
PHYSICAL REVIEW E 88, 022804 (2013)

Impact of compatibility on the organization of mutualistic networks
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Distinct relationships such as activation, inhibition, cooperation, and competition are not established
independently but in a correlated manner in complex systems. Thus the patterns of one type of interaction
may reflect the impacts of other classes of interactions, but its quantitative understanding remains to be done.
Referring to the plant-pollinator mutualistic networks, here we propose and investigate the structural features
of a model bipartite network, in which the mutualistic relationship between two different types of nodes is
established under the influence of the compatibility among the nodes of the same type. Interestingly, we find
that the degree distributions obtained for extremely broad compatibility distributions are similar to those for a
constant compatibility, both of which deviate from those for the Gaussian compatibility distributions. We present
the analytic arguments to explain this finding. Also the dependence of the topological similarity of two nodes on
their compatibility is illustrated. We discuss the application of our findings to complex systems.
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I. INTRODUCTION

Numerous species living in a region, individuals in a social
group, and companies in an economic sector commonly form
a variety of relationships among themselves to utilize limited
resources and eventually flourish and prosper in a given
system. The organizations of distinct classes of interactions
can be captured by the network approach, which has been
successful in unveiling the underlying design and working
principles of complex systems [1]. The network structural
characteristics may vary with the type of interaction as
best seen in the ecological networks of predator-prey, host-
parasite, plant-pollinator, anemone-fish, and so on [2,3]. For
instance, the predator-prey networks display high modularity,
as predators compete with one another, unwilling to share
a prey [4]. On the contrary, the plant-pollinator mutualistic
networks show high nestedness implying that pollinators tend
to share plant species and also plants share pollinators [4,5].

Such distinct relationships can coexist in a given system,
forming multiple layers of networks that are not independent
[6,7]. Therefore much efforts have been made to identify
layered structures and understand the effects of their in-
terdependencies on the structure and function of diverse
complex systems [8–12]. Nevertheless, the establishment and
the interplay of those multiple layers of networks remain to be
illuminated.

In an ecological community, insects get nutrients from
plants during pollination and the plant species are reproduced
by the pollination of animal species. The set of such mutualistic
relationship among the species in a community can be
represented by the mutualistic network and its topology and
design principle have attracted much attention. To explain how
the number of species, links, and the fraction of generalists and
specialists are determined in the mutualistic networks, various
computational models have been proposed and tested against
the real-world data [13–22]. One of the main findings is that
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the species abundance and its asymmetry between plants and
pollinators are supposed to be at work in designing the mutual-
istic networks [13,14]. It was also shown that the evolutionary
duplication and divergence can be relevant factors, similarly to
the evolution of protein-interaction networks [15]. A specific
mutualistic pair of a plant and a pollinator is established
depending on their biological matching, such as the proboscis
length and the nectar depth [17,19]. Thus the model networks
constructed depending on the biological matching between
plants and pollinators have been investigated [16–22].

Recently we have shown that the preferential selection of
partners can be the mechanism responsible for the observed
topology of many mutualistic bipartite networks [23]. The
functional form, linear or sublinear, of the preferential selec-
tion is shown to determine the asymptotic behaviors of the
degree distribution, and we argued that the linear preferential
selection can be changed to a sublinear one due to the
competition between the same types of nodes. The compet-
itive relationship between pollinators arises as the nutrients
are provided by a limited number of plants, and similarly, the
one between plants originates in a limited number of animals
capable of pollinating plants.

In reality, the strength of competition can be varying from
pair to pair. Moreover, a species may be neutral or favorable,
not hostile, to another, in pollinating the same plant. If we use
compatibility to denote the positive or negative relationship
between the species of the same type, we can expect that two
animal species with positive compatibility will pollinate the
same plant species more likely than those with negative com-
patibility. We emphasize that the compatibility considered in
this work is the one between the species of the same type, which
should be distinguished from the biological matching between
a plant and a pollinator considered in other previous works.
The distribution of compatibility over node pairs thus can be a
relevant factor to the organization of mutualistic relationship
in a community. To address these issues quantitatively, we
here propose and study a model bipartite network representing
the mutualistic relationship between two distinct types of
nodes, the evolution of which is affected by the compatibility
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between nodes of the same type. It was proposed also in
Ref. [21] that the relationship and the hierarchy of the animals
foraging for resources provided by plants are the fundamental
aspects of mutualistic networks as well as trophic ones. For
the compatibility distributions displaying different asymptotic
behaviors, we derive the connection probability of a node
(plant) to a newly introduced node (pollinator) as a function
of its degree and in turn the degree distributions, utilizing the
similarity to the random-walk with variable step lengths or the
so-called Lévy walk [24]. The degree distribution is found to
take a power-law form when the compatibility is a positive
constant for all pairs of nodes. In contrast, if the compatibility
distribution is symmetric and broad, the degree distribution
decays faster than a power law. However, interestingly, the
deviation from a power-law form is less significant when the
second moment of the compatibility distribution diverges than
when it does not. We also examine the local connectivity
pattern by computing the topological similarity (TS) between
two nodes, defined as the number of their common partners.
While the expected value of TS is negligible for large system
sizes, it is shown to be of order 1 for large compatibility.

Our study illuminates the multiple relationships present in
the ecological community. We consider two kinds of networks:
One is the pollinator-pollinator compatibility network and the
other is the plant-pollinator mutualistic network. To address
this issue quantitatively, we focus on the impacts of the
compatibility distribution on the topology of the mutualistic
bipartite network. This paper is organized as follows. In Sec. II,
we introduce the studied model network and describe the com-
patibility distributions considered in this work. The effective
degree of a node and the degree distributions are derived and
checked numerically with focus on their dependence on the
functional form of the compatibility distribution in Sec. III. In
Sec. IV, we obtain the TS between two nodes as a function
of their compatibility and present their scaling properties.
We summarize our findings and discuss their implications
in Sec. V.

II. MODEL AND COMPATIBILITY DISTRIBUTIONS

Compatibilities among nodes are expected to play an
important role in the organization of networked systems, which
has been studied in the context of the evolution of unipartite
networks [25]. In this section we introduce the compatibility-
based growing bipartite network (CBGBN) model and the
compatibility distributions to consider in this work.

Initially, there are �B nodes of type A and �A nodes of
type B. Type A and B represent “animal” and “plant” in the
plant-pollinator networks or two distinct types of nodes in
general bipartite networks, e.g., “country” and “products” in
the international-trade networks [23]. For the �A + �B nodes
at the initial stage, every pair of nodes of different types are
connected. At each time step τ = 1,2,3, . . . , a new node τ of
type A (B) is introduced with probability PA (PB), which is
connected to �A (�B) preexisting nodes of type B (A). Here
PA + PB = 1 and we index each node by its birth time. For the
selection of partners, we first assign the compatibility value xiτ

to every node i of the same type as the new node τ , representing
how compatible i and τ are. Then the effective degree K�(τ )
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FIG. 1. (Color online) Compatibility-based growing bipartite
network model. (a) Selection of partners of a new node. A new
node j of type A (triangle) is introduced with probability PA at a
time step j in this example. The four preexisting type-A nodes are
assigned xij (i = 1,3,5, and 7 in this example) representing their
compatibility with the new node j . The effective degrees of type-B
nodes (� = 2,4,6,8; circle) are then evaluated by Eq. (1). If the sum
is negative, K� is set to zero. A node � of type B is selected with the
probability K�

K2+K4+K6+K8
, which is repeated �A times. (b) Schematic

plots of the compatibility distributions considered in this work, the
Dirac-delta function p(D)(x), the Gaussian function p(G)(x), and the
power-law distribution p(α)(x), from top to bottom. See Eqs. (3) and
(4) for their definitions.

of each node � of different type from τ is evaluated as

K�(τ ) = max
{
0, xi1τ + xi2τ + · · · + xik� τ

}
, (1)

where i1,i2, . . . ,ik�
are the indices of the current partners of the

node � and k� is the degree of the node � [Fig. 1(a)]. Note that if
the sum of the compatibilities is negative, the effective degree
is set to zero. A node � is then selected with the probability

K�(τ )∑′
r Kr (τ )

(2)

with
∑′

indicating the sum over the nodes of different type
from the new node. Therefore two nodes having the same raw
degree can have different selection probabilities depending on
how compatible their current partners are with the new one.
This selection is repeated �A times at every time step.

The compatibility x’s are chosen independently from a
given distribution p(x). If the compatibility is a positive
constant x0 for every pair of nodes of one type, the effective
degree K� of node � of the other type is simply given by
x0k� with k� the degree of �. The corresponding compatibility
distribution p(x) takes a Dirac-delta function form

p(D)(x) = δ(x − x0). (3)

For the case of the compatibility values varying from pair to
pair, we consider the Gaussian and the power-law distributions
given by

p(G)(x) = 1√
2π

e−x2/2σ 2
for x ∈ (−∞,∞) , and

(4)

p(α)(x) =
{

α
2(α+1)x

−1
0 for |x| < x0,

α
2(α+1) | x

x0
|−α−1 1

x0
for |x| > x0,
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respectively, where σ and x0 are constants and the exponent
α is here set to be larger than 1. These distributions are
symmetric, p(−x) = p(x), and thus have zero mean x =∫

dx x p(x) = 0. However, they display different large-|x|
behaviors; the nth moment xn = ∫

dx p(x) xn is finite for
every n with the Gaussian distribution, but it diverges for
n > α with the power-law distributions. As seen in Fig. 1(b),
the power-law distributions have fat tails compared with
the Gaussian distributions, implying the larger likelihood to
have extremely high or low compatibility with the power-law
distributions.

For p(G)(x) or p(α)(x), the compatibilities can be positive
or negative. A preexisting node � with many partners may
have some of them compatible with the new node while others
noncompatible or very hostile to the new node, thereby causing
the effective degree of � to be much smaller in magnitude than
its raw degree k�. This is contrasted to the situation under a
fixed compatibility, for which the effective degree is simply
proportional to the raw degree.

We derive the effective degree in the case of the Gaussian
and the power-law compatibility distribution in the next
section, which enables us to see the impacts of hetero-
geneous compatibility distributions on the organization of
the mutualistic relationship, as the mutualistic partners are
determined based on the effective degrees. One can consider
an asymmetric compatibility distribution, but the effective
degree then becomes proportional to the raw degree on the
average, which leads to the same results as for the case of
the constant compatibility. Also, for simplicity, we set the
compatibility between type-B nodes fixed at a positive constant
and consider the three classes of compatibility distributions for
type-A nodes. That is, only the compatibility between “animal”
nodes are considered. The obtained results can be extended to
the case of general compatibility distributions for both types
of nodes.

III. EFFECTIVE DEGREE AND DEGREE DISTRIBUTIONS

In this section, we derive the effective degree of a type-B
node determined by the compatibilities of its type-A partner
nodes with the newly arrived node. Using the results for the
effective degree, we next derive the degree distributions, for
type-A and type-B nodes, respectively, in the CBGBN model.
We begin with presenting the degree distributions obtained
from the simulations of the model.

A. Degree distributions from simulation

In Fig. 2, the degree distributions of type-B nodes obtained
from the simulation of the CBGBN model are presented for
different compatibility distributions. When the compatibility
is fixed, the degree distribution turns out to be a power
law, implying the presence of many hub nodes of type B,
originating in the selection probability proportional to the
node degree as in the Barabási-Albert model for unipartite
networks [26]. In contrast, for the Gaussian or the power-law
compatibility distributions, the degree distributions are shown
to have relatively fast-decaying tails, in a stretched-exponential
form as will be shown below. This reflects the interference
among the compatibilities, reducing the selection probability
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FIG. 2. (Color online) Degree distributions for the type-B nodes
in the CBGBN model that evolves up to the final time step τ =
4 × 104 with PA = 0.75,PB = 0.25,�A = 2, and �B = 3. For the case
of the constant compatibility 1 from p(D)(x) = δ(x − 1), the degree
distribution takes a power-law form nB (kB ) ∼ k−γB with γB � 2.4
very close to 5/2 as predicted in Eqs. (27) and (29). The dashed
line has slope −2.5. The degree distribution nB (kB ) for the Gaussian
compatibility distribution deviates from the power-law form more
significantly than that for the power-law compatibility distribution.
Inset: Degree distribution for type-A nodes. It is a power law nA(kA) ∼
k

−γA

A with γ � 3.6 close to 4 as given in Eqs. (28) and (29). The dashed
line has slope −4.

of hub nodes that would be as high as proportional to their raw
degrees without such heterogeneity of compatibility.

Given that the heterogeneity of compatibility leads the
degree distributions to deviate from a power-law form, one
would expect that the degree distribution decays faster for
a power-law compatibility distribution than for a Gaussian
one. However, Fig. 2 shows an unexpected result: The degree
distribution for p(α)(x) is closer to that for p(D)(x) than that for
p(G)(x) is. To understand this result, we investigate analytically
the effective degree and the degree distributions for each given
compatibility distribution, which offers a quantitative way to
understand the impacts of heterogeneous compatibility to the
global organization of mutualistic networks.

B. Scaling of the expected effective degree

The probability for a node � of type B to be selected as a
mutualistic partner of the new node τ of type A is determined
by its effective degree K�(τ ) in the CBGBN model. Recall that
the effective degree of a type-A node is set to be equal to its
raw degree. Given that the compatibility x’s are independent
each following a given compatibility distribution p(x), K�(τ )
depends on the raw degree k� and the compatibility distribution
p(x). The average of the effective degree Kk of the nodes with
degree k is evaluated as

Kk =
∫ ∞

0
dy yPk(y), with

Pk(y) ≡
∫ ∞

−∞
dx1 p(x1)

∫ ∞

−∞
dx2 p(x2) · · ·

∫ ∞

−∞
dxk p(xk)

× δ(x1 + x2 + · · · + xk − y). (5)
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Here we introduce the probability distribution Pk(y) of the
sum of k compatibility x’s each commonly following p(x).
We explore the behavior of Pk(y) to find out the functional
behavior of Kk .

We remark that the probability distribution Pk(y) corre-
sponds to the occupation probability of a random walker
after k steps with the step length x following the same
distribution as the compatibility distribution p(x). Pk(y) can
take a non-Gaussian form if the step length is not always finite
as in the Lévy walk [24].

If the compatibility takes a positive constant x0 under the
Dirac-delta-function-type compatibility distribution p(D)(x),
it holds that

P
(D)
k (y) = δ(y − k x0), (6)

leading the effective degree to be proportional to the degree k

as

Kk = k x0. (7)

To derive Pk(y) for the Gaussian and the power-
law compatibility distribution, let us consider the
Fourier transforms Qk(s) = ∫∞

−∞ dy Pk(y)eisy and q(k) =∫∞
−∞ dx p(x)eisx , which are related by Qk(s) = [q(s)]k . Once

Qk(s) is known, one can derive Pk(y) by the inverse Fourier
transformation

Pk(y) = 1

2π

∫ ∞

−∞
ds Qk(s)e−isy . (8)

For p(G)(x) in Eq. (4), its Fourier transform is of a Gaussian
form as well,

q(G)(s) = e−σ 2s2/2, (9)

and by using Eq. (8) we obtain

P
(G)
k (y) = 1√

2πkσ 2
e−y2/2kσ 2

. (10)

From Eq. (5), the effective degree is then given by

Kk = σ

21/2
k1/2. (11)

The effective degree for the Gaussian compatibility distri-
bution is therefore much smaller than that for the constant
compatibility in the regime k 	 1, meaning that the hub type-
B nodes are not so attractive to a new node as expected based
on their large degrees. The exponent 1/2 is characteristics of
the Gaussian compatibility distribution and selected power-law
ones as shown below.

The Fourier transform of the power-law compatibility
distributions p(α)(x) in Eq. (4) is expanded for sx0 
 1 as

q(α)(s) =
∫ ∞

−∞

α

2(α + 1)
min(|z|−α−1,1)ei(sx0)zdz

= α

α + 1

sin sx0

sx0
+ α

α + 1

∫ ∞

1
z−α−1 cos (sx0z)dz

= 1 − α

6(α − 2)
(sx0)2

+ α

α + 1

(
cos

απ

2

)
	(−α)(|s|x0)α + · · · , (12)

where 	(x) is the Gamma function and we used∫∞
1 dz z−α−1 cos (βz) = βα(cos απ

2 )	(−α) + 1
α 1F2(−α

2 ; 1
2 ,

1 − α
2 ; − β2

4 ) with the generalized hypergeometric
function expanded as pFq(a1 · · · ap; b1 · · · bq ; Z) �
1 + a1···ap

b1···bq
Z + O(Z2) for α not an integer. The quadratic

term s2 and the singular term sα govern the small-s behavior
of qα(s) for α > 2 and 1 < α < 2, respectively. We are
concerned with the behaviors of Qk(s) and Pk(y) for k 	 1.
If α > 2, Qk(s) takes a Gaussian form

Qk(s) � e−(σ 2
α /2)ks2

(13)

with σα =
√

α
3(α−2)x0. Note that Qk(s) is quite small for

s � x−1
0 in the limit k → ∞, making little contribution to

the integral in Eq. (8) and thus justifying the use of Eq. (8)
in the whole range of s. Qk(s) in Eq. (13) leads P

(2)
k (y) to

take the Gaussian form as in Eq. (10) with σ replaced by σα ,
and in turn, Kk is given by Eq. (11). On the other hand, for
1 < α < 2, it holds that

Qk(s) � e−ραk|s|α (14)

with ρα = α
α+1 | cos απ

2 |	(−α)xα
0 . In this case, one can find that

P
(α)
k (y) is expressed in terms of the scaling variable y/k1/α as

P
(α)
k (y) = 1

(ραk)1/α
P̃

(
y

(ραk)1/α

)
, (15)

where the scaling function P̃ (x) is defined as

P̃ (x) = 1

π

∫ ∞

0
cos(xt) e−tα dt (16)

and behaves as

P̃ (x) �
⎧⎨
⎩

	(1/α)
πα

exp
[− 	(3/α)

2	(1/α)x
2
]

for x 
 1,

	(α+1)
π

sin
(

πα
2

)
x−1−α for x 	 1.

(17)

The derivation of Eq. (17) can be found in Refs. [27,28] and is
also outlined in Appendix A. The scaling form of P

(α)
k (y) for

1 < α < 2 in Eq. (15) suggests that the effective degree scales
with the raw degree as

Kk =
∫

dy yP
(α)
k (y) � καk1/α (18)

with κα a constant depending on α as κα = ρ
1/α
α

∫∞
0 dt tP̃ (t).

We can summarize the above results for the effective degree
as

Kk ∼ kλ,

λ =
⎧⎨
⎩

1 for p(D)(x),
1
2 for p(G)(x) or p(α)(x) with α > 2,
1
α

for p(α)(x) with 1 < α < 2.

(19)

The nonlinear scaling of Kk with respect to k is found for
heterogeneous compatibility distributions p(G)(x) and p(α)(x)
in our study. Since the selection probability of a node is
proportional to its effective degree, our result implies that
preexisting nodes with large degrees are not as often selected
under the Gaussian compatibility distribution or the power-law
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degree distribution as in the case of the fixed compatibility.
A remarkable point is that such reduction of the selection
probability of hub nodes is the most significant with the
Gaussian compatibility distribution. For strongly broad com-
patibility distributions, the hub nodes recover their advantage
in the partner selection. As the exponent α in the power-law
compatibility distribution decreases, the scaling of the effective
degree gets closer to the linear one; one can see in Eq. (19) that
λ → 1 as α decreases down to 2. We can attempt to understand
this anomalous behavior as follows. When the compatibility is
not fixed but distributed not so broadly, as for the Gaussian
distribution or the power-law distribution with α > 2, the
positive and negative compatibility values of the k current
partners in their relationship with the new node are comparable
and likely to cancel each other, leading to Kk ∼ k1/2 as in the
conventional random walk. Note that in this case, the highest
compatibility value Xk among k compatibilities behaves as√

ln k or k1/α (α > 2) [29], and thus makes little contribution
to the effective degree that turns out to behave as

√
k. In

contrast, for such strongly broad compatibility distributions as
1 < α < 2, the extreme value makes a dominant contribution,
as implied by the identical scaling behaviors of Xk ∼ k1/α and
Kk ∼ k1/α . The destructive interference of the positive and
negative compatibility values becomes irrelevant, recovering
the advantage of hub nodes in the partner selection.

In Fig. 3, we numerically computed the ensemble average
of Kk = max(0,x1 + x2 + · · · + xk) with k random numbers
x1,x2, . . . ,xk generated from the distributions PD(x),PG(x),
or Pα(x), respectively. The obtained numerical results support
Eq. (19). The deviation around α = 2 may be rooted in the
logarithmic correction Kk ∼ √

k ln k. For α = 2, q(2)(s) is ex-
panded for sx0 
 1 as q(2)(s) � 1 + 1

3k(sx0)2 ln |sx0| yielding

Qk(s) � e(k/3)(sx0)2 ln |sx0|. As a result, P
(2)
k (y) is represented

in terms of the scaling variable y/

√
x2

0
6 k ln k as P

(2)
k (y) = 1/√

x2
0

6 k ln kP̃ (y/

√
x2

0
6 k ln k) and the effective degree scales as

Kk ∼ √
k ln k. Thus the larger value of λ than 1/2 observed in

fitting Kk ∼ kλ to the simulation data may have been caused
by the logarithmic correction term. More discussion on the
logarithmic correction is given in Appendix B.

C. Evolution and distribution of node degree

Using the results for the expected effective degree, we can
investigate the evolution of node degrees and thereby derive the
degree distributions. Nodes introduced at different time steps
have different chances to attract new nodes, bringing broad
degree distributions. We consider the averaged quantities over
two types of stochasticity, one from the different realizations
of the compatibility for each pair of nodes and the other from
the selection of mutualistic partners given a realization of the
compatibility relationship.

Let a�τ , taking 1 or 0, be the element of the adjacency
matrix of the constructed network, denoting whether nodes
� and τ are connected or not. If two nodes � and τ are
of type B and A, respectively, and � < τ , one can expect

the corresponding element a
(BA)
�τ , averaged over different

realizations of compatibility, to be given in terms of the
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FIG. 3. (Color online) Scaling behaviors of the ensemble average
Kk of Kk = max{0,x1 + x2 + · · · + xk} with x’s independent random
variables following a given distribution p(x). (a) Plots of Kk versus
k for the fixed compatibility p(D)(x) = δ(x − 1) and for the Gaussian
compatibility distribution p(G)(x) with σ =

√
2π

2 chosen to yield the
conditional average equal to 1; i.e.,

∫∞
0 dx x p(G)/

∫∞
0 dx p(G)(x) = 1.

The solid and dashed lines have slopes 1 and 1/2, respectively. (b)
The same plots for the power-law compatibility distributions p(α)(x).
The dashed line has slope 1/2. Inset: The estimated exponent in the
scaling relation Kk ∼ kλ as a function of α. The solid line indicates
the theoretical prediction λ = max{1/2,1/α} given in Eq. (19).

effective degree of the node � as

a
(BA)
�τ = f

(BA)
k�

(τ ) = �A

Kk�∑
r∈VB

Kkr

� kλ
�

τPAμB

, (20)

where VB is the set of nodes of type B at time step τ , and

μB = 1

τPA�A

∑
r∈VB

kr
λ, (21)

and we used Eq. (19) for the last approximation holding

for k large. It should be noted that 0 � a
(BA)
�τ � 1 and that∑

�∈VB
a

(BA)
�τ = �A. f

(BA)
k (τ ) denotes the connection probabil-

ity between a type-B node with degree k and a new type-A

node at time step τ and is actually equal to a
(BA)
�τ . Similarly to

Eq. (20), one finds that the probability that a node i of type A
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and degree ki is selected by a new node of type B at time step
τ is given by

a
(AB)
iτ = f

(AB)
ki

(τ ) = ki

τPBμA

(22)

with

μA = 1

τPB�B

∑
j∈VA

kj = 〈�〉
PB�B

= 1 + PA�A

PB�B

, (23)

and the number of links per node given by 〈�〉 = PA�A + PB�B

[23].
The degree of a node increases by one if connected to a new

node; hence its average degree evolves with time as〈
k

(B)
� (τ + 1)

〉− 〈
k

(B)
� (τ )

〉 = PA

〈
a

(BA)
�τ

〉+ �Bδ�,τ ,
(24)〈

k
(A)
i (τ + 1)

〉− 〈
k

(A)
i (τ )

〉 = PB

〈
a

(AB)
iτ

〉+ �Aδi,τ .

Here 〈Y 〉 indicates the average over different realizations of
partner selection. In the limit τ → ∞, 〈aiτ 〉’s become quite
small and thus one can approximate Eq. (24) as the differential

equations d〈k(B)
� 〉/dτ = PA〈a(BA)

�τ 〉 = PA〈(k(B)
� )λ〉/(τPAμB)

and d〈k(A)
i 〉/dτ = PB〈a(AB)

iτ 〉 = PB〈k(A)
i 〉/(τPBμA) with the

initial condition 〈k(B)
� (�)〉 = �B and 〈k(A)

i (i)〉 = �A. Solving
these equations under the approximation 〈(k(B)

� )λ〉 = 〈k(B)
� 〉λ

[30], one finds that the degree of a node increases with time as

〈
k

(B)
� (τ )

〉 = �B

[
ln
(
η τ

�

)
ln η

]λ/(1−λ)

,

(25)〈
k

(A)
i (τ )

〉 = �A

(
τ

i

)1/μA

,

where λ is given in Eq. (19) and ln η = μB�1−λ
B

1−λ
. The logarithmic

dependence of k� on � appears for the case of λ < 1, corre-
sponding to the Gaussian and the power-law compatibility
distributions.

The time evolution of the number of nodes of degree k and
type B, N

(B)
k (τ ) ≡ ∑

�∈VB
〈δk�,k〉, is also obtained in terms of

the connection probability f
(BA)
k (τ ) as

N
(B)
k (τ + 1) − N

(B)
k (τ ) = PB δk,�B

+ PA f
(BA)
k−1 (τ ) N

(B)
k−1(τ )

−PA f
(BA)
k (τ ) N

(B)
k (τ ), (26)

and we find a similar equation for the degree distribution for
type-A nodes. In the limit τ → ∞, the degree distributions de-
fined by nB(k) = N

(B)
k (τ )/(τPB) and nA(k) = N

(A)
k (τ )/(τPA)

become independent of time, and the recursive relations for
them obtained by Eq. (26) lead to the following results [23]:

nB(k) = μB

kλ

k∏
q=�B

qλ

qλ + μB

∼
{
k−γB for λ = 1,

exp
(−μB

k1−λ

1−λ

)
for λ < 1,

(27)

and

nA(k) = μA

k

k∏
q=�A

q

q + μB

∼ k−γA, (28)

with

γA = 1 + μA = 2 + PA�A

PB�B

, γB = 2 + PB�B

PA�A

. (29)

From Eqs. (19) and (27), one can see that the bipartite
networks under the Gaussian and the power-law compatibility
distribution for type-A nodes have nB(k) take a stretched-
exponential form. In particular, ln nB(k) ∼ k1/2 universally for
the Gaussian and the power-law compatibility distribution with
α > 2. This is contrasted to the power-law form of nB(k) in
case of the constant compatibility. These results indicate that
the heterogeneous compatibility makes a negative effect in the
formation of hub nodes; the plant species (type B) with many
pollinators do not attract as many pollinators as expected,
owing to the negative compatibility (competition) between
new pollinators and the current ones.

On the other hand, for the power-law compatibility distri-
bution p(α)(x) with 1 < α < 2, the bipartite network has more
hub nodes as the compatibility distribution gets broader, i.e.,
α gets smaller. This phenomenon originates in the anomalous
behavior of the effective degree discussed in Sec. III B; the
extreme value among k compatibilities dominantly govern the
behavior of the effective degree and increases faster with k as
α decreases. Consequently, as α approaches 1, the functional
form of the degree distribution nB(k) gets close to a power law,
similar to the one obtained with the constant compatibility.

In Fig. 4, it is shown that the scaling behavior of the
connection probability f

(BA)
k (τ ) obtained numerically with

respect to the raw degree k agrees well with the analytic results
in Eq. (20). The power-law degree distribution emergent for the
constant compatibility is replaced by the stretched-exponential
one for the Gaussian and the power-law compatibility distri-
bution [see Figs. 2 and 5(a)]. However, if we restrict ourselves
to the latter case, we find that the broader the compatibility
distribution is, the slower the degree distribution decays,
getting closer to a power-law form, as shown in Fig. 5(b)
and predicted in Eq. (27). While the finite-size effects are
rather strong, the predicted stretched-exponential forms are
supported by the simulation results in Fig. 5(b).

IV. TOPOLOGICAL SIMILARITY AND COMPATIBILITY

We have so far focused on the global organization of the
mutualistic relationship. The influence of compatibility is,
however, not restricted to the global characteristics but also
identified in the local organization. In this section, we pay
particular attention to the likelihood of sharing a common
partner in the mutualistic network. The number of shared
partners for a pair of nodes

kij =
∑

�

a�ia�j , (30)

with a�j the element of the adjacency matrix, is used to
characterize their topological overlap [31]. In this work we
call kij the topological similarity (TS) of two nodes i and j .
The TS in Eq. (30) is used for measuring the nestedness of a
network. Nestedness indicates the tendency that the set of the
neighbor nodes of a node is included in that of another node
having a larger degree [5]. A couple of measures of nestedness
have been proposed [32] and one of the standard measures is
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FIG. 4. (Color online) Cumulated connection probability
F

(BA)
k (τ ) = ∑k

k
′ =1 f

(BA)

k
′ (τ ) of a node of degree k and type B in

the CBGBN model with PA = 0.75,PB = 0.25,�A = 2, and �B = 3
at the final time step (equal to the total number of nodes) τ =
4 × 104. (a) Plots of F

(BA)
k (τ ) versus k for the constant compatibility

[p(D)(x) = δ(x − 1)] and the Gaussian compatibility distribution
p(G)(x) with σ = √

2π/2. The scaling behaviors F
(BA)
k (τ ) ∼ k1+λ

are characterized by the scaling exponent 1 + λ estimated to be 2.0
(dashed line) and 1.5 (solid line) for p(D)(x) and p(G)(x), respectively,
in agreement with the analytic prediction from Eqs. (19) and (20).
(b) The same plots for the power-law compatibility distributions
p(α)(x) with different exponents α. The estimated scaling exponents
1 + λ decrease with α, from 1.8 (solid line) to 1.6 (dashed line).
Inset: The estimated scaling exponent 1 + λ as a function of α for
different system sizes τ = 4 × 103,4 × 104, and 4 × 105. The solid
line indicates the theoretical prediction 1 + λ = 1 + max{1/2,1/α}
as given in Eq. (19). The deviation between the numerical results and
the analytic result decreases as the system size τ increases.

given by [33]

η =
∑

i

∑
j>i kij∑

i

∑
j>i min{ki,kj } . (31)

Therefore one can expect that the higher the TS between two
nodes on the average is, the higher the nestedness of the whole
network is. High nestedness is characteristic of the mutualistic
networks [5] contrasted to the high modularity of the trophic
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FIG. 5. (Color online) Asymptotic behaviors of the degree dis-
tribution nB (k) for type-B nodes in the CBGBN model. (a) Plots
of ln[− ln nB (kB )] versus ln kB at the final time step τ = 4 × 105

for the constant compatibility [p(D)(x) = δ(x − 1)] and the Gaussian
distribution p(G)(x) with σ = √

2π/2. The slopes of these plots are
estimated to be 0.5 (dashed line) and 0.2 (solid line), respectively,
which can be compared with the analytic results from Eqs. (19) and
(27). The smaller slope indicates the fatter tail of nB (k), here being
the case for the constant compatibility. Inset: The estimated slopes,
1 − λ, as functions of the system size τ . The exponent is almost
fixed at around 0.5 for the Gaussian compatibility distribution. On
the other hand, the estimated slope 1 − λ decreases with τ for the
constant compatibility, implying the agreement with the analytic
results (1 − λ = 0) in the limit τ → ∞. (b) The same plots for
the power-law compatibility distributions with α = 1.2,1.6, and 2.6.
The slope increases with α, indicating the fatter tail of nB (k) with
the broader compatibility distributions. Inset: The estimated slopes,
1 − λ, as functions of α for different system sizes τ . As τ increases,
the estimated values of 1 − λ approach the analytic prediction (solid
line) aside from the significant finite-size effects.

networks [4]. Also the nestedness of the CBGBN model is
larger than that of random networks, which is shown in detail
in Appendix C.

In the CBGBN model, the TS, kij , depends not only on the
degrees ki and kj but also on their compatibility, and in this
section, we investigate how the mean TS between two nodes
depends on their compatibility. Suppose that a node i of type A
has compatibility xij with a new node j of type A at time step
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j (> i) and that a node � of type B is already one of the partners
of the older node i [see Fig. 1(a)]. Under this condition, one
can expect the connection probability of � to j should depend
on the compatibility xij , the conditional probability of which
we denote by 〈f (BA)

k�
〉x . Then the TS of two type-A nodes i

and j having their compatibility xij is represented in terms of
the conditional connection probability 〈f (BA)

k�;xij
〉 of a node � as

〈
k

(AA)
ij (τ )

〉
xij

= PB

[
i−1∑
�=1

〈
f

(BA)
k�

(i)
〉 〈

f
(BA)
k�

(j )
〉
xij

+
j−1∑

�=i+1

〈
f

(AB)
ki

(�)
〉 〈

f
(BA)
k�

(j )
〉
xij

+ �B − 1

�B

τ∑
�=j+1

〈
f

(AB)
ki

(�)
〉 〈

f
(AB)
kj

(�)
〉]

, (32)

where 〈f (BA)
k (τ )〉 and 〈f (AB)

k (τ )〉 can be evaluated by using
Eqs. (20), (22), and (25). Notice that three summations in
Eq. (32) distinguish the cases of � < i < j , i < � < j , and i <

j < �, respectively. The factor (�B − 1)/�B was introduced to
take into account that the number of ways for a new type-B
node to select both i and j as its first �B partners is �B(�B − 1),
not �2

B .
The probability 〈f (BA)

k�
(j )〉xij

for a node � to be selected
by node j is represented in terms of the conditional effective
degree Kk�;xij

of the node � as

f
(BA)
k�;xij

(j ) = �A

Kk�;xij∑
r∈VB

Kkr

(33)

and Kk�;xij
can be obtained by using the probability distribution

Pk(y) studied in Sec. III B as

Kk�;xij
=
∫ ∞

−∞
dx1 p(x1) · · · dxk�−1 p(xk�−1)

× max{0,x1 + x2 + · · · + xk−1 + xij }
=
∫ ∞

−∞
dy Pk�−1(y) max{0,y + xij }, (34)

where y indicates the sum of k − 1 random variables following
a given compatibility distribution p(x).

While the exact functional form of Kk�;xij
can vary with

the choice of the compatibility distribution, its limiting
behaviors for xij 	 1 and xij 
 1 are robust against the
variation of the compatibility distributions; the integral in
Eq. (34) is dominantly contributed to by the integrand for
small |y|, as all the compatibility distributions p(x) decay
faster than x−2. In the case of xij 
 −1, one can see that
Pk�−1(y) max(y + xij ,0) � 0 for |y| small and thus Kk�;xij

becomes negligible. For instance, see node “8” of type B in
Fig. 1(a). This suggests that the node � is hardly selected by
the new node j owning to the bad relation between the partner
node i of �, and j . On the contrary, in the limit xij 	 1,
it holds that Pk�−1(y) max (0,y + xij ) � Pk�−1(y) xij for |y|
small, leading to Kk�;xij

� xij . In other words, the extremely
good compatibility between i and j dominates the effective
degree of the node �. See the nodes “2” or “6” in Fig. 1(a).

The asymptotic behaviors of Kk�;xij
are then summarized as

Kk�;xij
�
{

xij for xij 	 1,

0 for xij 
 −1.
(35)

From Eq. (35), we find that in the case of xij 
 −1, the
connection probability is close to zero, 〈f (BA)

k�
(j )〉xij

� 0. In

the case of xij 	 1, the effective degree Kk�;xij
of the node

� is dominated by the compatibility xij between nodes i and
j . Similarly, other partners of the node i have their effective
degrees almost equal to xij . Therefore, if xij is extremely
large, the sum of the effective degrees of all the type-B nodes
appearing in the denominator in Eq. (33) will be approximated
by ki(j ) xij , as the effective degrees of the nodes not connected
to the node i are negligible. When x is not so large, the sum
of the effective degrees does not explicitly depend on x but
behaves as

∑
r∈VB

καkr (j )λ � καjPAμB with κα and μB given
in Eqs. (18) and (21), respectively. Therefore the conditional
connection probability 〈f (BA)

k�
〉xij

of the node � is evaluated as

〈
f

(BA)
k�;xij

(j )
〉 �

⎧⎪⎪⎨
⎪⎪⎩

0 for xij 
 −1,

τcxij

j
for 1 
 xij 
 j

τc

(
i
j

)1/μA
,(

i
j

)1/μA for xij 	 j

τc

(
i
j

)1/μA
,

(36)

where we used 〈k(A)
i (j )〉 = �A(j/i)1/μA in Eq. (25) for the

node i of type A and a constant τc is defined as

τc = 1

καPAμB

. (37)

Using Eq. (36) in the first two summations in Eq. (32), we
obtain the following behaviors of the TS of the nodes i and j

at time step τ in the limit τ → ∞:

〈
k

(AA)
ij (τ )

〉
xij

�

⎧⎪⎪⎨
⎪⎪⎩

bij (τ ) for x 
 −1,

�A
τcx

j

(
j

i

) 1
μA for 1 
 x 
 j

τc

(
i
j

) 1
μA ,

�A for x 	 j

τc

(
i
j

)1/μA
,

(38)

where bij (τ ) comes from the last summation in Eq. (32) with
Eqs. (22) and (25) used and is evaluated as

bij (τ ) ≡ PB

�B − 1

�B

τ∑
�=j+1

〈
f

(AB)
ki

(�)
〉 〈

f
(AB)
kj

(�)
〉

= PB

�B − 1

�B

τ∑
�=j+1

�B

�A

(
�
i

) 1
μA

�〈�〉 �B

�A

(
�
j

) 1
μA

�〈�〉

� PB

�B(�B − 1)�A
2

〈�〉2

(
1

ij

) 1
μA τ

2
μA

−1 − j
2

μA
−1

2
μA

− 1
, (39)

and becomes a subdominant term in 〈k(AA)
ij (τ )〉xij

for x 	 1.
The results in Eq. (38) imply the following. When xij 
−1,

the TS of i and j can be generated only by the simultaneous
selection by the type-B nodes that come later than them, the
likelihood of which is bij (τ ). As xij increases, j has the
proportionately increasing chance to select the preexisting
partners of i as one of its first �A partners and hence the
linear behavior of 〈k(AA)

ij (τ )〉xij
in xij . If xij is extremely large,

j selects its first �A partners only among the partners of i; the
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FIG. 6. (Color online) Numerical results for the mean TS
〈k(AA)(τ )〉x of the node pairs having compatibility x in the CBGBN
model with Pa = 0.75,PB = 0.25,�A = 2, and �B = 3. (a) Mean TS
for the power-law compatibility distribution p(α)(x) with different
α’s and different system size τ ’s. Inset: The plot of τ 〈k(AA)(τ )〉x

versus x for the Gaussian compatibility distributions. (b) Plots of
τ 〈k(AA)(τ )〉x versus x for x < 0 with the power-law compatibility
distributions. As x decreases, the data points approach the theoretical
prediction τ b = 8/3 (dashed line) from Eq. (42). Inset: The fitting
value of τ b for τ = 2 × 104 and different α’s. (c) Plots of 〈k(AA)(τ )〉x

versus τc x/τ for different τ ’s and α’s. The collapsed data agree with
the theoretical prediction �(z) � 2μAz/(μA − 1) − μAz2/(μA − 2)
from Eqs. (41) and (D7).

effective degrees of the partners of i are all given by xij , which
are larger than those of any other nodes.

The TS for a randomly chosen pair of nodes having
compatibility x, averaged over all possible pairs of nodes of
type A, can be derived by using Eqs. (38) and (39) as

〈k(AA)(τ )〉x = 2

τ 2

τ∑
i=1

τ∑
j=i+1

〈
k

(AA)
ij (τ )

〉
x

= b(τ ) + �A�

(
τcx

τ

)
,

(40)

where the scaling function �(z) behaves as

�(z) �
{

2μA

μA−1z for z 
 1,

1 for z 	 1,
(41)

and b(τ ) is given by

b(τ ) = 2

τ 2

τ∑
i=1

τ∑
j=i+1

bij (τ ) = PB�B(�B − 1)

P 2
A

1

τ
. (42)

The derivation of the leading and subleading terms of the
scaling function �(x) are given in Appendix D. In completely
random bipartite networks of a total of τ nodes, the expected
TS would be of order τ−1. The TS in the CBGBN model,
however, can be even of order 1 for a pair having very high
compatibility, and the results in Eq. (40) show that the TS
increases linearly for the moderately high compatibility.

The numerical results for the mean TS, 〈k(AA)(τ )〉x , are
presented in Fig. 6. The range of the observed compatibility
values is wide for the power-law compatibility distributions but
narrow for the Gaussian one. 〈k(AA)(τ )〉x remains negligible
for x < 0, and increases with x for x positive, approaching its
saturation value, �A in the limit x → ∞, with the power-law
compatibility distribution. The simulation results for the Gaus-
sian compatibility distributions suggests 〈k(AA)(τ )〉x ∼ τ−1

in the observed range of x. In Fig. 6(b), the behavior of
〈k(AA)(τ )〉x for x 
 −1 with the power-law compatibility
distributions is presented, which is in good agreement with
the prediction in Eq. (42) even for coefficient. Rescaling x

by τc/τ for x positive as suggested in Eq. (40), we obtain
the predicted collapse of 〈k(AA)(τ )〉x from different τ ’s and
α’s in Fig. 6(c). The parameter τc depends on α via κα and
μB , which are obtained numerically for the plots in Fig. 6(c).
Furthermore, the collapse data confirm the predicted behavior
of the scaling function �(z) in Eq. (41).

V. SUMMARY AND DISCUSSION

The specific mutualistic pairs of plants and pollinators
in an ecological community can be fully understood by
considering diverse factors such as the species abundance,
biological matching, and evolutionary processes. However,
many studies commonly suggest that a few simple mechanisms
are sufficient to understand the selected topological features
of the mutualistic networks. We have shown in our previous
work [23] that the growing bipartite networks with preferential
attachment can successfully reproduce the global properties
of many real-world plant-pollinator mutualistic networks.
However, it remained poorly understood how the functional
form of the preferential attachment is determined.
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In this work, we proposed and investigated the growing
bipartite network model representing the evolution of the
mutualistic relationship between two distinct groups of species
that are influenced by the compatibility within the same groups.
Our results illuminate the multiplex nature of mutualistic
communities; every species belongs to the compatibility
network, in which each link connecting the same types of
species (animal-animal or plant-plant) is assigned weight equal
to their compatibility, and also belongs to the mutualistic
network. We demonstrated the impacts of the link weight
distribution in one (compatibility) network to the topology
of the other (mutualistic) network.

The effective degree of a node determined by the compat-
ibility of its current partners governs the evolution dynamics
and thereby the architecture of the mutualistic network. The
effective degree was derived for each given compatibility dis-
tribution and the results show how the form of the preferential
attachment can be changed depending on the compatibility
distribution. Furthermore, using the results, we obtained the
degree distributions and the topological similarity conditioned
on the compatibility.

All these results demonstrate the crucial impacts of the
compatibility on the network structure of the mutualistic
relationship. The degree distribution takes a faster-decaying
tail than a power law, preventing the appearance of hub nodes,
as long as the compatibility value varies from pair to pair.
However, as the compatibility distribution gets broader, the
degree distributions go back towards the power-law form that
appears for the case of the constant compatibility. Also, we
showed how the topological similarity between two nodes
can be varied depending on their compatibility, which can
be one of the mechanisms driving the heterogeneity of
the topological similarity, more significant than the random
expectation, in various complex networks. While our model
reproduces successfully the degree distributions of mutualistic
networks and offer insights into the topological similarity, it
may need to be improved and extended to reproduce many
other properties such as modularity and nestedness of real
mutualistic networks.

While we focused on the specific types of interactions that
are present in the mutualistic community, our results can be
applied to the analysis of other types of interactions in diverse
complex systems. Our work proves the importance of consid-
ering the interaction among different types of interactions in
the evolution, structure, and dynamics of complex systems and
thus can contribute to establishing the theoretical framework
to analyze various complex systems.
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APPENDIX A: DERIVATION OF EQ. (17)

Here we outline the derivation of Eq. (17) given in
Refs. [27,28]. The expansion of the function P̃ (x) in
Eq. (16) for x 
 1 can be obtained by using the expansion
cos(xt) = ∑∞

n=0 t2n(−x2)n/(2n)! as

P̃ (x) = 1

π

∞∑
n=0

(−1)n

(2n)!
x2n

∫ ∞

0
dt t2ne−tα

= 1

πα

∞∑
n=0

(−1)n	
(

2n+1
α

)
(2n)!

x2n

� 	(1/α)

πα

[
1 − 1

2

	(3/α)

	(1/α)
x2

]
, (A1)

where we used 	(z) = ∫∞
0 t z−1e−t dt . The large-x behav-

ior of P̃ (x) can be seen by expanding e−tα and using∫∞
0 dt tz−1eiωt = ω−z	(z)eizπ/2 as

P̃ (x) = 1

π

∞∑
n=0

(−1)n

n!

∫ ∞

0
dt tαn cos(xt)

= 1

π

∞∑
n=0

(−1)n+1

n!
	(αn + 1) sin

(
αn

2
π

)
x−1−αn

� 	(α + 1)

π
sin

(
πα

2

)
x−1−α. (A2)

APPENDIX B: LOGARITHMIC CORRECTION TO
THE EFFECTIVE DEGREE IN THE CASE OF α = 2

If α = 2 in Eq. (4), the compatibility distribution shows
the asymptotic behavior p(x) ∼ |x|−3 and consequently, the
effective degree scales as Kk ∼ √

k ln k, not k1/2. Here we
briefly explain how such a logarithmic correction appears.

The integral
∫∞

1 z−3 cos(βz) appearing in Eq. (12) is
expanded for small β as∫ ∞

1
z−3 cos(βz) = 1

2
cos β + β2

2
Ci(β) − β3

2
sin β,

Ci(β) =
∫ β

∞
t−1 cos t dt

= γ + ln β +
∞∑

k=1

(−β2)k

2k(2k)!
, (B1)

where γ is the Euler-Mascheroni constant. Therefore q(2)(s) is
expanded for small sx0 as

q(2)(s) � 1 + 1
3 (sx0)2 ln |sx0| (B2)

and Qk(s) = [q(2)(s)]k is given by

Qk(s) � e(k/3)(sx0)2 ln |sx0|. (B3)

This expression is valid for sx0 
 1. Using Eq. (B3) in place
of Qk(s) of Eq. (8), we find two characteristic scales of s, y−1

and 1/

√
x2

0
6 k ln k, and the function P

(2)
k (y) is represented in
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terms of their ratio as the scaling variable as

P
(2)
k (y) = 1√

x2
0

6 k ln k

P̃

⎛
⎝ y√

x2
0

6 k ln k

⎞
⎠ . (B4)

Therefore the effective degree is given the additional loga-
rithmic term as Kk = ∫

dy yP
(2)
k (y) � κ2

√
k ln k with κ2 =

(x0/
√

6)
∫∞

0 dt tP̃ (t). The small-x and large-x behaviors of
the scaling function P̃ (x) can be obtained as follows.

For y 
 x0

√
k ln k, we use the expansion cos(ys) =∑∞

n=0
(−1)n

(2n)! y2ns2n to represent P
(2)
k (y) as

P
(2)
k (y) =

∞∑
n=0

(−1)n

(2n)!
y2n 1

π

∫ ∞

0
dss2nQk(s) (B5)

with Qk(s) in Eq. (B3). Using the steepest-descent method, one
finds that the integral Im(κ) ≡ ∫∞

0 tm−1eκt2 ln t is dominantly
contributed to by the integrand at t∗ = [(m − 1)/(κ ln κ)]1/2

for κ large and is therefore approximated by

Im(κ) � π1/2e−(m−1)/2(m − 1)(m−1)/2

(κ ln κ)m/2
. (B6)

Inserting Eq. (B6) into Eq. (B5) with κ = k/3 and m = 2n + 1,
we find that

P
(2)
k (y) �

(
3

πx2
0k ln k

)1/2 ∞∑
n=0

(−1)n

(2n)!

(
6ne−1y2

x2
0k ln k

)n

�
(

3

πx2
0k ln k

)1/2 [
1 − 3e−1y2

x2
0k ln k

]
, (B7)

where the last approximation holds for y 
 x0

√
k ln k. There-

fore we find that the scaling function P̃ (x) in Eq. (B4) behaves
as (2π )−1/2e−e−1x2/2 for x 
 1.

For y 	 x0

√
k ln k, we perform the partial integration to

obtain

P
(2)
k (y) = − 1

π

∫ ∞

0
ds

sin(ys)

y

dQk(s)

ds

� − 1

π

∫ ∞

0
d(sx0)

sin(ys)

y

2k

3
(sx0) ln(sx0) Qk(s).

(B8)

The dominant contribution to the integral in Eq. (B8) comes
from the range 0 � s � y−1 given the exponential decay of
Qk(s) and the oscillatory behavior of sin(ys). Using Qk(s) � 1
for 0 � s � y−1, we obtain the following approximate
expression for P

(2)
k (y):

P
(2)
k (y) ∼ − 2kx2

0

3πy3

∫ 1

0
dz z sin z ln

(
z
x0

y

)

∼ kx2
0 ln y

y3
. (B9)

Therefore we find that the scaling function P̃ (x) behaves as
P̃ (x) ∼ x−3 for x 	 1.

APPENDIX C: NESTEDNESS OF THE CBGBN MODEL

Extending the measure of nestedness in Eq. (31) to bipartite
networks, we can define the nestedness of the nodes of type A
in a bipartite network as

η(A) =
∑

i∈VA

∑
j∈VA,j>i k

(AA)
ij∑

i∈VA

∑
j∈VA,j>i min

{
k

(A)
i ,k

(A)
j

} , (C1)

where k
(A)
i is the degree of a node of type A and k

(AA)
ij is the

number of common partners (neighbor nodes) of two nodes i

and j both of type A. Similarly, we can define η(B).
Using Eq. (C1), we obtained numerically the nestedness of

the CBGBN model and compared it with that of the random
networks. Random networks were constructed by assigning
links to a randomly chosen pair of nodes with the number
of nodes and the number of links identical to those of the
considered model networks. As in the main text, we considered
various compatibility distributions for type-A nodes and the
fixed compatibility for type-B nodes. The results are given in
Fig. 7, in which the nestedness for nodes of type A and B are
given as a function of the number of nodes N .

The nestedness in the CBGBN model is much higher than
in the random networks. In the model networks, hub plant
(type-B) nodes are more likely to be connected to a new animal
(type-A) node, as their selection probability is higher than the
plants with few partners given that the selection probability of
a plant node scales linearly or sublinearly with its raw degree.
The animal species are therefore more likely to be the partners
of a hub plant species, and thus the hub plant node tends to
be the common partner of many animal species. Abundant
hub plant nodes in the CBGBN model therefore lead to the
enhancement of k

(AA)
ij on the average and the enhancement

of the nestedness of animal nodes. The same holds for k
(BB)
ij

and η(B).
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FIG. 7. (Color online) Comparison of the nestedness η between
the CBGBN model and random bipartite networks. (a) Plots of η(A)

versus the total number of nodes N for selected compatibility distribu-
tions. Here the model parameters are PA = 0.75,PB = 0.25,�A = 2,

and �B = 3. The random bipartite networks have the same number
of nodes of type A and B and the same number of links as the
CBGBN model. (b) Plots of η(B) for the CBGBN model and the
random bipartite networks.
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APPENDIX D: DERIVATION OF EQS. (40), (41), AND (42)

The coefficient b(τ ) in Eq. (42) is obtained by using Eq. (39)
in the limit τ → ∞ as

b(τ ) � 2PB�B(�B − 1)�2
A

τ 2〈�〉2
(

2
μA

− 1
) τ∑

i=1

1

i
1

μA

×
[
τ

2
μA

−1

{
τ

1− 1
μA − i

1− 1
μA

1 − 1
μA

}
−
{

τ
1

μA − i
1

μA

1
μA

}]

� 2PB�B(�B − 1)�2
A

τ 2〈�〉2
(

2
μA

− 1
)
[

μA(2 − μA)τ
1

μA

μA − 1

τ
1− 1

μA − 1

1 − 1
μA

− μAτ
2

μA
−1

μA − 1

τ
2− 2

μA − 1

2 − 2
μA

+ μA(τ − 1)

]

� �2
A(�B − 1)

〈�〉
μA

(μA − 1)2

1

τ
. (D1)

The function � in Eq. (41) represents the x dependence of
〈k(AA)(τ )〉x . In Eq. (38), the summand 〈k(AA)

ij (τ )〉xij
is shown to

take different forms depending on the magnitude of xij , which
should be considered in evaluating 〈k(AA)(τ )〉x . In the plane of
(i,j ) with j > i (Fig. 8), on which the summation in Eq. (40)
is taken, the critical line j = τc1(i) with

τc1(i) =
(

τcx

i

)μA/μA−1

i (D2)

distinguishes the different behaviors of 〈k(AA)
ij (τ )〉xij

;

〈k(AA)
ij (τ )〉xij

� �A(τcx/j )(j/i)1/μA for j 	 τc1(i) and � �A

for j 
 τc1(i). The curve j = τc1(i) meets the line j = τ and
j = i at i = τc2 and i = τc3, respectively, with

τc2 = τ

(
τcx

τ

)μA

, τc3 = τcx. (D3)

See Fig. 8. These characteristic values turn out to be useful in
evaluating the function � as below.

In the case of τcx

τ
	 1, it holds that τc2 	 τ and thus

〈k(AA)
ij (τ )〉x � �A in the whole region {(i,j )|1 � i � τ,i <

j � τ }, leading to

� � 1

�A

2

τ 2

τ∑
i=1

τ∑
j=i+1

�A � 1. (D4)

1

τ

1 τc2 τc3 τ

j

i

j=τc1(i)

FIG. 8. (Color online) Characteristic curve τc1 and values τc2 and
τc3 in the (i,j ) plane useful for the computation of Eq. (40).

In the case of τ−1/μA 
 τcx

τ

 1, it holds that 1 
 τc2 


τc3 
 τ and therefore the functional form of 〈k(AA)
ij (τ )〉x varies

with i and j . Assuming that 〈k(AA)
ij (τ )〉x � �A

τcx

j
( j

i
)1/μA in the

whole region of (i,j ), one would obtain

�0 � 1

�A

2

τ 2

τ∑
i=1

τ∑
j=i+1

�A

τcx

j

(
j

i

)1/μA

� 2τcx

τ 2

τ∑
i=1

1

i1/μA

τ 1/μA − i1/μA

1
μA

� 2τcxμA

τ 2

[
τ 1/μA

{
τ 1−1/μA − 1

1 − 1
μA

}
− τ + 1

]

� 2μA

μA − 1

τcx

τ
. (D5)

The function � is then represented as

� = �0 − C (D6)

with the function C evaluated as

C � 2

τ 2

⎛
⎝ τc2∑

i=1

τ∑
j=i+1

+
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j

(
j
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(
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(
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In the considered case, τcx/τ 
 1, the small-z behavior of �(z) with z = τcx/τ is of interest, which is given by

�(z) � 2
μA

μA − 1
−
{ 2

(μA−1)(2−μA)

(
τcx

τ

)μA for μA < 2,

μA

μA−2

(
τcx

τ

)2
for μA > 2.

(D8)
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