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Automatic sorting of point pattern sets using Minkowski functionals
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Point pattern sets arise in many different areas of physical, biological, and applied research, representing
many random realizations of underlying pattern formation mechanisms. These pattern sets can be heterogeneous
with respect to underlying spatial processes, which may not be visually distiguishable. This heterogeneity can
be elucidated by looking at statistical measures of the patterns sets and using these measures to divide the
pattern sets into distinct groups representing like spatial processes. We introduce here a numerical procedure
for sorting point pattern sets into spatially homogenous groups using functional principal component analysis
(FPCA) applied to the approximated Minkowski functionals of each pattern. We demonstrate that this procedure
correctly sorts pattern sets into similar groups both when the patterns are drawn from similar processes and
when the second-order characteristics of the pattern are identical. We highlight this routine for distinguishing
the molecular patterning of fluorescently labeled cell membrane proteins, a subject of much interest in studies
investigating complex spatial signaling patterns involved in the human immune response.
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I. INTRODUCTION

A. Motivation: Why study point patterns?

Spatial points patterns naturally arise in many areas of
research in both the physical and life sciences, including ecol-
ogy [1,2], crime statistics [3], epidemeology [4], economics
[5], seismology [6], material science [7], and astronomy [8].
Whether the points represent molecules, trees, cell phone
users, or entire galaxies, the spatial distributions of point
patterns belie the underlying stochastic processes that govern
the pattern’s formation.

A new area of point pattern analysis involves studying
the molecular patterning of proteins on the surfaces of cells.
Due to photoactivated localization microscopy (PALM) [9], a
new super-resolution microscopy technique, cell biologists are
now able to measure the spatial distribution of fluorescently
tagged membrane proteins and determine the response of the
molecules to different stimuli (see Fig. 1). By fixing the cells on
a slide and exposing them to laser light, researchers can activate
molecules one by one in multiple cells, locating the center to
within 20 nm. This new technique has resulted in a wealth
of new point pattern data representing different molecules
and surface treatments, and quantitative analysis of these
patterns can contribute much to understanding protein-protein
and protein-membrane interactions [10,11]. From a theoretical
standpoint, each pattern is a pure realization of an underlying
spatial process and can be used to characterize that process.
From a practical perspective, however, it takes many experi-
mental realizations with finite systems to discern the underly-
ing structure. Furthermore, if the point interactions are com-
plex or the patterns are formed in complicated environments
(such as the membrane of a cell), the amount of data needed to
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confidently quantify a process becomes large and cumbersome
to analyze. This gives rise to the need to be able to confidently
divide large sets of patterns, sorting the patterns into smaller,
homogenous groups that can be analyzed further. In addition
to simplifying analysis, this type of sorting can also provide
researchers with quick information about the homogeneity
of a process and the experimental parameters that affect this
homogeneity.

B. Current methods for sorting patterns

The standard method of sorting pattern sets is as follows:
For each pattern, one calculates a list of numerical summary
characteristics (e.g., index of dispersion, Clark-Evans index).
These can be regarded as the “coordinates” of a pattern, to
which distance-based clustering algorithms can be applied
[12]. This approach presents the researcher with the task of
deciding which characteristics to use, how to compare them
(normalizing, z cores, etc.) as well as how many: too few
may result in missing information, too many could result
in redundancy. This adds nuance to the sorting, limiting the
statistical conclusions that can be drawn and making trustable
automation of the sorting procedure for large pattern sets
difficult to accomplish.

A more robust sorting technique has been developed,
where patterns are sorted using functional principal component
analysis (FPCA) on smoothed second-order functionals of the
patterns. This routine treats the point set as a set of functions,
{ai(t)}, such as the pairwise correlation function, g(r) [13].
The coordinates of each pattern are then calculated by finding
the eigenfunctions and corresponding eigenvalues of the
equation:

∫
v(s,t)wi(s)ds = λiwi(t). (1)
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FIG. 1. (Color online) Using photoactived localization mi-
croscopy, the fluorescently labeled proteins are localized by fit-
ting a point spread function to the stochastically photoactived
molecules; the final pattern represents thousands of fluorescent
images.

Here v(s,t) is the variance-covariance function of the set of
functionals a(r), defined as

v(s,t) = (N − 1)−1
N∑

i=0

[ai − āi(t)][ai(s) − āi(s)]. (2)

The “score” of the ith pattern on the j th principal component
is then

∫
ai(t)wj (t)dt (see Refs. [14,15]). Like standard PCA,

the eigenvalues form a positive decreasing set whose truncated
sum represents the total variance encapsulated in the included
principal components. For automation, one can simply set a
threshold for the amount of variance to be included, which
in turn prescribes the number of coordinates to be used.
This feature removes the arbitrariness of sorting patterns via
the standard method, making FPCA an easily automatable
way of quantifying the difference between patterns. Illian
et al. [13] showed that this routine was robust to point
location uncertainty approaching 20% of the window size
[16].

However, spatial processes can create patterns with more
structure than second-order functionals can measure. The
Neyman-Scott process (NS), introduced to study galaxy clus-
tering, involves randomly distributed parent points generating
clusters of varying size. The complexity of the parent-daughter
interaction gives rise to families of NS processes with the same
pairwise correlation function [12,17,18], despite underlying
spatial differences in the patterns.

Baddeley and Silverman [19] also introduced a cell pro-
cess which is built by partitioning a domain into cells of
equal size which are then filled with a varying number of
uniformly distributed points. Though the process is rather
regular, they showed analytically that their process was

indistinguishable from a Poisson process when considering
only second-order functionals of the pattern [19], meaning
that higher-order functionals must be used to resolve this
ambiguity.

C. From points to disks

In this paper, we apply the proximity measure of FPCA
to the approximated Minkowski functionals of point patterns
[20]. These functionals are calculated by centering a disk
on each point and analyzing the topology of this secondary
pattern of overlapping disks as a function of the radius.
Since the overlap can be very complex, involving all possible
combinations of individual points, these functionals depend
on all orders of interaction simultaneously. This makes them
a more complete “fingerprint” for pattern comparison [20,21].
These functionals have enjoyed marked success in astrophysics
[22], soft matter [23], and fluid turbulence [24].

For completeness, we first explain the Minkowski function-
als and how they are applied to point pattern analysis. We then
demonstrate the sorting procedure by clustering sets of patterns
of both synthetically generated data and biological data
representing the spatial distributions of membrane proteins.
Using both agglomerative and divisive clustering algorithms,
we show that this procedure outperforms FPCA clustering
with second-order functionals, and in general we demonstrate
it to be a viable method for automatically sorting point pattern
sets.

II. OUTLINING THE PROCEDURE

A. Minkowski functional analysis of point patterns

The first step in two-dimensional (2D) Minkowski func-
tional analysis [20,21] is to turn a point pattern into a
“secondary pattern” by centering a disk of radius r at the
center of every point (see Fig. 2). In this paper, we deal only
with 2D patterns, but our procedure is easily generalizable to
patterns of higher dimensions.

If the radius is large enough, some of these disks will
overlap. By combining the overlapping disks, a pattern of
differently shaped objects is formed. The total area, A, of
this collection of objects is then just the total area of the disks
excluding any overlapping area. This is the first Minkowski
measure, which is related to the functional that can be used
to calculate the fractal dimension of a point pattern, if one
assumes a power law scaling of A with the disk radius [25].
The second Minkowski measure, the total perimeter, P , of the
pattern is the perimeter of all of the shapes, which is again
reduced from the perimeter of the individual disks because
of overlaps. The Euler number, χ , is the final Minkowski
measure, defined as the total number of distinct shapes or
components in the window (created by the overlapping disks)
minus the number of holes.

By calculating each of these measures first for small radii,
where the disks do not overlap, and growing the radius
after each calculation until the entire pattern window is
covered, the three Minkowski functionals, A(r),P (r),χ (r),
are approximated. Because at each radius, the Minkowski
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FIG. 2. (Color online) (a) The Minkowski functionals are cal-
culated by imposing disks on the point pattern. This new secondary
structure can be characterized using topological measures, which vary
for different radii. (b) The three reduced Minkowski functionals for
a 2D Poisson (random) process. These functionals are unitless due to
the normalization by the same measure one would expect for a set of
nonoverlapping disks.

measures depend on the locations of all of the points
simultaneously, these functionals include information about
every type of spatial structure present in the pattern, completely
characterizing it (a consequence of Hadwiger’s theorem from
integral geometry, see Ref. [26]). This feature makes the
Minkowski functionals a more complete measure of the
underlying point interactions, including information from all
possible groupings of points.

When comparing patterns, one actually uses the reduced
Minkowski functionals, namely, the Minkowski functionals

for the pattern divided by what is expected for a set of
nonoverlapping disks. These are given by

a(r) = A(r)

πNr2
, (3)

p(r) = P (r)

2πNr
, (4)

e(r) = χ (r)

N
. (5)

The functionals for a Poisson process are shown in Fig. 2(b).
The analysis in this paper relies exclusively on these reduced
functionals, so we do not differentiate between the two.

B. Sorting the patterns

Our aim is to automatically sort patterns by performing
FPCA on their approximated Minkowski functionals, cluster-
ing the patterns with their individual scores on the principal
components. We do the same with the pairwise correllation
function so that we can directly compare our method with that
of Ref. [13]. For each pattern set, we use enough principal
components to account for 95% of the variation. For the
Minkowski functionals, we calculate the principal component
scores individually for the area, perimeter, and Euler number
and then concatenate the scores into a larger vector. Then,
we use these scores as coordinates, applying two different
clustering algorithms.

(i) Ward’s method [27]. An agglomerative technique which
seeks to minimize the total intercluster variance of the
distances between objects. We chose this method because it is
well known to the pattern analysis community and allows us
to directly compare our method with that of Illian et al. [13].

(ii) Fast weighted modularity [28,29]. To implement this
routine, we first calculate the pairwise Euclidean distance
between all patterns, Dij , and transform our pattern set into a
weighted graph with edge weights:

Wij = max(Dij ) − Dij . (6)

Then, this algorithm aims to maximize “modularity” of this
weighted network by dividing the set into groups where the
average edge weight between members of the same group
is higher than that between members of different groups. We
chose this method because it is a global clustering routine with
large popularity in the cluster analysis literature and because
the software implementation is able to work with very large
data sets (millions of objects).

By utilizing both cluster analysis algorithms, we can verify
whatever results we obtain and more completely demonstrate
the efficacy of our sorting method using the Minkowski
functionals.

III. TESTING OUR SORTING METHOD

We now apply this procedure to three different data sets.
These sets of patterns highlight three possible situations in
which one would sort patterns: (i) comparing different systems,
(ii) varying a parameter in an experiment, and (iii) comparing
different components of a bidisperse system [16]. Each set
is comprised of two groups which have an a priori cluster
structure. We then apply the sorting technique, which allows
us to calculate the percentage that is misclassified (PMC) by
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looking at the fraction of patterns that are assigned to a group
that is dominated by a different pattern type.

A. Data set 1: Two Strauss processes

The Strauss process [30] is a germ-grain pattern simulation
model specified by two parameters, a radius r ∈ R+ and an

interaction parameter γ ∈ [0,1]. The interaction parameter
determines if grains of radius r will be allowed to overlap
during the formation of the pattern [see Fig. 3(a)].

If γ is small, there is a strong repulsion between grains,
where γ = 0 yields a hard-core process. If γ is close to
1, the repulsion is weak, where γ = 1 yields a completely

FIG. 3. (Color online) (a) The regularity of a Strauss process is completely determined by γ , the interaction parameter. For γ = 0, no
overlaps are allowed. For γ = 1, all overlaps are allowed. (b) The leftmost panes display the g(r) and χ (r) for the 40 simulated Strauss
processes. On the right are the results of using FPCA scores to divide the pattern set into two groups. As can be seen, both g(r) and the
Minkowski functionals can perfectly separate the set into two groups corresponding to different values of γ .
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random process. In Ref. [13], it was reported that even for
comparison of pattern sets with similarly strong repulsion
(γ = 0.0 and γ = 0.1) the pairwise correlation function was
able to effectively distinguish different Strauss processes. We

here repeat this test with 20 patterns each, fixing the number
of points at N = 1000 and letting r = 0.025. We also fix the
number intensity to be λ = (2r)−2, which forces interaction
between the points.

FIG. 4. (Color online) (a) A Baddeley-Silverman (left) process side-by-side with a Poisson process (right). Despite the visible differences,
the pairwise correlation functions are identical. (b) The leftmost panes display the g(r) and χ (r) for the 58 patterns simulated. On the right
are the results of using FPCA scores to divide the pattern set into two groups. As can be seen, FPCA sorting with g(r) creates two perfectly
heterogenous groups, while FPCA sorting with the Minkowski functionals groups the patterns correctly.

022720-5



JOSHUA PARKER et al. PHYSICAL REVIEW E 88, 022720 (2013)

As can be seen in Fig. 3(b), both g(r) and the Minkowski
functionals are able to distinguish the two Strauss processes,
separating the pattern set into two homogenous groups. This
is to be expected for g(r), as second-order interactions
dominate the process, and is consistent with the findings
of Ref. [13].

B. Data set 2: Baddeley-Silverman vs random

The Baddeley-Silverman process [19] is built by parti-
tioning a domain into a grid and moving from box to box,
distributing N points in each box uniformly. N itself is a
random number, taking on the values 0, 1, and 10 with
probabilities 1/10, 8/9, and 1/90, respectively. This causes the

FIG. 5. (Color online) (a) The two proteins are both dispersed in the cell membrane. LAT (blue) and TAC (red) proteins are separately
tagged, allowing them to be visualized separately. (b) The leftmost panes display the g(r) and χ (r) for the 16 molecular patterns. On the
right are the results of using FPCA scores to divide the pattern set into two groups. As can be seen, using Minkowski functionals with FPCA
improves the differentiation of the two sets.
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process to be rather regular, but with some strong clustering
occurring every now and then (see Fig. 6).

Since E[N ] = Var[N ] = 1, it can be shown that the
Baddeley-Silverman process shares all of the same second-
order characteristics as a random (Poisson) process. In
Ref. [20], the Minkowski functionals were shown to be able
to distinguish these two processes. Therefore, we expect to
see proper sorting when using a(r), p(r), and e(r), and failure
using g(r).

We simulated 29 Baddeley-Silverman processes and 29
Poisson processes, fixing the point number N = 1024, using
both the pairwise correlation function and the Minkowski
functionals, and sorting the pattern sets into two groups. As
can be seen in Fig. 4(b), the pairwise correlation function
fails to sort the patterns correctly, creating two heterogenous
groups (PMC > 40). However, the Minkowski functionals suc-
cessfully divide the pattern set into two homogenous groups.

C. Data set 3: Bidisperse patterns of intercellular proteins

For an application to an experimental data set, we look
at super-resolution images of two proteins residing at the
membrane of immune cells [see Fig. 5(a)].

One protein under study is LAT, short for “linker for
activation of T cells”, a naturally occurring protein crucially
involved in the reactions that regulate T-cell antigen-dependent
activation, a critical event in the adaptive immune response.
LAT proteins have been seen to form clusters on the membrane
with potentially complicated hierarchies [11]. However, the
membrane of the cell can have a first-order effect on the
molecular patterning of membrane proteins. It has been found
that the location of other membrane protein clusters often
correlates with how close the membrane is to the surface and
anticorrelates with regions of high membrane fluctuations [31].

Another protein, TAC (the α chain of the interleukin-
2 receptor), can also be localized and differentiated from
LAT by tagging with a different fluorescent molecule and
using two different lasers with different wavelengths. TAC
is a membrane protein that does not form clusters, instead
distributing uniformly in regions where protein-membrane
interactions have not excluded proteins. This means that TAC
can serve as a membrane marker when studying the clustering
of other proteins. Since LAT and TAC are part of separate
signaling pathways, they also do not interact biochemically
[32]. Therefore, upon sorting, we should get two homogenous
groups representing the two different molecules.

Applying FPCA on the approximated pairwise correlation
functions of these data sets again yields strongly heterogeneous
groups (PMC ≈ 50%). This is visible in the pair-correlation
functions [Fig. 5(b)], where the individual patterns exhibit
large variability. In contrast, because the Minkowski function-
als consider more than just second-order interactions, the Euler
number is able to visibly distinguish the molecular patterns,
and the pattern sorting is improved (PMC ≈ 25%).

Further success is achieved if we look at how FPCA sorting
with each functional performs on its own (see Fig. 6). When
only using the area, the sorting is identical to the sorting
based on all three Minkowski functionals. However, sorting
the LAT-TAC protein pattern set improves when just using the
perimeter, and we achieve almost perfect classification when

FIG. 6. (Color online) From left to right: Sorting with all three
functionals, the area, the perimeter, and the Euler number. Consid-
ering the individual functionals (sorting using weighted modularity),
the Euler number outperforms the other two, only misclassifying one
pattern.

using the Euler number, only misclassifying one pattern. This
is not surprising, since the area and perimeter are constrained
to be smooth, positive, and monotonically decreasing, and
thus cannot vary as much while the Euler number can vary
more wildly.

IV. CONCLUSIONS AND DISCUSSION

In this work, we have introduced the procedure to automati-
cally sort point pattern sets using the approximated Minkowski
functionals and FPCA. Using Strauss processes with strong
repulsion, we have shown that this method can accurately sort
point pattern sets drawn from very similar processes. Further,
this method also distinguishes Baddeley-Silverman processes
from Poisson processes, a task which the pairwise correlation
function perfectly fails to accomplish. We then found that when
looking at experimental point patterns representing proteins,
FPCA sorting using the Minkowski functionals outperformed
FPCA sorting with the pairwise correlation function. This
sufficiently demonstrates that the Minkowski functionals can
successfully quantify the differences between pattern sets
showing complex behavior.

We also found that FPCA sorting using only the Euler
number strongly outperforms the other two. While mathemat-
ically the three functionals do completely classify a pattern,
the area and perimeter may only be slightly different for
different spatial processes. This means that error introduced
when approximating the functionals numerically may blur
these differences, resulting in improper sorting. Since the
Euler number is allowed to vary more dramatically as the
disks combine and holes form, it can visually distinguish very
similar pattern sets and therefore leads to better sorting.

Though we have presented this technique as a way to sort
patterns into distinct sets for further analysis, the sorting itself
can serve as an analysis tool. We are currently working to apply
this tool to examine how the presence of different chemical
cues effect the clustering of LAT proteins, as well as how T-cell
activation perturbs the patterns. Because of the Minkowski
functional’s ability to robustly characterize a pattern, we can
treat the membership of a pattern in a particular group as
a sign of similarity between it and its comembers. We can
therefore look at group statistics to determine what experi-
mental variables change the molecular patterns and to what
degree, allowing for systematic large-scale investigations of
the membrane proteins and their response to different stimuli.
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