is
much larger than the average time to consensus in a group, the
two groups will evolve independently, each of them reaching
internal consensus, and perceive the interactions with the other
group only as a series of perturbations [Fig. 4(a)]. Eventually,
one of the perturbations leads one group to fixate on the variant
spoken by the other group. The probability that the group
will adopt the variant that the other group has agreed upon
is p = 1/N (since in every interaction there are two speakers
involved, in a conversation between groups one speaker out of
N is “converted” by her interlocutor and then disseminates the
opinion in her own group). The dynamics we are dealing with
here is the well-known “gambler’s ruin” problem [33].

If τ is the average time between intergroup interactions, the
number of such interactions until consensus is reached at time
t is

n ≈ t

τ
= t (1 − f ).

Out of n trials, the last one is successful, so the probability that
the nth perturbation will lead to global consensus is

P (n) =
(

1 − 1

N

)n−1 1

N
.

Since P (n) are the terms of a geometric progression, the
probability is properly normalized. The average time to
consensus is then given by

tc = τ

∞∑
n=1

nP (n) = N

1 − f
,

which corresponds to the left part of the scaling law in Fig. 1.

2. Strong coupling

For small values of f , the coupling between the groups
is so strong that the groups will evolve toward each other,
only to start diffusing together after reaching a common value
[Fig 4(c)]. The two groups thus turn into one large group, a
behavior already described by Baxter et al. [1], with the time
to consensus proportional to the system size squared:

tc ∝ N2. (8)

Plotting the parameter measuring consensus for each of the
two groups as a trajectory in (x0,1,x0,2) coordinates [Fig. 5(a)],
the dynamics is that of a biased random walk along the main
diagonal of the square, which is quasi one-dimensional. Since
there are only two absorbing points, namely (0,0) and (1,1),

with increasing system size the “escape windows” become
smaller and the time for one of them to be reached (which
is the condition for consensus) diverges. This is commonly
known as a narrow escape problem [34].

With increasing f , this random walk frays more and more,
to the point where it fills out the entire square [Fig. 5(b)
displays the trajectory shown in Fig. 4(b)]. This particular
two-dimensional narrow escape problem was solved by Singer
et al. [35]. The mean first passage time shows a logarithmic
correction in N , with respect to the previous result:

tc ∝ N2 ln N. (9)

Being at the crossover of the strong and weak coupling
regimes, the range of f for which this dynamics is observed
is so narrow that N2 and N2 ln N cannot be distinguished in
our numerical data. The N2-dependence, however, is in good
agreement with the simulation results.

B. Many groups

Going one step further, we now fix the number of speakers
in a group and instead vary the number of interacting groups.
Simulations result in a scaling plot, similar to the one for
two coupled groups. However, here the underlying phenomena
are different. The scaling function for the average time to
consensus has the form

tc = N2
GF̃ (1 − f ), (10)

(a) (b)

FIG. 5. (Color online) (a) The trajectory from Fig. 4(c), for strong
group coupling, here in (x0,1,x0,2) coordinates. The dynamics is
that of a one-dimensional random walk with absorbing boundaries.
(b) The trajectory for intermediate group coupling from Fig. 4(b). It
is the dynamics of a two-dimensional random walk in a rectangular
area with reflecting boundaries and two absorbing points.
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× × ×
〉〈

FIG. 6. (Color online) A typical coarse-grained trajectory of the
consensus measure for two groups (x0,1 and x0,2, respectively), as well
as the consensus measure throughout the system, 〈x0〉, for NG = 256
groups with group affinity f = 0.5 (other parameter values: N = 2,
T = 1, λ = 0.01, h = 0.01). The points represent averages over 1000
simulation runs. For larger numbers N of speakers in a group, the
trajectory looks similar.

where again the function F̃ depends also on the other
parameters of the model. In a system with all-to-all connections
between groups, for strong coupling the one-group result is
found again, for the system size NNG:

tc ∝ (NNG)2. (11)

If the groups are weakly coupled, in addition to the number
of groups and the group size, the average time between
intergroup interactions plays an important role:

tc ∝ N2
GNτ. (12)

On a two-dimensional square lattice, strong coupling leads
to the same results as in the well-mixed case, thus tc is given by
Eq. (11). For large values of the parameter f , corresponding
to weak coupling between the groups, there is a logarithmic
correction due to the spatial arrangement of the groups:

tc ∝ (
N2

G ln NG

)
Nτ. (13)

In the following, we will provide a more detailed description
of the system’s behavior for both the well-mixed and the two-
dimensional lattice configurations.

1. Well-mixed system

The simplest instance of a system composed of many
connected groups is obtained by placing the groups on the
nodes of a complete graph, meaning that each group interacts
with each other group with equal probability.

If f is small, i.e., the coupling between groups is strong,
the two variants will diffuse across all the groups, both being
used in each group for most of the time. In Fig. 6 we see that
the parameter measuring consensus for each group, x0,i , takes
values all over the interval [0,1]. Again, we recover the time
to consensus for one group, i.e.,

tc ∝ (NNG)2. (14)

In the regime of large f , which denotes weak coupling,
the average time for each of the two groups engaged in an
interaction to achieve inner consensus is very short compared
to the time scale τ of interactions between groups. Figure 7
shows that the parameters x0,i have either value 0 or 1 for

× × × × ×
〉〈

FIG. 7. (Color online) A coarse-grained trajectory of the consen-
sus measures x0,1, x0,2, and 〈x0〉 in a system of NG = 256 groups
with group affinity f = 0.99 (values of the other parameters: N = 2,
T = 1, λ = 0.01, h = 0.01). The points are averaged over 1000
simulation runs.

most of the time, indicating the state of inner consensus.
The parameter 〈x0〉, however, which represents the measure
of global consensus, fluctuates as a group changes its inner
consensus from one variant to the other. When all groups
speak the same variant, 〈x0〉 reaches the value 0 or 1 and
global consensus is achieved.

When considering interactions between groups, there are
three possible outcomes. If before the interaction both groups
shared consensus on the same variant, they remain in this
state. If they were using different variants after interacting,
each of them can switch to the other variant with probability
p = 1/N (as discussed already in the two-groups case). If both
change to the respective other variant, globally it makes no
difference, since the number of groups speaking each variant
will be the same as before the interaction. If, however, only one
of the groups changes to the variant of the other, the global
balance is shifted toward one of the variants. This behavior
corresponds to the voter model with link update [31,36,37], if
time is rescaled so that on average one group opinion change
takes place during every intergroup interaction. Here, instead
of choosing a node and updating its opinion according to a
randomly chosen neighbor, one chooses a link and updates the
opinion of one of the two nodes involved. In networks with
homogeneous degree distribution (here we have a complete
graph), this choice has no effect on the results. The stochastic
process is a one-dimensional random walk on the interval
[0,N ] with absorbing boundaries [38], which for our initial
conditions (half of the groups starting with consensus on
variant 0 and the other half on variant 1) results in a mean
first passage time

tc ∝ N2
G.

On the much shorter time scale of a group changing opinion
as a consequence of an interaction with its neighbor, the
dynamics inside the group is again the one of the gambler’s
ruin problem, which we have encountered in the case of two
groups with weak coupling. Summing up, the time to reach
consensus in the setting of weakly connected groups on a
complete graph is

tc ∝ N2
GNτ. (15)
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FIG. 8. (Color online) Scaling plot of the time to consensus for a
well-mixed system with different number of groups and fixed group
size. Inset: the horizontal scaling factor obtained by shifting the curves
in order to obtain the master curve. For NG < 32, the scaling is
different from the one for large NG due to finite-size effects. Other
parameters: N = 4, T = 1, λ = 0.01, h = 0.01.

In the scaling plot in Fig. 8 we see that the left part of the
curves for NG < 32 does not overlap with the master curve,
but is slightly parallel to it. This is due to finite size effects,
since consensus for a small number of groups is reached in
a somewhat different way than for large NG. For NG = 2,
global consensus is reached when one of the groups fixates
on the variant of the other, so only one change of opinion is
needed. If there are more than two groups involved, a group
can change opinion several times before finally all line up,
due to interactions with other groups using different variants.
Simulations suggest that the boundary where the many-group
behavior sets in is NG = 32 (see inset of Fig. 7).

2. Groups on a lattice

We now place the groups on a two-dimensional square
lattice, with each lattice site being occupied by exactly one
group. Each group is thus allowed to interact with its four
direct neighbors, and the boundary conditions are periodic. As
in the well-mixed case, we obtain a scaling plot for the time to
consensus (Fig. 9). For frequent interactions between groups,
we have as before

tc ∝ (NGN )2. (16)

FIG. 9. (Color online) Scaling plot of the time to consensus
for a system of groups on a square lattice. Inside the groups the
configuration is well-mixed. Inset: horizontal scaling factor, obtained
by shifting the simulation data curves so that they all fall onto the
master curve. Other parameters: N = 2, T = 1, λ = 0.01, h = 0.01.

The difference with respect to the well-mixed case is expressed
through a ln NG correction. This is not surprising, since we
are again looking at the voter model, this time on a two-
dimensional lattice. For this, the time to consensus regardless
of the initial conditions has been found to be tc ∝ NG ln NG

([24,39]). Imposing the initial conditions that half of the groups
start with consensus on one variant and the other half on the
other variant, this turns into tc ∝ N2

G ln NG on the time scale
τ . Completing the picture with the time needed for a group to
change its opinion, proportional to the group size N , the final
result is

tc ∝ (
N2

G ln NG

)
Nτ. (17)

Thus, as expected, if groups display a spatial arrangement
and interact only with their next neighbors, diversity of variants
is preserved longer than in a system where all groups can
interact with each other. This slower convergence time due to
spatial constraints has also been found for the naming game
and the AB model [40,41], with individual agents placed on
the nodes of a lattice.

IV. CONCLUSIONS

In this work, we have extended the utterance selection
model [1] by giving the underlying social network a more
complex structure, allowing for the existence of well-delimited
groups inside which speakers interact more often than with the
rest of the speech community. We introduced the group affinity
f , giving the probability that a speaker chooses his interaction
partner to be from the same group, which we used for tuning
the strength of the interactions between groups. Our object of
interest, the average time until consensus is reached throughout
the system, turns out to be highly sensitive to this parameter.
Group structure is important, in that it gives rise to various
types of behavior, depending on the size and the number of the
groups, as well as the status of the interlocutor.

Upon investigating consensus formation in two interacting
groups, we obtain a scaling law for the time needed until
only one variant is used throughout the speech community.
The results tell us that global consensus would be seriously
impeded if the groups were too large or the interactions
between them very scarce. The asymptotic limits of the
scaling function show that for strong coupling the entire
system behaves like one large group, and global consensus
is reached in an average time proportional to the group size N

squared. If we further reduce the coupling strength, the average
consensus time becomes proportional to the time interval
between intergroup interactions, τ = 1/(1 − f ), and the group
size: tc ∝ τN . Global consensus is achieved when one of the
groups switches to the variant used by the other group, the
dynamics corresponding to the gambler’s ruin problem.

The boundary between the one-group and the many-group
regime has a nontrivial dependence on the parameter h, which
represents the influence that the interlocutor’s utterances have
on the vocabulary with respect to the speaker’s own. When this
parameter is very small, the speakers ignore each other almost
completely, and the variants mix inside a group only if the latter
is large enough. With increasing h, speakers start taking into
account the utterances of their conversation partner, hereby
contributing to the mixing of variants and thus decreasing the
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critical system size. For very large h, the speakers become
“amnesic,” meaning that their old vocabulary hardly plays a
role any more and they orient their new vocabulary almost
entirely after the utterances of the interlocutor. Due to the
speakers being highly influenceable, variants spread across
the whole system, which behaves like one large group in the
limit h → ∞. This means that a large h can counteract even
very weak coupling of the groups.

For many coupled groups, a strong connection between
them induces a single-group behavior, as all speakers start
using both variants, thus again consensus is reached in a time
proportional to the total number of speakers squared (NNG)2.
If groups are more isolated, on the time scale of intergroup
interactions the behavior is more complex. Even though groups
might reach inner consensus on a variant, they might change
their opinion several times, after interacting with other groups
using different variants, before all agree on one variant and
achieve global consensus. This is the dynamics of the voter
model with link update for NG > 2 and is quite different from
the two-group case, where it was enough for one group to
change opinion once. As the number of groups is increased,
we observe a finite size effect in the scaling factors. Again,
the average time between two interactions between speakers
belonging to different groups plays an important role. For a
system where the groups are placed on a well-mixed network,
the average time to consensus is tc ∝ N2

GNτ . In the weak
coupling limit, the quadratic dependence on the number of
groups is owed to the voter model dynamics. Inside a group,
one speaker out of N introduces a new variant as a result
of an interaction with another group (which takes place on
average every τ time steps). Since this dynamics is equivalent

to the gambler’s ruin problem, a Nτ term arises. If the groups
are positioned on the sites of a square lattice, a logarithmic
correction ensues due to the spatial arrangement, and tc ∝
(N2

G ln NG)Nτ . In the same way as in the case of two groups,
the parameter h controls the position of the boundary between
the asymptotic regimes in a complex manner.

We thus learn that not only strong segregation of the various
groups but also excessive partitioning of the speech community
can lead to difficulties in reaching global consensus in
a realistic period of time. However, “insecure” speakers,
ascribing their interlocutors a much higher importance than
themselves and adopting their vocabulary, can accelerate the
establishing of a convention.

Latest technological developments are making records of
spoken language more and more accessible: the Corpus of
Contemporary American English (COCA) [42] contains a
large record of digitalized television and radio shows and
offers the tools to compare relative frequencies of words.
Following a different approach, New et al. [15] have set up
a data base of movie subtitles collected from the Internet and
used it to approximate word frequencies in human interactions.
Data collections of this type could offer valuable insights
for future research related to the dynamics of linguistic
variants.
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