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Reaction-diffusion models have been used to describe pattern formation on the cellular scale, and traditionally
do not include feedback between cellular shape changes and biochemical reactions. We introduce here a
distinct reaction-diffusion-elasticity approach: The reaction-diffusion part describes bistability between two actin
orientations, coupled to the elastic energy of the cell membrane deformations. This coupling supports spatially
localized patterns, even when such solutions do not exist in the uncoupled self-inhibited reaction-diffusion system.
We apply this concept to describe the nonlinear (threshold driven) initiation mechanism of actin-based cellular
protrusions and provide support by several experimental observations.
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I. INTRODUCTION

Reaction-diffusion (RD) models are paramount in the study
of pattern formation and significant to biological phenom-
ena [1–4]. However, since reaction-diffusion models do not
traditionally include the possibility of a feedback between
the biochemical reactions and elastic deformations in the
surrounding substrate (e.g., tissue) their validity is limited
[5–7]. Recently there have been several attempts to include
such a feedback in the form of RD mechanical models [8]—for
example, in the context of phenomenological extension of
spiral wave dynamics in cardiac tissue [9], where it was found
that the elastic coupling modifies the parameter space of the
RD system.

One of the intriguing frameworks of mechanical defor-
mations pertains to the initiation and growth of actin-based
protrusions, such as filopodia. These function as antennas
for cells to probe their environment, and participate in a
huge variety of important biological processes—cell migration
[10,11], neurite outgrowth, wound healing—and serve as
precursors for dendritic spine formation in neurons [12]. Due to
the high complexity, various levels of different coarse graining
models have been employed [13–17], but the phenomenon
still remains unresolved. In this system the deformable elastic
substrate is the plasma membrane of the cell, and the reactive
species represent two different morphologies of cortical actin,
branched and bundled, where the bundled actin emerges from
the branched network due to the activity of bundle-specific
nucleators [18].

Here we study the filopodia initiation by introducing a
distinct model in which we couple directly between a two-state
(bistable) system, which constitutes a nonlinear RD part and an
elastic deformation. We exploit concepts from local and global
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bifurcation theory [19] to address the problem of filopodia
initiation as a generic feature. Unlike previous models [20,21],
we find that the initiation of filopodia occurs as a threshold
phenomenon. Previous models that treat the organization of the
cortical actin in terms of RD [22,23] do not include coupling
to the membrane deformation, which is the key feature in our
model. We show that the coupling between the RD system and
the elastic substrate supports localized states (LSs) that are
absent in the sole RD system (under self-inhibition).

Importantly, the model is supported by experimental ob-
servations in living COS7 cells. Specifically, we find that
initially extended perturbations at the membrane condense into
localized filopodia structures and sometimes through merging
of neighboring filopodia precursors (which individually would
have decayed).

II. REACTION-DIFFUSION-ELASTICITY APPROACH

Our model is based on the observation that the organization
of the actin cytoskeleton near the cell membrane can be roughly
divided into two general morphologies: The first type is a
branched network of filaments that is induced by membrane
proteins that activate Arp2/3 [18], while the second type is in
the form of parallel actin bundles, which are typically induced
by interplay between membrane proteins (e.g., IRSp53) and
actin regulatory proteins (e.g., Eps8) [24] or processive actin-
polymerases (such as formin [18] and VASP [25,26]), as well
as actin crosslinking proteins such as fascin [27] or espin [28].

In general, these two main phenotypes involve a host of
actin-binding proteins (ABPs) that are mostly active in one
actin morphology but not the other. It is further observed that
these two cortical actin morphologies are highly exclusive with
respect to one another, although they can locally transform
from one type to the other. Here we will be describing the
emergence of filopodia-like protrusions in the presence of a
network of branched cortical actin [29]. There are additional,
independent modes of filopodia formation [30], but they are
beyond the scope of this paper and will not be addressed
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FIG. 1. An illustration of the interactions between the membranal
proteins and the membrane shape, as described in the model. The
squares (circles) represent the concentration of nucleators of branched
(bundled) actin (ch, cv), respectively; h is the height deflection of the
membrane. We illustrate a molecular motor (myosin) that carries a
cargo that enhances actin bundling at the membrane. Such motors
transport cargo along the bundled filaments, and not on the branched
network. One example is the myosin-IIIa which transports espin cargo
(actin bundling protein) to the filament tip [28].

here. Note that the two morphologies of actin may become
intertwined in more complex situations, as observed for
example in the formation of branched lamellipodia from the
sides of bundled filopodia [31].

The reaction-diffusion-elasticity (RDE) approach, consists
of an RD part of two distinct actin orientations cv (vertical)
and ch (horizontal) and a local deformation field h (Fig. 1).
The physical aspect of h is related to the elastic deformation
that modifies the flow field of the reactive species. The system
of equations used here are continuous and coarse grained.
Nevertheless, the spatial resolution is sufficient to describe the
local actin concentration and the membrane shape, on length
scales that are smaller than the filopodia width. We additionally
assume hydrodynamical fluxes, both in the actin network and
in the membrane, to decay over a short range due to the dense
cortical actin network. Indeed, when the membrane is detached
from the actin network, such as during “blebbing” [32],
hydrodynamic flow and osmotic pressure effects should to be
considered. The hydrodynamic flow around the membrane,
and therefore issues concerning permeation, are also not
treated explicitly in our model. The motion of the membrane
is dominated by the dynamics of the actin cytoskeleton, and
the cytosleketon also confines the hydrodynamic flows inside
the cell. We are therefore treating the surrounding fluid as
providing an effective friction coefficient, which is identified
with the inverse of the Oseen factor [20,21].

Motivated by the application to the filopodia initiation
problem, we consider that cv represents the concentration
of membrane-bound complexes that nucleate bundled actin
filaments, while ch represents the concentration of membrane-
bound complexes that nucleate branched Arp2/3-driven actin
filaments. A scheme of the model is presented in Fig. 1.

We consider that the bundled actin (cv) induces membrane
deformations, due to the protrusive force of actin polymer-
ization. Given previous experimental [33] and theoretical [34]
observations, we assume a minimal form for the coupling to the
membrane deformation, where the effective membrane tension
is locally increased due to adsorption of the branched network
(ch). On the other hand, bundled actin (cv) may have enhanced
binding to the membrane due to either actin-membrane linking
proteins (e.g., ERM family proteins [35]) or molecular motors.
These will effectively promote further the interaction between

bundled actin (cv) and the membrane, thus lowering the
effective membrane tension.

The assumptions on which the model will be constructed
are summarized as following:

(1) Two types of cortical actin morphologies are considered,
characterized by both mutual-exclusion between them and by
self-inhibition (decay and degradation processes).

(2) The bundled actin morphology obeys a positive feedback
(self-enhancement) and exerts a protrusive force that deforms
the membrane.

(3) The membrane and the actin networks are intimately
connected and directly impact the dynamics of each other.

(4) Hydrodynamic flows, outside and inside the membrane,
are not considered since the dense cortical actin network breaks
such flows into confined domains, thus providing an effective
friction.

A. Model equations

We describe the membrane elastic energy using the Helfrich
Hamiltonian [36]

E =
∫

[�h2 + (σ + σ ′ch + σ ′′cv)(∇h)2 + κ(∇2h)2]d2r,

(1)
where κ is the curvature elastic modulus and σ is the effective
membrane tension coefficient. The coupling between the
membrane and the branched actin network is maintained at
the linear approximation in the concentrations ch,cv , with
coefficients σ ′,σ ′′. Thus, the attachment between the branched
(bundled) network and the membrane increases (decreases) the
local effective membrane tension σ ′ � 0 (σ ′′ � 0). We also
add a restoring springlike term, with coefficient �, to prevent
any global translation of the membrane.

Minimizing the elastic energy E [Eq. (1)] for the coupling
interaction between the membrane to ch,cv , and relating it
to the membranal proteins dynamics, results in equations of
motion for the protein membrane system. Similarly, variation
with respect to the membrane shape gives the forces in the
equation of motion for the membrane height deformation h.
Altogether, the RDE model equations read as

∂cv

∂t
= kv

oncv − koffc
3
v − kh

offch + kvb
onCvb + Dv∇2cv

+Dv∇ ·
(

cv∇ δE

δcv

)
, (2a)

∂ch

∂t
= −kv

offcv − kh
offch + khb

on Chb

+Dh∇2ch + Dh∇ ·
(

ch∇ δE

δch

)
, (2b)

∂h

∂t
= FAcv + 1

γ

(
−δE

δh

)
. (2c)

In (2), γ is the local Oseen parameter (inverse of the friction)
and FA refers to the actin polymerization force. The coupling
between the membrane and the actin nucleators introduces
terms involving ch,cv in the equation for h, and involving h in
the equations for ch and cv . The terms containing Cvb and Chb

describe the adsorption of new nucleators from the bulk of the
cell cytoplasm onto the membrane. The cytoplasmic reservoir
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is assumed to be very large and therefore treated as of constant
density. The terms k

j

on/off correspond to rate constants for the
binding/unbinding (on/off) reactions, while Dh and Dv are
diffusion constants. The protrusive force of the bundled actin
is assumed to be linearly proportional to cv in Eq. (2c) (higher
powers do not change qualitatively our results).

Next, we define dimensionless scalings:

c′
v → βcv, β =

√
kv

on

koff
,

c′
h → αch, α = kv

on

kh
off

√
kv

on

koff
,

t ′ → T t, T = 1

kv
on

,

h′ → h̃h, h̃ = FA

γ
√

kv
onkoff

,

x ′ → λx, λ =
√

Dv

kv
on

,

and

Cp = σ ′Dh

D2
vkoff

(
FA

γ

)2

, C ′
p = σ ′′

Dvkoff

(
FA

γ

)2

,

Sh1 = σ

Dvγ
, Sh2 = σ ′kv

on

Dvγ kh
off

√
kv

on

koff
,

Sv2 = σ ′′

Dvγ

√
kv

on

koff
, κ̃ = κkv

on

D2
vγ

,�̃ = �

kv
onγ

,

a1 = (kh
off)

2koff

kv
offk

v
on

, D = Dh

Dv

,ε = kv
offk

v
on

kh
offkoff

,

a0 = kh
offkoff

kv
offk

v
on

(
kh

onChb

kv
on

− kh
offk

h
onCvb

(kv
on)2

)
,

by which Eqs. (2) become dimensionless (dropping the
apostrophe from now onwards):

∂cv

∂t
= −ch + cv − c3

v + ∇2cv − ∇ · Jcv
(h) (3a)

∂ch

∂t
= ε(−cv − a1ch + a0) + D∇2ch − ∇ · Jch

(h) (3b)

∂h

∂t
= cv − Felastic, (3c)

where the positive parameters a1 and a0 determine the reaction
kinetics and control how many homogeneous steady states
are available, ε � 0 is the time-scale ratio between the two
fields, D the diffusion coefficient ratio. The membrane shape
induces additional currents of the branched and bundled actin
respectively Jch

(h),Jcv
(h), and an elastic restoring force acting

on the membrane Felastic:

Jch
(h) = −Cp[ch∇(∇h)2]/2, (3d)

Jcv
(h) = −C ′

p[cv∇(∇h)2]/2, (3e)

Felastic = �̃h − k̃∇4h + Sh1∇2h + Sh2∇ · (ch∇h)

+Sv2∇ · (cv∇h). (3f)

B. Biological and physical correspondences

The first term in Eqs. (3a) and (3b) describes the mutual
exclusivity of the two actin morphologies, and we elaborate
here on possible biological mechanisms behind this phe-
nomenon. In biological terms, the inhibition between the two
types of actin nucleators at the membrane can be through
chemical signaling. Alternatively, mutually exclusive activities
for some actin-binding proteins such as Eps8 can also be
represented by this model of inhibition; Eps8 can participate in
either crosslinking (e.g., bundling) or capping (e.g., branched
network formation) activity, depending on whether it is bound
to IRSp53 [24] or Abi1 [37], respectively [38]. Another
realization of the mutual inhibition between the two actin
morphologies is in the form of the competition between WASP
and VASP at the leading edge of cells [39]: (i) VASP produces
bundled actin filaments at the filopodia tips and also acts as an
antibranching factor [12]; (ii) bundled filaments can become
decorated by side branches due to the activity of WASP
(together with Arp2/3), and therefore loose their ability to
self-enhance the bundled phase by motor transport (see below).
In this manner each type of nucleator naturally expels the other
type, and this is expressed quantitatively in Eqs. (3a) and (3b).

It is observed that the branched actin network induces
a rather uniform force on the membrane, which forms a
background upon which the filopodia formation occurs. We
therefore do not consider the direct contribution of the
branched network to the actin force that pushes the membrane
[Eq. (3c)]. To simplify the analysis we furthermore assume that
the branched actin (ch) described in Eq. (3b) has only simple
(linear) adsorption and decay terms. The self-inhibition term,
a1 > 0, may arise from simple steric hindrance and a linear
degradation (decay) process. The inhibition term due to cv can
also arise from simple steric expulsion.

The second and third terms in Eq. (3a) for the bundled actin
(cv) give rise to a bistable system, which is a key property
that arises in our model. Bistability is obtained by solving the
coupled algebraic equation for the homogeneous (uniform)
states:

−ch + cv − c3
v = 0, (4a)

−cv − a1ch + a0 = 0. (4b)
Note that these equations are decoupled from the membrane
deformations. When the nullclines intersect at three points,
each on a different branch of the cubic nullcline Eq. (4a),
the system is bistable. Each one of the two fixed points in
the outer regions represent stable uniform solutions while the
fixed point in the inner region is unstable to small uniform
perturbations [2].

Consequently, solutions to Eqs. (4) manifest two observed
stable states of actin morphologies, bundled or branched: The
stable solutions are either rich in ch and poor in cv , or vice
versa. The self-enhancement [second term in Eq. (3a)] is
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balanced by a high-order inhibition [third term in Eq. (3a)].
These terms in the equation for cv describe a system that
has a region of coexistence (similar to a Ginzburg-Landau
treatment of an aggregating system; see Appendix). In the
context of the cell, we view these terms as phenomenologically
describing various self-enhancement and inhibition processes
that are unique to the bundled morphology. One prominent
mechanism for self-enhancement that is unique to the bundled
actin is the active transport of proteins by myosin molecular
motors (Fig. 1). An illustration of this mechanism is given
by the activity of myosin-X in promoting filopodia formation
[40]. It is postulated that myosin-X can directly induce the
bundling of actin filaments at the membrane directly through
its motor activity. In addition, myosin-X is known to be a
carrier of VASP, which acts as a “processive capper” and
induces actin bundle formation. Finally, myosin-X was found
to selectively walk on bundled (as opposed to branched) actin
[41]. Altogether, this system provides a natural manifestation
of the self-enhancement property of the bundled actin cv in
our model.

Another example for such a process is the transport
by myosin-IIIa molecular motors of espin cargo proteins
along bundled actin filaments, and the observation that
this myosin:cargo complex boosts the elongation of these
filaments [28]. The espin cargo proteins are known to interact
with actin filaments and promote bundling at the barbed
ends, which are near the cell membrane. Each one of the
filaments in the bundle is able to recruit additional motor:cargo
pairs [8] at a constant rate (determined by the cytoplasmic
myosin-IIIa:cargo concentration), giving rise to the linear
self-enhancement term in Eq. (3a). Furthermore, while espin
is not endogenously expressed in these cells, myosin-IIIa may
itself induce bundling of actin filaments [42].

For the nonlinear self-inhibition process, one example
is the auto-phosphorylation reaction between myosin-IIIa
motors which causes their inactivation [43], although this
does not apply to our experiments since the construction we
are using does not contain the kinase domain involved in
auto-phosphorylation. Another and a more general example
of cooperative self-inhibition is the phenomenon of “traffic
jams” of motors, as observed for myosin-X in filopodia [44]. A
sufficient degree of cooperativity in the self-inhibition process
would lead to a term with a high power of cv in Eq. (3a).
Note that any power equal or higher than 3 gives a system
with multiple uniform steady states, and we therefore chose
the lowest power to describe this self-inhibition phenomenon
that still makes the system bistable. Another source of self-
inhibition is the effect of excluded volume, which results in a
−c2

v term in Eq. (3a). Such a term can be included, but since
bistability can be achieved without it, we chose for simplicity
to ignore it.

III. THRESHOLD PHENOMENA

The main effect of coupling between the membrane
shape deformations and the cortical actin (RDE model) can
be summarized as following: Since the branched network
increases the local tension, in order to minimize the elastic
energy there is an additional current [Jch

(h) in Eq. (3d)] which
transports the nucleators of the branched network (ch) away
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ω
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S
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FIG. 2. Dispersion relations showing the linear instability of a
uniform state to finite wave number perturbations. Parameters are
given in Table I.

from regions with large gradients in the membrane shape. This
flux therefore expels the branched network from the region of
membrane protrusions and thus may trigger nonlinear effects.
Next, we analyze the model equations.

A. Linear analysis to nonuniform perturbations

First, we chose a regime in which the two uniform states
are stable to small nonuniform perturbations. The stability is
deduced via linearization, i.e., taking weak spatially periodic
perturbations for the three fields cv,ch,h about the uniform
state (fixed point):

X → X∗ + δXeωt+iqx + c.c. + O(δX2), (5)

where X∗ is the uniform state value for the three fields, δX is
an infinitely small perturbation, ω is the perturbation growth
rate, q > 0 is the wavenumber, and c.c. stands for complex
conjugate. The value of the uniform state of the fields c∗

v,c
∗
h is

given by the solutions of Eqs. (4), and for the membrane shape
h∗ = 0.

Inserting Eq. (5) into Eqs. (3) yields in the leading (linear)
order

ωδcv = δcv − 3c∗2
v δcv − δch − q2δcv, (6)

TABLE I. Parameter values for Eqs. (3) that were used in
calculations (unless stated otherwise).

Cp 0.047
C ′

p 0
Sh1 0.537
Sh2 0
Sv2 0
κ̃ 0.1
�̃ 0.28
D 0.0001
ε 0.2
a0 2.72
a1 1.794
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ωδch = −εδcv − εa1δch − Dq2δch, (7)

ωδh = δcv − (�̃ + k̃q4 + Sh1q
2 + Sh2c

∗
hq

2 − Sv2c
∗
vq

2)δh.

(8)

From the above we can determine the stability of the uniform
solutions, i.e., calculating the growth rate (ω) by taking a
determinant of the stability matrix:

ω

⎛
⎜⎝

δcv

δch

δh

⎞
⎟⎠ =

⎛
⎜⎝

1 − 3c∗2
v − q2 −1 0

−ε −εa1 − Dq2 0

1 0 −�̃ − k̃q4 − Sh1q
2 − Sh2c

∗
hq

2 + Sv2c
∗
vq

2

⎞
⎟⎠

⎛
⎜⎝

δcv

δch

δh

⎞
⎟⎠ . (9)

Solving for ω (ω is real), we obtain three dispersion relations
among which two have ultimately negative growth rates, ω < 0
for all q, and one which exhibits for a critical Sv2 ≈ 0.78, a
finite wave number instability, as numerically shown in Fig. 2.

B. Nonlinear behavior and spatially localized states

After determining the stability range, numerical solutions
of Eqs. (3) show that the coupling between actin dynamics
and membrane elasticity allows the model to support LSs, in a
wide range of parameters. Throughout the paper we use (unless
stated otherwise) parameters that are given in Table I while LS
persists also for finite values of C ′

p and Sv2 (as demonstrated
in Fig. 3). Notably, under self-inhibition (which is inherent in
our physical system), Eqs. (3a) and (3b) should not support
a stable LS [Fig. 4(a)], unlike other similar models, such as
the well-known FitzHugh-Nagumo model [45,46], for which
a1 < 0. Detailed bifurcation analysis is beyond the scope of
this study and will be addressed elsewhere.

For coupled equations, stable LSs are found in the regime
where the branched network is dominant, and would have
fully expelled any bundled actin in the absence of the actin-
membrane coupling. We find an existence of a core of bundled
actin (cv) which is “protected” from the inhibitory effects of
the branched network (ch) by the deformation of the membrane
and the resulting expulsion of the branched network. The LS
shape is stable to small perturbations, since opposing forces
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−50 −40 −30 −20 −10 0 10 20 30 40 50
0
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0

2

4

6

x

h

FIG. 3. Asymptotic localized solution for Sv2 = 0.32 and C ′
p =

0.005 while other parameters as in Table I.

maintain its finite width: A small increase in width of both
the membrane protrusion and distribution of cv results in
lower gradients of the membrane shape, and therefore a lower
expulsion flux of ch [Jch

(h), Eq. (3d)]. The branched network

ch

cv

h h

cv

ch

Ch

cv

Lf

ln

FIG. 4. (Color online) (a) Qualitative numerical representation
of solutions to Eqs. (3) on periodic domains in the absence of
actin-membrane coupling, i.e., Cp = C ′

p = 0. Black arrows depict
the direction of front motion, i.e., either expansion or contraction with
respect to the bottom uniform state, while the solid/dashed profiles
correspond to two different times of the evolution and the horizontal
dashed lines denote uniform solutions. For an expanding process
t(solid line) < t(dashed line), the initial state (t = 0) was a local
perturbation located at the center of the domain. For a contracting
process the times are t(solid line) > t(dashed line) and the initial
local perturbation was located at the domain ends. Asymptotically
the system converges to a uniform state. (b) Numerical representation
as in (a) but with Cp �= 0. Here the system converges to a localized
steady-state solution (LS). The edges of the LS are marked by the
shaded box, and have a width Lf . (c), (d) Numerical space-time plots
where contour levels correspond to normalized membrane height.
In (c) the initial perturbation is below the threshold and eventually
decays back to the stable uniform state, while a perturbation that
is above threshold forms a stable LS (d). (e) Initial perturbation in
cv (ch inset) for the cases shown in (c) and (d), bottom light and
black lines, respectively. The threshold of the perturbation (dashed
line) is characterized by both width and height. The bottom/top
arrows indicate the respective temporal evolution direction in (c)
and (d), while the top light line depicts the asymptotic LS profile in
(d). Numerical calculations throughout this paper refer to periodic
domains x ∈ [−50,50] and time intervals t ∈ [0,105] while (c)–(e)
show a zoom into the space-time behavior within the peak region
showed in (b). The parameters are given in Table I.
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ch is therefore able to enter the borders of the protrusion
region, pushing back the width of the bundled actin, and
thereby restoring the LS to its steady-state width. The overall
width of the LS increases with increasing strength of the
coupling parameter above some critical value (bifurcation)
Cp,c, while the width of the “fronts” [Lf in Fig. 4(a)] is largely
independent.

The initial perturbation that evolves into the LS has to be
above a threshold; otherwise it decays to the uniform steady
state [Figs. 4(c) and 4(d)]. The initial conditions are of a local
perturbation in the concentration fields of cv,ch, as shown in
Fig. 4(e). This perturbation is characterized by both amplitude
and width, and we found that both parameters control the
threshold behavior. The threshold amplitude depends on the
model parameters; for example it increases with the elastic
stiffness of the membrane (through the membrane bending
modulus or tension), as expected. Note that in the cell there are
additional mechanisms that limit the lifetime of fully formed
filopodia, such as capping proteins [47], which we do not
explicitly describe in this model.

C. Properties of localized states

Spatial localization means that once a single protrusion is
formed, its shape is independent of the overall size of the
system [19,48–51]. The LS connects the same uniform steady
states at x → ±∞, and approaches the second steady state at

the center of the LS. The decay of the fields to uniform states
at infinity is exponential (Fig. 5).

The exponential decay to uniform states can be obtained by
looking at the spatial properties of Eqs. (3), i.e., transformation
to a set of ODEs where the prime stands for derivative with
respect to a spatial coordinate. The equations together with
Sv2 = C ′

p = 0 (for simplicity) read

c′
v = Wv, c′

h = Wh, h′ = U, U ′ = U2h, U ′
2h = U3h,

W ′
v = −cv + c3

v + ch,

W ′
h = − 1

D

[
ε(−cv − a1ch + a0) + Cp(WhU2hU

+ chU
2
2h + chU3hU )

]
,

U ′
3h = 1

κ̃
[cv + Sh1U2h − �̃h + Sh2(WhU + chU2h)].

(10)

The configuration of the spatial eigenvalues about the
uniform state is important since localized states can form only
at the intersection of two stable and two unstable manifolds
[51,52]. To find the latter possibility, we linearize Eqs. (10)
using

X → X∗ + δX + O(δX2), (11)

and obtain the following matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δW ′
v

δW ′
h

δU ′
3h

δc′
v

δc′
h

δh′

δU ′

δU ′
2h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 + 3c∗2
v 1 0 0 0

0 0 0 εD−1 εa1D
−1 0 0 0

0 0 0 κ̃−1 0 −�̃κ̃−1 0 κ̃−1(Sh1 + Sh2c
∗
h)

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δWv

δWh

δU3h

δcv

δch

δh

δU

δU2h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

The approach to the uniform-state solutions (fixed points) is determined from the eigenvalues of the above matrix. We
have numerically verified that the localized solution indeed approaches the uniform state exponentially X − X∗ ∝ exp (x)
(x → ±∞), where:

 = ±

√√√√−D + a1ε + Dc∗2

v ∓
√

4Dε
(
1 + a1 − a1c∗2

v

) + [
a1ε + D

( − 1 + c∗2

v

)]2

2D
, (13a)

′ = ±

√√√√Sh1 + c∗
hSh2 ∓

√
−4κ̃�̃ + (Sh1 + c∗

hSh2)2

2k
, (13b)

while all other eigenvalues are zero. The length scale −1 turns
out to give a good measure for the width of the region over
which the fields change at the sides of the localized solution.

In Fig. 5(a) we demonstrate the dependence of the overall
width of the LS on the strength of the coupling parameter

Cp between the membrane shape and the flux of branched
network ch. The fronts, i.e., the region over which the fields
change their values from one uniform solution to the other, turn
out to be independent of the coupling strength. Their width is
very well approximated by the exponential form, with one of
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FIG. 5. (Color online) (a) Profiles of localized solutions for
different coupling parameter Cp which are given in (b). We denote
the full width of the LS by L, and the width of the “fronts” by Lf ,
where largest L corresponds to largest Cp on the top branch and vise
versa. In (b) we show that the width (quantified by the overall area)
increases with the coupling parameter, above a critical value Cp,c.
(c) Plot of the region marked by I in (a), to show that the change in
the concentration field in the profile follows an exponential behavior,
which is well described by the linear analysis [Eqs. (13)].

the eigenvalues calculated in Eqs. (13). On the other hand, the
width of LS increases with the coupling strength [Fig. 5(b)], as
expected, since a shallower gradient in the membrane shape is
able to produce a stronger expulsion current of ch and stabilize
the central region of the LS.

IV. EXPERIMENTS vs THEORY

Using detailed observations of the dynamics of filopodia
formation in COS7 cells expressing GFP myosin-IIIa (in
all the experiments described in this paper, we use a GFP-
myosin-IIIa construct lacking the N-terminal kinase domain,
which has enhanced motility and filopodia formation activity
[28,43,53,54]), we found that myosin-IIIa induces filopodia
formation and appears to localize to their tips in a continuous
fashion while inactivated myosins are removed from the
tips via actin retrograde flow [28]. Although we observed
similar phenomena with myosins-XVa and -X, we chose
to use data from our myosin-IIIa experiments since only
this construct yielded a sufficient signal-to-noise ratio for
quantitative analysis.

In Fig. 6, we show representative images of the distribution
of GFP-labeled myosin-IIIa near the edge of a COS7 cell
(see supporting videos S1, S2 [55]). We equate the local
concentration of myosin-IIIa near the cell membrane with
the local concentration of the bundled-actin elongators (cv)
of our model. We show that the concentration of myosin-IIIa
near the membrane fluctuates significantly, and only when
the fluctuation locally reaches a threshold magnitude (both
in amplitude and width) we find filopodia formation. This
is similar to what has been observed for VASP [32,56],
which is also involved in the elongation of filopodial actin
bundles [57,58]. The source of these fluctuations is most likely
dominated by active noise due to molecular motors and actin
polymerization [59].

In Fig. 6, we define the overall projected area of the
filopodia as the region where the myosin-IIIa intensity was

FIG. 6. (Color online) (a) Sample images extracted from the supporting video S1 [55], showing the dynamics of the intensity of fluorescently
labeled myosin-IIIa near the cell membrane. These images illustrate how an extended perturbation in the protein concentration and membrane
shape grows but eventually decays back to the uniform state (overall time 3 min). In (b) we plot the area (Aex) of the high-intensity region
of myosin-IIIa near the membrane, extracted from the video (supporting videos S1, S2 [55]). This measurement represents approximately the
projected area of the membrane protrusion, which we compare to the calculated area under the membrane (Acal) (c). (d)–(f) Similar to (a)–(d)
for a region of the membrane where the perturbation was observed to grow and form a stable filopodia (overall time 5.2 min). Both in the
experiment (e) and the theory (f) we observe an “overshoot” in the membrane area of the filopodia protrusion. Scale bars in (a) and (d) are
2 μm.
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ln ln

FIG. 7. (Color online) Interaction between perturbations. Space-time plots of the calculated membrane height evolution, for the case of two
local perturbations in the concentration fields, where each perturbation alone is below threshold [as in Fig. 4(c)]. In (a) the two perturbations
interact but are initially too far from each other and eventually decay to the uniform steady state. In (c) the same two perturbations are closer,
and after coalescing they evolve to the LS. In (b) and (d) we show images from a movie (supporting video S2 [55]) where myosin-IIIa is
fluorescently labeled, indicating the dynamics of bundled actin at the cell edge. In (b) two initial perturbations fail to coalesce and decay, while
in (d) they are close enough to coalesce and form a filopodia. The overall time shown in (b) is 5.3 min, and in (d) 2.3 min. Scale bars in (b) and
(d) are 0.5 μm.

above some cutoff value [insets of Figs. 6(a) and 6(d)]. We
found that below-threshold fluctuations are observed to grow
and then decay without maturing into a stable filopodia (i),
while in (ii) we show an example of a larger fluctuation that
did reach the stable filopodia state. In the latter case we found
an overshoot in the protrusion size before it converged into its
final stable form. We have often observed that a fluctuation
near the membrane can overcome the threshold value via
coalescence with a neighboring fluctuation (see supporting
videos S1,S2 [55]). Similar behavior is captured by the model,
where we find that two initial perturbations that are close
to each other interact and coalesce (Fig. 7). We chose the
initial perturbations such that individually they are below the
threshold, but when superimposed the combined perturbation
is above threshold. The driving force in our model for the
coalescence of neighboring protrusions is the minimization of
the elastic energy of the membrane (similar to [16]). We find
that when the two perturbations succeed to coalesce before they
decay, indeed they are able to form a stable LS, as demonstrated
in Fig. 7.

V. CONCLUSIONS

We have shown that the mechanism for the filopodia
formation can be understood from the coupling between
biochemical reactions and mechanical deformations. The
biochemical reactions describe mutually exclusive branched
and bundled cortical actin [32,56], whereas the mechanical
effects arise from membrane shape deformations. This model
gives a realistic mechanism for the threshold phenomenon
in filopodia formation, as well as capturing many qualitative
features of observed dynamics during filopodia initiation.

One of the main predictions of our model is that protrusion
formation is a dual threshold phenomenon: (i) The coupling
strength between the branched network and the membrane Cp

[Eq. (3d)] has to be above some minimal value Cp,c [Fig. 5(b)].

(ii) Even beyond the critical coupling the fluctuation needs to
be above some threshold size (spatial extent and amplitude)
for stable protrusion formation [Figs. 4(c)–4(e)]. These key
conjectures were indicated by experiments. Our work also
makes predictions about the parameters that control this
threshold phenomenon, which remain to be systematically
investigated by experiments and computations. An example
of such a parameter that our model predicts to be important
for protrusion formation is the membrane tension difference
between the branched and bundled morphologies (σ ′ vs σ ′′).
Increasing this membrane tension difference increases the
coupling parameter Cp and enables the initiation of filopodia.
This conclusion is supported by the observation that enhanced
binding of bundled actin and the membrane by ERM family
proteins induces filopodia formation [35].

More generally, we introduce a theoretical approach to
describe the coupling between a biochemical system that
has multiple states and the biomechanical forces that arise
from deformation of the elastic substrate. The developed RDE
platform is therefore an important formulation which may
facilitate the study of any phenomenon where a reaction-
diffusion dynamics is coupled to mechanical forces and
elastic deformations. Examples of which include stem cell
differentiation [60], cardiac arrhythmia [9], and metastasis
[61].
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APPENDIX: THERMODYNAMIC APPROACH TO
BISTABILITY IN CHEMICAL REACTIONS

We give here an example of a derivation of a system of
chemical reactions that display bistability and have the general
form of Eqs. (2a) and (2b) (without the membrane elasticity
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part). We start with a Landau-Ginzburg form of the free energy
which describes the adsorption of particles to a surface from
the bulk (infinite) reservoir:

F [cv] =
∫

dx

[
−kv

on

2
c2
v + koff

4
c4
v

]
. (A1)

When both kv
on and koff are positive, we are in a regime

of spontaneous adsorption to the surface. This is identical
to the regime of coexistence between gas and condensed
phases, where here the condensed phase describes the adsorbed

fraction on the surface (which is the membrane in Eqs. (2a)
and (2b). The rate of adsorption is then given by (the “dot”
symbol stands for time derivative)

ċv = −�
δF [cv]

δcv

= −��μ, (A2)

where �μ is the total chemical potential difference between
the bulk and the membrane-adsorbed proteins, and � is the
kinetic coefficient. This form is identical to the dynamics of
cv in Eq. (2a).
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