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Filter-based multiscale entropy analysis of complex physiological time series
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Multiscale entropy (MSE) has been widely and successfully used in analyzing the complexity of physiological
time series. We reinterpret the averaging process in MSE as filtering a time series by a filter of a piecewise
constant type. From this viewpoint, we introduce filter-based multiscale entropy (FME), which filters a time
series to generate multiple frequency components, and then we compute the blockwise entropy of the resulting
components. By choosing filters adapted to the feature of a given time series, FME is able to better capture its
multiscale information and to provide more flexibility for studying its complexity. Motivated by the heart rate
turbulence theory, which suggests that the human heartbeat interval time series can be described in piecewise
linear patterns, we propose piecewise linear filter multiscale entropy (PLFME) for the complexity analysis of the
time series. Numerical results from PLFME are more robust to data of various lengths than those from MSE. The
numerical performance of the adaptive piecewise constant filter multiscale entropy without prior information is
comparable to that of PLFME, whose design takes prior information into account.
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I. INTRODUCTION

The complex fluctuations exhibited by a signal generated
from a physiological system contain information of underlying
interacting mechanisms which regulate the system. Quanti-
fying the “complexity” of physiological signals has drawn
considerable attention [1–6]. In general, there is no precise
mathematical definition for “physiological complexity,” and
no single statistical measure can be used to assess the com-
plexity of physiological systems [6]. Intuitively, complexity
is referred to as “meaningful structural richness.” Several
entropy metrics, such as approximation entropy [7] and sample
entropy [8], were proposed to measure the regularity of a
system by quantifying the degree of predictability of a series of
data points generated from the system. However, irregularity is
not the same as complexity. For example, the entropy measures
mentioned above assign the highest values to uncorrelated
random signals (Gaussian white noise), which are highly
unpredictable but not structurally “complex.” Moreover, when
they are applied to the human heartbeat interval time series
(HHITS), certain pathologies including cardiac arrhythmias
such as atrial fibrillation are assigned a higher entropy value
than healthy dynamics, which represent more physiologically
complex, adaptive states. The reason these entropy matrices do
not work on physiological systems is that they only measure
complexity at the single scale. While biological systems
operate across multiple spatial and temporal scales, their
complexity should also be measured multiscaled. Therefore,
these entropy matrices are not direct indices of physiological
complexity. In this paper, as in [3,5], we take the point of
view that for a physiological system, complexity should be
measured across multiple scales using entropy matrices, and
the higher the multiscale entropy (MSE) value is, the more
complex the system is.
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The remarkable MSE [3,5] takes into account that bio-
logical systems operate across multiple spatial and temporal
scales when measuring the complexity of the physiological
time series, and it examines the physiological dynamics over
multiple scales. When applied to HHITS, MSE not only
provides a meaningful measure for the complexity of the
physiological time series, but it also shows good results in
distinguishing different patterns from subjects with different
ages and heart diseases. The hierarchical entropy [9] considers
both the low- and high-frequency components of a time series
and uses a binary structure in analyzing the signal.

A crucial step in MSE is the coarse-graining procedure,
which assesses the entropy rate. It is achieved by an averaging
process, extracting low-frequency components of the time
series, at different scales. This procedure can be reinterpreted
from a filter viewpoint as applying a piecewise constant
low-pass filter which has a matrix representation to the time
series. We shall take this point of view in studying filter-based
multiscale entropy analysis.

The purpose of this paper is to introduce filter-based multi-
scale entropy analysis. We shall provide a general framework
of filter-based multiscale entropy (FME) and theoretical results
of FME for Guassian white noise as well as 1/f noise.
The application of FME to HHITS will also be thoroughly
studied.

Specifically, with FME the time series is passed through
desired fine-to-coarse filter matrices at different scales, and a
blockwise sample entropy value is calculated at each scale.
On the one hand, this general setting will give us an insightful
understanding of MSE; on the other hand, it will allow us
to choose a filter that better fits the given data when certain
prior information of the data is available to improve the
entropy result. When prior information of the time series is
not available, we can develop adaptive filters which extract the
main feature of the time series.

We consider in this paper HHITS as our main study case.
Heart rate turbulence (HRT), the technique of acceleration-
deceleration oscillation analysis proposed in [10], suggests
that HHITS can be described in the piecewise linear pattern.
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The time series generated by different heart conditions show
distinguished differences in this pattern. Therefore, using
piecewise linear filters for capturing this pattern is highly
desirable. We apply the piecewise linear filter to HHITS before
measuring their complexity and find that aging may reduce
the complexity of the cardiac system more than congestive
heart failure. Numerical results from piecewise linear filter
multiscale entropy (PLFME) are more robust to data of
various lengths than those from MSE. We furthermore design
an adaptive filter for HHITS (without prior information of
HHITS) and use it to develop adaptive piecewise constant
filter multiscale entropy (APCFME). In the study of HHITS,
the numerical performance of APCFME is comparable to that
of PLFME.

We organized this paper into six sections and two Ap-
pendixes. In Sec. II, we describe the coarse-graining process-
ing using filters and a blockwise sample entropy for computing
the resulting filter-based multiscale entropy. Then in Sec. III,
we study FME for the Gaussian noise and the 1/f noise.
For these cases of study, we provide theoretical results, with
their detailed proofs reported in the Appendixes, and as well
as numerical results. Section IV is devoted to application of
PLFME to HHITS. In Sec. V, we design an adaptive piecewise
constant filter and use it in developing APCFME. Numerical
results of APCFME applied to Gaussian noise, 1/f noise, and
HHITS are also presented in this section. We draw conclusions
in Sec. VI.

II. FILTER-BASED MULTISCALE ENTROPY

We motivate FME from a filter viewpoint which reinterprets
the averaging process in MSE as filtering a time series through
a lower pass filter of a piecewise constant type in generating
its multiple frequency components. Piecewise constant filters
may be suitable for signals which can be described in piecewise
constant patterns but may not be suitable for others. To
make MSE more robust to signals with a different nature,
we introduce FME which considers the meaningful structural
complexity of a physiologic system over multiple spatial
and temporal scales resulting from filters appropriate for the
specific physiological system. Specifically, at each scale, from
finer to coarser, the time series is passed through a desired filter
to capture its characteristic pattern. For example, a piecewise
polynomial filter of order k can be used to approximate a
time series which can be intrinsically represented by such a
function. When prior information of the signal is available,
one can use it in the filter design, and when it is not
available, one may construct filters adaptively from the given
signal.

A filter may be described in terms of a matrix. For example,
the Haar filter is the 1 × 2 matrix [ 1

2 , 1
2 ]. The piecewise

polynomial filter may be derived from the wavelets on invariant
sets [11], and a general construction of filters of this type was
discussed in [12]. From [13], the piecewise linear filter is the
2 × 4 matrix given by

A := 1

2

[
1 0 1 0

−
√

3
2

1
2

√
3

2
1
2

]
(1)

and the piecewise quadratic filter is the 3 × 6 matrix given by

B := 1

2

⎡
⎢⎣
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√
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2 0

0 −
√

15
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4 0

√
15
4

1
4

⎤
⎥⎦ . (2)

A coarse-graining process of a time series x :=
[x0, . . . ,xN−1] of real numbers can be viewed as a matrix
multiplication of the vector x (we use the same notation
x for the time series and the vector). Specifically, at each
scale τ = 2,3, . . . , a matrix A(τ ) ∈ Rpτ ×qτ is chosen as a
filter for x. For matrices P := [pjk] and Q we define the
Kronecker product P ⊗ Q := [pjkQ]. By �·� we denote the
floor function. At scale τ , the coarse-grained time series is
constructed by A(τ ) as yτ := (In ⊗ A(τ ))x, where n := � N

qτ
�

and In is the n × n identity matrix. If N = nqτ + k, for some
integers n and k with 1 � k < qτ , we shall drop the last k

components of x when constructing the coarse-grained time
series since such insignificant loss of a few components will
barely affect the complexity of the whole system. Thus, in each
coarse-grained procedure, the time series is partitioned into n

blocks with each having qτ components and being transformed
by A(τ ) to another block of pτ components.

The coarse-graining process can also be viewed as the
application of the same filter matrix recursively to x. For a
filter matrix A ∈ Rp×q and τ = 2,3, . . . , the coarse-grained
time series at the scale τ is obtained recursively by yτ =
(Inτ−1 ⊗ A)yτ−1 with y1 := x and nτ−1 := �Nτ−1

q
�, where Nτ−1

is the length of the time series yτ−1. For example, for PLFME,
in the above formula A is the piecewise linear filter defined in
(1) and q = 4.

We recall the notion of sample entropy [8]. Let Zm :=
{0,1, . . . ,m − 1} for a positive integer m. We denote by x(i) the
ith component of a time series x. For a given x, we construct a
sequence um := {um(j ) : j ∈ ZN−m}, where um(j ) := [x(j +
k) : k ∈ Zm] are vectors of m data points, with m being the
length of the pattern templates. The distance between um(�)
and um(j ) is defined as d[um(�),um(j )] := max{|x(� + k) −
x(j + k)| : k ∈ Zm}. For a given tolerance r > 0 and a fixed
integer � ∈ ZN−m, we let Bm

� denote the number of vectors
um(j ) with j > � which satisfy d[um(�),um(j )] � r . The
number r serves as the tolerance for accepting matches, and
um(�) is called the template. Then the probability of vectors
um(j ) ∈ um that are near the template um(�) within tolerance
r is given by Cm

� (x,r) := Bm
� /(N − m + 1). Let Cm(x,r) :=∑N−m

�=0 Cm
� (x,r). The sample entropy of x is defined by

Sm(x,r) := − ln

[
Cm+1(x,r)

Cm(x,r)

]
.

We propose a blockwise sample entropy (BSE) for the
filtered time series yτ at each scale. The use of BSE (instead
of the standard sample entropy) is to adjust to the size
of the filters used in FME which result in output signals
having blocks consisting of more than one component. We
now introduce BSE for the coarse-grained time series yτ for
τ � 2. It follows the same idea as sample entropy and is
designed to suit the structure of yτ . Note that yτ consists of n

blocks, each of which has pτ components and is obtained
from a block of x transformed by the same matrix A(τ ).
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Components in each block represent different information of
x, captured by different rows of the filter A(τ ). For example,
different rows of the linear filter transform x to different
components in the piecewise linear function basis. For this
reason, in calculating BSE, we consider each block of yτ

as a single unit and apply the sample entropy calculation
process to yτ . To this end, we write yτ = [yτ

0, . . . ,y
τ
n−1],

where each yτ
j is a vector with pτ components and [yτ

j ]s :=
yτ (jpτ + s) for each s ∈ Zpτ

with [d]s denoting the sth
component of a vector d. Then the sequence corresponding
to um in sample entropy is constructed as uτ

m := {uτ
m(j ) :

j ∈ Zn−m}, where uτ
m(j ) := [yτ

j+k : k ∈ Zm] consists of
m vectors. Let σs(uτ

m(�),uτ
m(j )) := max{|[yτ

�+k]s − [yτ
j+k]s | :

s ∈ Zm}. The distance between uτ
m(�) and uτ

m(j ) is then
defined as a vector of pτ components by d[uτ

m(�),uτ
m(j )] :=

[σs(uτ
m(�),uτ

m(j )) : s ∈ Zpτ
]. For a given uτ

m(�), we denote
by B

m,τ
� the number of vectors uτ

m(j ) with j > � which
satisfy σs(uτ

m(�),uτ
m(j )) � rτ

s for each s ∈ Zpτ
, where rτ

s :=∑q

t=1 |A(τ )
st |r . Here r is the tolerance used in calculating the

sample entropy of x, and A
(τ )
st is the (s,t) entry of A(τ ). Let rτ :=

[rτ
0 ,rτ

1 , . . . ,rτ
pτ −1] and C̃m

� (yτ ,rτ ) := B
m,τ
� /(n − m + 1), � ∈

Zn−m+1. BSE S̃m(yτ ,rτ ) of yτ is defined in the same way as
the sample entropy with Cm

� (x,r) replaced by C̃m
� (yτ ,rτ ). That

is,

S̃m(yτ ,rτ ) := − ln

[
C̃m+1

� (yτ ,rτ )

C̃m
� (yτ ,rτ )

]
. (3)

The choice of parameter rτ in BSE is crucial. In MSE,
the same value r was used for different scales. Adjusted to the
decreasing variance of the filtered time series in scales, the
parameter r in MSE was adjusted in [14] as a certain
percentage of the standard deviation of the filtered time series
at each scale. In BSE, the parameter rτ is calculated from
a different viewpoint. Since the filtering process in FME is
a transformation of the time series by a matrix, measuring
the similarity of the components in the filtered time series
should be related to the filter matrix. Thus the parameter
rτ is a vector whose components are transformed by the
corresponding rows of the filter matrix. Each component rτ

s ,
s ∈ Zpτ

, is to measure the similarity of the corresponding
components among different blocks in the filtered time series.

We now elaborate the relation of MSE and FME. In MSE,
the consecutive coarse-grained time series {yτ } is constructed
according to the equation yτ (j ) = 1/τ

∑(j+1)τ−1
k=jτ x(k), j ∈

Z�N/τ�. The time series is actually filtered by the 1 × τ matrix
C(τ ) := [ 1

τ
, 1
τ
, . . . , 1

τ
] at scale τ . That is, yτ = (I� N

τ
� ⊗ C(τ ))x.

Thus yτ has �N/τ� blocks with each having one component.
In this case, BSE degenerates to the standard sample entropy.
Therefore, MSE is actually a special case of FME with the
piecewise constant filter C(τ ) at scale τ . We also remark that
when τ = 2k , for k = 1,2, . . . , filtering a time series by C(τ ) is
equivalent to filtering it by the Haar filter k times recursively.

III. FME FOR GAUSSIAN AND 1/ f NOISE

In this section, we discuss the behavior of FME in
simulating white noise, a completely irregular signal, and 1/f

noise, a correlated signal.

A. FME for Gaussian noise

We first apply FME to Gaussian white noise. Intuitively,
complexity is associated with “meaningful structural richness”
[15]. There is no straightforward correspondence between
regularity and complexity. For example, uncorrelated random
signals, such as Gaussian white noise, are highly unpredictable
but not structurally complex. We present both theoretical and
numerical results of Gaussian white noise from FME. We
shall see that the entropy measure of the Gaussian white noise
decreases as the scale increases. This indicates the lack of the
complexity of the Gaussian white noise.

For a positive integer N , let x := [xj : j ∈ ZN ] denote a
random vector taking values in RN . When the components
xj ,j ∈ ZN , are independent and have the same Gaussian
distribution in the sense that they have the same mean and
standard deviation, we call x a real Gaussian random vector,
we call a component of x a Gaussian random variable, and
we call an instance of x the Gaussian white noise. In this
subsection, we use g := [gj : j ∈ ZN ] for the real Gaussian
random vector, with the mean of gj being 0 and the standard
deviation of gj being δ.

Given a filter A(τ ) ∈ Rpτ ×qτ , we consider BSE of the filtered
Gaussian random vector,

gτ := (In ⊗ A(τ ))g, (4)

where n = � N
qτ

�. Recall that BSE estimates the negative natural
logarithm of the conditional probability that the distance
between two blocks in gτ is small (measured by rs in the
description of BSE) given that the distance between the two
preceding blocks is also small. This conditional probability can
be analytically expressed by the probability density function
of all of the blocks in gτ (Lemma 2 in Appendix A) and the
independence of blocks in gτ (Lemma 3 in Appendix A). For
notational convenience, in the remaining part of this section
and Appendix A we use the same notation S̃m(gτ ,r) for the
theoretical value of BSE of gτ . For a positive integer N , let
Z+

N := {1,2, . . . ,N}. For a given r > 0, we let

rτ
s :=

qτ∑
t=1

∣∣A(τ )
st

∣∣r, s ∈ Z+
pτ

.

For a given vector y ∈ Rpτ , we define

�y := ([y]1 − rτ
1 ,[y]1 + rτ

1

)× · · ·
× ([y]pτ

− rτ
pτ

,[y]pτ
+ rτ

pτ

)
.

Clearly, �y ⊂ Rpτ . For the standard deviation δ of gj , we
define the matrix � ∈ Rpτ ×pτ by

�st :=
pτ∑

j=1

A
(τ )
sj A

(τ )
tj δ2, 1 � s, t � pτ .

We assume that the matrix � is invertible. We shall show in
Lemma 2 that all of the blocks in gτ have the same probability
density function with the covariance matrix �. We next present
S̃m(gτ ,r) in terms of the matrix �. To this end, we let

I(�y) :=
∫

�y

λ� exp

(
−1

2
xT �−1x

)
dx, (5)

where λ� := 1
(2π)pτ /2|�|1/2 .
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Proposition 1. If A(τ ) ∈ Rpτ ×qτ and gτ is defined as in (4),
then for any r > 0

S̃m(gτ ,rτ ) = − ln

{∫
Rpτ

I(�y)λ� exp

(
−1

2
yT �−1y

)
dy
}
.

(6)

Details of the proof of Proposition 1 can be found in
Appendix A.

Formula (6) holds for a general filter matrix A(τ ). In partic-
ular, when we choose A(τ ) = C(τ ), it recovers the theoretical
results originally proved in [5] of MSE for Gaussian white
noise.

We next present a special result when the rows of the filter
matrix A are orthogonal. Examples of such filter matrices
include the piecewise polynomial filter of order k. In this
case, in addition to the independence of blocks of the filtered
Gaussian white noise, elements within each block are also
independent (Lemma 4 in Appendix A). We use erf to denote
the error function defined by

erf(x) := 2√
π

∫ x

0
e−t2

dx.

For given r > 0 and matrix A ∈ Rp×q , we let δ(A,j ) :=√∑p

k=1 A2
jkδ and

rs :=
q∑

t=1

|Ast|r,s ∈ Z+
p . (7)

Then δ(A,j ) is the standard deviation of the j th element in
each block of the filtered Gaussian random vector (see Lemma
4). For real numbers a and b, we define

E(a,b) := erf

(
a + b

δ(A,j )

)
− erf

(
a − b

δ(A,j )

)
.

Proposition 2. If matrix A ∈ Rp×q has orthogonal rows,
then for g̃ := (I� N

q
� ⊗ A)g and for any r > 0,

S̃m(g̃,rτ ) = − ln

⎛
⎝ p∏

j=1

1√
2πδ(A,j )

∫
R

E(xj ,rj )

× exp
−x2

j

2[δ(A,j )]2
dxj

)
. (8)

The proof of Proposition 2 is presented in Appendix A.
Since the Gaussian noise is a completely irregular signal, one
expects that its complexity, measured by FME, decreases as
the scale increases. This is the case when the filter matrix A

used in FME has orthogonal rows and satisfies the condition

AT A = ρ2Ip (9)

for some constant ρ ∈ (0,1). This is stated in the next theorem.
For this purpose, we let

gτ :=
(
I� Nτ−1

q
� ⊗ A

)(
I� Nτ−2

q
� ⊗ A

)
· · ·
(
I� N1

q
� ⊗ A

)
g, (10)

where Nj is the length of the time series gj ,j = 2,3, . . . ,τ −
1, and N1 is the length of g.

Theorem 1. If g := [gj : j ∈ ZN ] is a real Gaussian random
vector with mean 0 and standard deviation δ, A ∈ Rp×q is a
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FIG. 1. (Color online) MSE and PLFME for Gaussian white noise
(mean 0, variance 1) and 1/f noise, N = 8 × 104.

filter with orthogonal rows and satisfies condition (9), m � 1,
r > 0, and gτ is defined as in (10), then for τ1 > τ2,

S̃m(gτ1 ,rτ1 ) < S̃m(gτ2 ,rτ2 ).

The proof of Theorem 1 follows from Proposition 2 and the
fact that the error function is strictly increasing. Details of the
proof are presented in Appendix A.

It can be verified that the piecewise polynomial filters
of order k whose construction was described in [12] have
orthogonal rows and satisfy the condition (9). Hence, the
hypotheses of Theorem 1 are satisfied for this class of filters,
and as a result, the corresponding filter-based multiscale
entropy of the Gaussian noise decreases as the scale increases.
This fact is further confirmed by the numerical example.
Numerical results from PLFME and also MSE for Gaussian
white noise are presented in Fig. 1. Unless stated otherwise,
all entropy values presented in this paper are computed
by choosing m := 2 and r being 15% of the time-series
standard deviation. A similar pattern in which the entropy
value decreases as the scale increases is shown in both of the
methods.

B. FME for 1/ f noise

Now we apply FME to 1/f noise. Note that 1/f noise
can be observed in various physical, chemical, and biological
systems [16]. It is the signal whose power spectral density is
proportional to the reciprocal of its frequency. To describe 1/f

noise, we recall complex Gaussian variables and the discrete
Fourier transform. As usual, we let i = √−1 be the imaginary
unit and denote the complex plane by C. A complex variable
z := x + iy is called a complex Gaussian random variable if
both x and y are real independent Gaussian variables with the
mean 0 and the same standard deviation δ. The corresponding
probability density function for the complex Gaussian random
variable z is given by

ρ(z) := 1

πδ2
z

e|z|2/δ2
z , z ∈ C,

where δz := √
2δ. Given n ∈ N, we let θn := 2π

2n and define
the discrete Fourier transform Fn by a 2n × 2n matrix,

Fn := 1

2n
[e−iθnk� : k ∈ Z2n ,� ∈ Z2n ]. (11)

For a random vector x taking values in R2N

, we use x̂ to denote
the discrete Fourier transform of x, that is, x̂ := FNx. We write
x̂ := [zk : k ∈ Z2N ]T . It is well known that the discrete Fourier
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transform has the symmetric property

z2N−1+k = z̄2N−1−k, k ∈ Z+
2N−1 . (12)

We need only to obtain the first 2N−1 + 1 components of the
vector x̂ since the remaining components may be obtained
from the symmetry property.

We describe the 1/f noise following [17]. If zk , k ∈
Z+

2N−1−1, are independent complex Gaussian random variables
with mean 0, z0 and z2N−1 are real Gaussian random variables
with mean 0, and there is a positive constant c such that for all
k ∈ Z2N−1+1 the standard deviation δk of zk satisfies δk � c

k+1 ,
then we call x a 1/f random vector and we call an instance of
x a 1/f noise. In this subsection, we use f := [fk : k ∈ Z2N ]T

to denote a 1/f random vector and f̂ := [zk : k ∈ Z2N ]T to
denote the discrete Fourier transform of f.

It is known that 1/f noise contains complex structures
across multiple time scales [18,19]. We shall show that the
filtered 1/f noise is again 1/f noise if the filters satisfy certain
conditions. This indicates that the filtered 1/f signal is as
complex as the original 1/f signal.

We start with a simple filter A which has the form

A := [α,β],

where α,β ∈ R. The next proposition shows that the filtered
1/f signal, (I2N−1 ⊗ A)f, is again a 1/f signal for most of the
filters of this form. The proof will be given in Appendix B
by using Lemma 6 to Lemma 12. To present this result, we
write Af := (I2N−1 ⊗ A)f and let δk,δA,k denote the standard
derivations of the (k + 1)th random variable of f̂ and Âf,
respectively.

Proposition 3. If f is a 1/f random vector and (α,β) satisfies
the condition

α + β �= 0, (13)

then Af is also a 1/f random vector. Moreover, if there exists
a positive constant c such that for all k ∈ Z2N−1+1, δ2

k � c
1+k

,

then for all k ∈ Z2N−2+1, δ2
A,k � c′

k+1 , where c′ = 2(α2 + β2)c.
Note that the special case of Proposition 3 with [α,β] :=

[ 1
2 , 1

2 ] was proved in [9]. If (α,β) does not satisfy condition
(13), then α = −β. In this case, (I2N−1 ⊗ A)f may not be 1/f

noise. For example, when A is the high pass Haar filter, that is,
A := [ 1

2 , − 1
2 ], it was verified in [9] by a numerical experiment

that (I2N−1 ⊗ A)f is not 1/f noise and the entropy value of
the filtered 1/f signal will decrease as the scale increases.
In addition, if we take A := [1,0] (A := [0,1]) in Proposition
3, we can see that the random vector consisting of the odd
components (the even components) of a 1/f random vector
is still a 1/f random vector. This result is summarized in the
next corollary.

Corollary 1. If f := [f0,f1, . . . ,fN−1] is a 1/f random
vector, then u := [um : m ∈ ZN/2+1] with um = f2m and v :=
[vm : m ∈ ZN/2+1] with vm = f2m+1 are also 1/f random
vectors.

Though the result in Proposition 3 is only for filters of a
simple form, it can be utilized (together with Corollary 1) to
establish below that a filtered 1/f noise is still 1/f noise. The
proof of this result will be provided in Appendix B.

Proposition 4. If f is 1/f random vector and the matrix A

is defined as in (1), then (I2N−2 ⊗ A)f is also a 1/f random
vector.

Numerical results from MSE and PLFME for 1/f noise
are presented in Fig. 1. Results from both of these methods
are consistent with the fact that 1/f noise contains complex
structures across multiple scales [18,19].

IV. APPLICATION TO HUMAN HEARTBEAT INTERVAL
TIME SERIES

We apply FME to HHITS to study the loss of complex-
ity, a generic feature of pathologic dynamics. Specifically,
we apply the piecewise linear filter recursively to HHITS
of healthy young subjects (YOUNG), healthy old subjects
(OLD), subjects with cardiac arrhythmia, atrial fibrillation
(AF), and subjects with severe congestive heart failure (CHF),
and we compute BSE of the resulting signals of multiple
scales. We test the hypothesis that healthy heart interbeat
interval dynamics are more complex than those with pathology.
Our numerical results also suggest that aging may reduce the
complexity of the heart interbeat interval more than CHF. This
finding is robust to data of different lengths.

In this consideration, the use of the piecewise linear filter
in FME is motivated by a study of the biological mechanism
of the cardiac system described by HRT [10]. HRT describes
short-term fluctuations in the sinus cycle length that follow
spontaneous ventricular premature complexes (VPCs). The
physiological pattern described in HRT consists of brief heart
rate acceleration, which is followed by more gradual heart
deceleration before the rate returns to a pre-ectopic level.
Following singular VPCs, the HRT pattern is frequently
masked by a heartbeat interval time series. Consequently,
HRT is usually assessed from Holter recordings as an average
response to VPCs over longer periods (e.g., 24 h). From such
recordings, the VPC tachogram is constructed by aligning
and averaging sequences of heartbeat interval time series
surrounding isolated VPCs. Figure 2 from [20] is VPCs
tachograms showing normal (left) and abnormal (right) HRT.
From Fig. 2, we observe that different heart conditions show
distinguished differences in HRT pattern.

FIG. 2. (Color online) VPC tachograms showing normal (left)
and abnormal (right) HRT. Thin orange curves show single VPC
tachograms. Bold brown curves show the averaged VPC tachogram
over 24 h.
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Several parameters characterizing the HRT pattern were
proposed [10,21–23]. Among these parameters, turbulence
onset (TO) and turbulence slope (TS) [10] quantify two phases
of HRT, namely early acceleration and late deceleration. These
two parameters are meaningful in the clinical sense, especially
in risk prediction and monitoring of disease progression in sev-
eral pathologies (see [20] and references therein). TO and TS
represent the regression slope of the corresponding sequences
of HHITS (acceleration and deceleration) surrounding isolated
VPCs. The acceleration phase surrounding an isolated VPC is
characterized by a negative value of TO, and the deceleration
phase surrounding an isolated VPC is characterized by a
positive value of TS. Both TO and TS are constants for each
sequence of HHITS surrounding VPCs and representing the
acceleration and deceleration phase, respectively. This implies
that regression slopes of the acceleration and deceleration
sequences of HHITS surrounding VPCs have a piecewise
constant pattern. Therefore, sequences of HHITS surrounding
VPC may have a piecewise linear pattern. This inspires us to
use a piecewise linear filter for the cardiac signal to capture
its piecewise linear pattern. Though HRT only describes
sequences of HHITS surrounding VPCs, we use a piecewise
linear filter for the entire HHITS assuming that the piecewise
linear pattern represents the entire HHITS better than the
piecewise constant pattern, which is captured by the piecewise
constant filter used in MSE. In Fig. 3, we compare the HHITS
with their piecewise linear representations, where the signals
in column (b) are obtained from the original HHITS in column
(a) by the linear filter 1

4 [1,2,1]. This shows that HHITS may
be well represented by a piecewise linear signal.

According to the discussion above, we use PLFME for
the cardiac signal. Specifically, in PLFME, the original time
series is filtered by the piecewise linear filter A defined in (1)
recursively at multiple scales. That is, we define

y1 := x, yτ := (Inτ−1 ⊗ A
)
yτ−1,

where nτ−1 := �Nτ−1

4 � and Nτ−1 is the length of the time series
yτ−1.

We next present numerical results of PLFME. We compare
MSE and PLFME of the time series of consecutive heart beat
intervals derived from 20 YOUNG, 20 OLD, 7 AF, and 20
CHF subjects of data lengths N = t × 104, where t = 3,5,8.
The entropy value of each group shown in Fig. 4 is the mean
entropy value of the group. MSE values are computed using
the software provided in [24]. We see that PLFME improves
the robustness of MSE to the data of different lengths.

The most significant difference between the results of MSE
and PLFME occurs in the OLD and CHF groups.

We first look at the results of MSE [Fig. 4(a)]. When
N = 3 × 104, the same data length as used in [5,25], we
obtain the same results as those in [5,25]. As N increases,
the curve representing entropy values at different scales of the
OLD group (black dot) gradually drops below that representing
entropy values of the CHF group (blue circle). In particular,
the black dot curve is above the blue circle curve at scales 4
to 12 when N = 5 × 104. The blue circle curve exceeds the
black dot curve at all scales when N = 8 × 104, suggesting
the cardiac system from the CHF group is more complex than
that from the OLD group. It is known that both disease and
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FIG. 3. (Color online) A comparison of the original signal
[column (a)] and their piecewise linear representations [column (b)].

aging will reduce biological complexity [6]. However, which
condition reduces the complexity more remains inconclusive
from MSE, which provides different results from data of
different lengths.

Next we look at the results of PLFME. Notice that for data
of the OLD and CHF groups of different lengths, the results
of FLFME are more robust than those of MSE. For all of the
values of N reported in Fig. 4(b), the blue circle curve is above
the black dot curve at all scales. This suggests that the cardiac
interbeat intervals may lose more complexity from aging than
from the CHF group. This result is consistent with that of
MSE when N = 8 × 104. Moreover, the curves representing
entropy values at different scales of the OLD and CHF groups
are better separated by PLFME than by MSE. This is further
confirmed by the classification result that we present below.

We develop the MSE classifier and PLFME classifier by
using entropy values at all scales of MSE and PLFME, respec-
tively, as features to classify the CHF and OLD groups via the
support vector machine classifier [26]. In this experiment, we
use the data of length N = 8 × 104. The training set consists
of 22 CHF and 23 OLD subjects and the test set consists of 21
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FIG. 4. (Color online) MSE and PLFME for longer HHITS data.

CHF and 23 OLD subjects. The correct classification rates of
both methods for the OLD and the CHF subjects are presented
in Table I. Clearly, the correct classification rate of PLFME
is significantly higher than that of MSE. This may be due to
the fact that the piecewise linear filter captures the multiscale
information of HHITS more accurately than the piecewise
constant filter.

Obtaining long time series may be difficult and expensive
in practical applications. Data analysis with short time se-
ries is highly desirable. Applications of MSE to short-term
physiological recordings were recently studied in [27,28]. We
compare the performance of MSE and PLFME for shorter
HHITS with data lengths N = 4,8 × 103. The numerical
results shown in Fig. 5 from the shorter data are consistent
with those shown in Fig. 4 from the longer data.

To close this section, we compare PLFME with two re-
finements of MSE proposed by [29,30]. In [29], the averaging
process of MSE was interpreted as the finite-impulse filter
(FIR) and a refined MSE (RMSE) was proposed based on
the replacement of the FIR filter with a low-pass Butterworth
filter, which aims to reduces aliasing when the filtered series
are down-sampled. In [30], the adaptive MSE (AMSE) method
was proposed by using empirical mode decomposition to

TABLE I. Correct classification rates of the MSE classifier and
the PLFME classifier for the OLD subject and the CHF subject.

Classifiers OLD CHF

MSE 78.3% 76.2%
PLFME 87.0% 81.0%

5 10 15
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Scale Factor

E
n
t
r
o
p
y
 
M
e
a
s
u
r
e

N = 4 × 103 CHF
OLD
YOUNG
AF

1 2 3 4 5 6
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Scale Factor

E
n
t
r
o
p
y
 
M
e
a
s
u
r
e

N = 4 × 103 CHF
OLD
YOUNG
AF

5 10 15
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Scale Factor

E
n
t
r
o
p
y
 
M
e
a
s
u
r
e

N = 8 × 103 CHF
OLD
YOUNG
AF

1 2 3 4 5 6
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Scale Factor

E
n
t
r
o
p
y
 
M
e
a
s
u
r
e

N = 8 × 103 CHF
OLD
YOUNG
AF

(a) MSE (b) PLFME

FIG. 5. (Color online) MSE and PLFME for shorter HHITS data.

extract the lower-frequency components of the time series
at different scales. We performed both RMSE and AMSE
methods on our data (Fig. 6). Both of these methods do not
provide satisfactory numerical results. Numerical results of
RMSE [Fig. 6(a)] do not give any evidence that cardiac systems
from healthy young subjects are more complex than those from
pathologic subjects. Numerical results of AMSE [Fig. 6(b)] do
not discriminate OLD and CHF groups as well as those from
MSE and PLFME, especially when the length of the time
series is small. The reason that PLFME and MSE give a better
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FIG. 6. (Color online) RMSE and AMSE for HHITS data.
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description of the complexity of heartbeat interval time series
than RMSE and AMSE may be due to the fact that PLFME
and MSE filter the time series more “locally” than RMSE and
AMSE.

V. ADAPTIVE FILTERS

When prior knowledge of the system that generates a time
series is not available, we propose to use adaptive filters
constructed from the time series to compute its FME. Since
traditional entropy methods quantify the degree of regularity
of a time series by evaluating the appearance of its repetitive
patterns, and since consecutive components which are close to
each other (measured by r in sample entropy) are considered
to be a repetitive pattern, one may consider these repetitive
patterns as single units which will present the regularity of the
whole system. We further consider the multiscale structure of
these patterns to measure the complexity of the physiological
system by using adaptive filters. To illustrate the process of
constructing an adaptive filter, we present below APCFME as
an example. The idea is applicable to constructing adaptive
piecewise polynomial filters of order k.

Given a time series, we group it according to its repetitive
patterns. Specifically, for a time series x of length N , we write
x = {x0, . . . ,xn−1} with disjoint xj , being a repetitive pattern
of x. Each xj sequence consisting of several consecutive
components of x and the distance between any two components
in xj is not bigger than a preselected tolerance r . For each
xj , we use |xj | to denote the number of its elements. A new
coarse-grained time series y of length n is generated by

y(k) := 1

|xk|
∑

x(j )∈xk

x(j ), k ∈ Zn. (14)

In other words, x is filtered by an n × n block diagonal matrix,
whose j th diagonal block is the 1 × |xj | matrix,[

1

|xj | ,
1

|xj | , . . . ,
1

|xj |
]

.

This adaptive piecewise constant filter (APCF) is different
from the piecewise constant filter used in MSE. We choose
m = 1 and an increasing sequence {r0,r1, . . . ,} at different
scales to compute sample entropy. APCFME is then computed
by the following procedure:
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FIG. 7. (Color online) APCFME results for simulated Gaussian
white noise when the parameters rj are constant.
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FIG. 8. (Color online) APCFME results for simulated Gaussian
white noise, 1/f noise, and HHITS.

(i) Compute S1(x,r0).
(ii) At scale τ � 1, a new time series yτ is generated

from yτ−1 with y0 := x using APCF. The parameter r used
to construct APCF is chosen as rτ−1.

(iii) Compute S1(yτ ,rτ ).
We now discuss the choice of the parameters rj used

in APCFME. Constructing coarse-grained time series as
described in (14) is equivalent to averaging several consecutive
components of the original time series among which any two
components are close to each other (measured by the tolerance
r). Thus the distance between any two components in the
coarse-grained time series is potentially bigger than that in the
original time series. To further construct the coarse time series,
a bigger tolerance in the next coarse-grained procedure is
desired. We present the numerical results of APCFME applied
to Gaussian white noise when the parameters rj are chosen
as a constant (rj = 0.15) at all scales in Fig. 7. It shows that
the entropy value of the coarse-grained time series remains a
constant after scale 3, which indicates that the construction of
the coarse-grained time series fails when the scale is bigger
than 3.

According to the discussion above, we choose parameters
r0 = 0.15, rj+1 = 1.1 × rj for 0 � j � 5 and rj+1 = 1.05 ×
rj for j > 5 in the numerical results shown in the remaining
part of this section. We present in Fig. 8(a) results of APCFME
applied to Gaussian white noise and 1/f noise. The results are
similar to those in Fig. 1. In Fig. 8(b), we present numerical
results of APCFME applied to HHITS of length N = 3 × 104

for the CHF, YOUNG, and OLD groups. We find that YOUNG
is most complex when the scale is bigger than 3. Moreover,
CHF is more complex than OLD, which is consistent with
the results of PLFME [Fig. 4(b)]. This example shows that
APCFME without using any prior information is comparable
to PLFME, whose construction uses prior information of
HHITS.

VI. CONCLUSION

FME improves MSE in analyzing the complexity of
physical and biological systems. It gives a wider range of
applicability due to the flexibility of choosing different filters
according to data patterns. For HHITS, unlike MSE, which
uses piecewise constant filters, PLFME uses the piecewise lin-
ear filter (motivated from HRT) and APCFME uses APCF. The
results of PLFME are more robust to the data length than those
of MSE, and the results of APCFME are consistent with those
of PLFME. From both PLFME and APCFME, we find that
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aging may reduce the complexity of the cardiac system more
than CHF. This finding is consistent for different data lengths.
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APPENDIX A: PROOFS OF FME RESULTS
FOR GAUSSIAN NOISE

In this Appendix, we provide detailed analytical derivations
of FME for Gaussian white noise. The analysis mainly
relies on the statistical properties of a linear combination of
Gaussian random variables. Theorem 4.2.14 in [31] states that
a linear combination of two independent real Gaussian random
variables is also a real Gaussian random variable. This result
can be easily generalized to the following lemma. The proof
of the lemma is straightforward and will be omitted.

Lemma 1. If Xj are n independent real Gaussian random
variables with mean 0 and standard deviation δj , then for αj ∈
R,j ∈ Zn,

∑n−1
j=0 αjXj is a real Gaussian random variable with

mean 0 and standard deviation δ̃ := (
∑n−1

j=0 α2
j δ

2
j )1/2.

As usual, the expectation of a random variable X taking
values in R is defined by E(X) := ∫R tp(t)dt, where p is
the probability density function for the random variable X.
Two random variables X and Y are independent if and only if
E(XY ) = 0. We let cov(X,Y ) denote the covariance of X and
Y . It is known from Theorem 4.5.3 in [31] that

cov(X,Y ) = E(XY ) − E(X)E(Y ).

We let g := [gj ,j ∈ ZN ] denote the real Gaussian random
vector. At scale τ , we let Aτ ∈ Rpτ ×qτ be a filter and n = � N

qτ
�.

We write gτ := (In ⊗ A(τ ))g in block form,

gτ := [gτ
0, . . . ,g

τ
n−1

]
, (A1)

where gτ
j ,j ∈ Zn, is a vector with pτ components, and for each

k ∈ Zpτ
let [gτ

j ]k := gτ (jpτ + k). The proof of Proposition 1
is based on the probability density function of gτ

j and the
independence of blocks in gτ . We present the probability
density function of gτ

j ,j ∈ Zn, in the following lemma.
Lemma 2. If gτ

j is defined in (A1), j ∈ Zn, then gτ
j is a

pτ -variate normally distributed random vector with its mean
being the zero vector and and its covariance matrix being �

with

�st :=
pτ∑

k=1

A
(τ )
sk A

(τ )
tk δ2,1 � s,t � pτ , (A2)

where δ is the standard deviation of gj .
Proof. From the construction of gτ

j , for each j ∈ Zn, we
have that gτ

j = A(τ )gj , where gj ∈ Rqτ with [gj ]k = g(qτ + k)
for each k ∈ Zqτ

. For each j ∈ Zn, gj consists of qτ indepen-
dent real Gaussian random variables with mean 0 and standard
deviation δ, and [gτ

j ]k, k ∈ Zpτ
, is a linear combination of

these random variables. Hence, it follows from Lemma 1 that
for each k ∈ Zpτ

, [gτ
j ]k is a Gaussian random variable with

mean 0 and standard deviation
√∑pτ

�=1(A(τ )
k� )2δ. Hence, for

any 1 � s,t � pτ ,

cov
([

gτ
j

]
s
,
[
gτ

j

]
t

) = E
(
A(τ )

s gj · A
(τ )
t gj

) =
pτ∑

k=1

A
(τ )
sk A

(τ )
tk δ2,

where A
(τ )
k is the kth row of A(τ ) for 1 � k � pτ . The desired

result follows directly from the definition of the multivariate
normal distribution.

Noting that formula (A2) is independent of j , all blocks
in gτ have the same probability density function. In the next
lemma, we show the independence of blocks in gτ . We say
that two random variable vectors X and Y are independent if
the elements of X (as a collection of random variables) are
independent of the elements of Y. Elements within X or Y
need not be independent when X and Y are independent.

Lemma 3. If gτ
j is defined as in (A1), j ∈ Zn, then gτ

j and
gτ

k , j,k ∈ Zn, are independent when j �= k.
Proof. It suffices to prove that [gτ

j ]s and [gτ
k ]t are indepen-

dent for any s,t ∈ Zpτ
if j �= k,j,k ∈ Zn. Since g(jpτ + s)

and g(kpτ + t) are independent, we have that E[g(jpτ +
s)g(kpτ + t)] = 0. It follows that

E
([

gτ
j

]
s

][
gτ

k

]
t

)
= E

[
pτ∑
�=1

A
(τ )
s� g(jqτ + � − 1)

pτ∑
�=1

A
(τ )
t� g(kqτ + � − 1)

]

=
pτ∑
�=1

pτ∑
u=1

A
(τ )
s� A

(τ )
tu E[g(jqτ + � − 1)g(kqτ + u − 1)] = 0

(A3)

if j �= k. Thus, [gτ
j ]s and [gτ

k ]t , s,t ∈ Zpτ
, are independent. We

then conclude that gτ
j and gτ

k are independent for any j,k ∈ Zn

with j �= k.
We next prove Proposition 1. We say that the distance

between two blocks gτ
j and gτ

k , j,k ∈ Zn, is less than rτ if
[|gτ

j − gτ
k |]s < rτ

s for all s ∈ Zpτ
and we write it as |gτ

j − gτ
k | <

rτ .
Proof of Proposition 1. BSE S̃m(gτ ,rτ ) is the negative

natural logarithm of the conditional probability that the
distance between two blocks is less than r provided that the
distance between the two preceding blocks is also less than
r . We write gτ in block form as in (A1), and from Lemma 3
we know that gτ

j and gτ
k are independent if j �= k. Thus, when

m = 1 the conditional probability is

P
(∣∣gτ

j − gτ
k

∣∣ < rτ
∣∣∣∣gτ

j−1 − gτ
k−1

∣∣ < rτ
)

= P
(∣∣gτ

j − gτ
k

∣∣ < rτ
)× P

(∣∣gτ
j−1 − gτ

k−1

∣∣ < r
)

P
(∣∣gτ

j−1 − gτ
k−1

∣∣ < rτ
)

= P
(∣∣gτ

j − gτ
k

∣∣ < rτ
)
. (A4)

Using this approach recursively, it can be proved that this result
is valid for any value of m.

From Lemma 2 and the definition of multivariate normal
distribution, we know that the probability density functions of
gτ

j , j ∈ Zn, are all equal to

f (x) := 1

(2π )pτ /2|�|1/2
exp

{
−1

2
xT �−1x

}
(A5)
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for x ∈ Rpτ , where � is defined as in (A2). Then the desired
formula follows from the definition of BSE, (A4) and (A5). �

We next present the proof of Proposition 2. Let A ∈ Rp×q

be a matrix with orthogonal rows and g̃ := (I� N
q

� ⊗ A)g. We
also write g̃ in block form, g̃ := [g̃0, . . . ,g̃n−1]. In this case, a
set of independent variables are transformed by A to another
set of independent variables due to the orthogonality of the
rows of A. In particular, given a real Gaussian random vector
g, we have the following result for each block g̃j , j ∈ Zn.

Lemma 4. If A ∈ Rp×q is a matrix with orthogonal rows
and g̃ := [g̃0, . . . ,g̃n−1] is defined via a real Gaussian random
vector g, then for each j ∈ Zn, g̃j consists of p independent
Gaussian random variables, with the mean and the standard
deviation of [g̃j ]k being 0 and

√∑p

�=1[Ak�]2δ, respectively,
for k ∈ Zp, where δ is the standard deviation of gj .

Proof. For each j ∈ Zn and k ∈ Zp, we know from Lemma
1 that [g̃j ]k is a real Gaussian variable since it is a linear
transformation of real Gaussian variables. The mean and
standard deviation of [g̃j ]k are easily obtained from Lemma 1.

It remains to prove that [g̃j ]s and [g̃j ]t , s,t ∈ Zp, are
independent when s �= t for each j ∈ Zn. This follows from
the orthogonality of the rows of A. In fact,

E([g̃j ]s[g̃j ]t )

= E

[
p∑

k=1

Askg[jq + (k − 1)] ·
p∑

k=1

Atkg[jq + (k − 1)]

]

=
p∑

k=1

AskAtkE{g2[jq + (k − 1)]} =
p∑

k=1

AskAtkδ = 0,

completing the proof of this lemma.
We are now ready to prove Proposition 2.
Proof of Proposition 2. From Lemma 4, we know that the

probability density function of gτ
j , for each j ∈ Zn, is given

by

f (x) =
pτ∏
�=1

1√
2π
∑p

k=1 A2
�kδ

exp

( −x2
�

2
∑p

k=1 A2
�kδ

2

)
, (A6)

where x is a pτ random vector. By applying (A4) to (A6) and
the definition of BSE, we obtain the desired result. �

Since
√∑p

k=1 A2
�kδ is actually the standard deviation of

[g̃j ]� for each block g̃j in the filtered time series, BSE of g̃ is
determined by the standard deviation of [g̃j ]� by Proposition 2.
This leads us to investigate the standard deviation of the filtered
time series at different scales if we apply the filter matrix A

recursively to g. At scale τ , we define gτ as in (10) and write
it in block form as in (A1). By Proposition 1, at a fixed scale,
all blocks have the same probability density function. Let δ

(τ )
�

denote the standard deviation of the �th element in a block
at scale τ . If the matrix A has orthogonal rows and satisfies
condition (9), we have the following result for δ

(τ )
� :

Lemma 5. If A ∈ Rp×q has orthogonal rows and satisfies
condition (9), then for τ = 2,3, . . . , δ

(τ )
k = ρτ−1δ for k ∈ Zp,

where ρ is the constant that appears in (9) and δ is the standard
deviation of gj .

Proof. We prove this result by induction on τ . When τ = 2,
it follows from Lemma 4 and the fact that A satisfies condition
(9) that δ

(2)
k = ρδ. By the induction hypothesis, we have that

δ
(τ−1)
k = ρτ−2δ for some τ � 3. Following the computation

similar to that used in the proof of Lemma 4 for computing the
standard deviation, we obtain that for any k ∈ Zp,

δ
(τ )
k =

√√√√ q∑
t=1

A2
kt δ

(τ−1)
k = ρρτ−2δ = ρτ−1δ.

This completes the induction and thus the proof.
We next present the proof for Theorem 1.
Proof of Theorem 1. We first reexpress S̃m(gτ ,rτ ) at scale τ .

For each s ∈ Zp, let rs be defined in (7), xs be a fixed number,
and

E(xs,rs,τ ) := erf

(
xs + rs

δ
(τ )
s

)
− erf

(
xs − rs

δ
(τ )
s

)
,

where δ(τ )
s is the standard deviation of the sth element in a

block of gτ at scale τ . In Proposition 2, replacing δ(A,s) by
δ(τ )
s , we have that

S̃m(gτ ,rτ ) = − ln
p∏

s=1

Is(τ ),

where

Is(τ ) := 1√
2πδ

(τ )
s

∫
R

E(xs,rs,τ ) exp
−x2

s

2
(
δ

(τ )
s

)2 dxs.

It remains to prove that for each s ∈ Zp, Is is strictly
increasing. By employing Lemma 5 with a change of variable,
ys = xs

ρτ−1 , we observe that

Is(τ ) = 1√
2πδ

∫
R

Ẽ(ys,rs,τ ) exp
−y2

s

2δ2
dys,

where

Ẽ(ys,rs,τ ) := erf

(
ys + rs/ρ

τ−1

δ

)
− erf

(
ys − rs/ρ

τ−1

δ

)
.

Since for 0 < ρ < 1, erf is strictly increasing, we have that
Ẽ(ys,rs,τ1) > Ẽ(ys,rs,τ2) when τ1 > τ2. Thus, Is is strictly
increasing. �

APPENDIX B: PROOFS OF FME RESULTS FOR 1/ f NOISE

In this Appendix, we provide detailed derivations for
Propositions 3 and 4 regarding 1/f noise. We let f denote
the 1/f noise and assume that the length of f is 2N for a
positive integer N .

We first prove Proposition 3. Let A := [α,β] for α,β ∈ R
and fA := (I2N−1 ⊗ A)f. From the definition of 1/f noise,
we need to consider the Fourier transform of the filtered
signal f̂A := FN−1(I2N−1 ⊗ A)f. Since f = F−1

N FN f, f̂A may
be rewritten as

f̂A = FN−1(I2N−1 ⊗ A)F−1
N FN f,

where F−1
N is the inverse discrete Fourier transform which has

the form F−1
N := [eiθN k� : k,� ∈ Z2N ]. We shall express the

Fourier transform of the filtered signal in terms of the Fourier
transform of the original signal. To this end, we investigate the
matrix

Ã := FN−1(I2N−1 ⊗ A)F−1
N . (B1)
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In the next lemma, we express Ã in terms of two diagonal
matrices

D+ := diag[d+
k : k ∈ Z2N−1 ], where d+

k := α + βeiθN k,

and D− whose definition is obtained from that of D+ by
replacing the “+” sign by the “−” sign.

Lemma 6. For any positive integer N , there holds

Ã = [D+,D−]. (B2)

Proof. From the definition of F−1
N and A, for � ∈ Z2N−1 ,

k ∈ Z2N it is straightforward to compute that[
(I2N−1 ⊗ A)F−1

N

]
�,k

= eiθN−1�k(α + βeiθN k). (B3)

Letting D := diag[D+,D−] and F̃N := [αF−1
N−1,βF−1

N−1], it
follows from (B3) that

(I2N−1 ⊗ A)F−1
N = F̃ND. (B4)

From (B4) we have that

Ã = [IN−1,IN−1]D. (B5)

Formula (B2) is then obtained by substituting the expression
of D into (B5).

The discrete Fourier transform of a real vector is a complex
vector. When analyzing 1/f noise, it is convenient to separate
the real and imaginary parts of the discrete Fourier transform
of a signal. Considering the symmetry property of the discrete
Fourier transform, we define two operators T1 and T2. The
operator T1 projects a vector of length 2N to the vector of
length 2N−1 consisting of the first 2N−1 components of the
original vector, and the operator T2 projects a vector of length
2N to the vector of length 2N−1 consisting of the last 2N−1

components of the original vector. For a real vector x of
length 2N , we write its discrete Fourier transform as x̂ :=
x̃ + iỹ, where x̃ and ỹ are two real vectors of length 2N . We
let

x̃1 := T1x̃, x̃2 := T2x̃, ỹ1 := T1ỹ, ỹ2 := T2ỹ.

In the next lemma, we express the discrete Fourier transform
x̂A of xA := (I2N−1 ⊗ A)x in terms of x̃1, x̃2, ỹ1, and ỹ2. To
simplify the notation, we introduce three diagonal matrices:

A+ := diag[α + β cos(θNk) : k ∈ Z2N−1 ],

A−, whose definition is obtained from that of A+ by replacing
the “+” sign by the “−” sign, and B = diag[β sin(θNk) : k ∈
Z2N−1 ]. Moreover, we denote by Re(x̂A) and Im(x̂A) the real
part and the imaginary part of x̂A, respectively.

Lemma 7. If x is a real vector of length 2N , then

Re(x̂A) = A+x̃1 + A−x̃2 − Bỹ1 + Bỹ2

and

Im(x̂A) = A+ỹ1 + A−ỹ2 + Bx̃1 − Bx̃2.

Proof. According to the definition of x̂, x̂A, and xA, we have
that

x̂A = FN−1Ax = FN−1AF−1
N x̂ = Ãx̂. (B6)

Applying Lemma 6 to (B6) yields that x̂A = (D+,D−)x̂. We
partition the real and imaginary parts of the vector x̂ as

x̂ =
(

x̃1

x̃2

)
+ i

(
ỹ1

ỹ2

)
. (B7)

Notice that the definition of D+, D−, A+, A−, and B gives
us D+ = A+ + iB and D− = A− − iB, which together with
(B7) are substituted into the above formula of x̂A yielding the
desired result.

The next lemma states that the independence of components
of x̂ determines the independence of components of x̂A.

Lemma 8. Suppose that x is a real random vector of length
2N . If the first 2N−1 + 1 components of x̂ are independent,
then the first 2N−2 + 1 components of x̂A are independent.

Lemma 8 is a straightforward extension of a known result,
Lemma 4.3 of [9]. We thus omit the proof.

We next recall a known result that describes the statistical
property of the linear combinations of two independent
complex Gaussian random variables. Its proof can be found
in [9].

Lemma 9. If z1 and z2 are independent complex Gaussian
random variables with mean 0 and standard derivation δ1 and
δ2, respectively, then for each pair of complex numbers a :=
a1 + ia2,b := b1 + ib2 with a1,a2,b1,b2 ∈ R, az1 + bz2 is a
complex Gaussian random variable with mean 0 and standard
derivation

δ := (a2
1δ

2
1 + a2

2δ
2
1 + b2

1δ
2
2 + b2

2δ
2
2

)1/2
. (B8)

In the next lemma, we describe x̂A in terms of x̂.
Lemma 10. If the first 2N−1 + 1 components of x̂ are

independent complex Gaussian random variables, then the first
2N−2 + 1 components of x̂A are independent complex [except
the first and the (2N−2 + 1)th components, which are real]
Gaussian random variables. Moreover, for each k ∈ Z2N−1+1,
if the mean of the (k + 1)th component of x̂ is 0 and its standard
deviation is δk , then the mean of each component of x̂A is 0
and the standard deviation of the (k + 1)th component of x̂A is

δA,k = [(α2 + β2 + γk)δ2
k + (α2 + β2 − γk)δ2

2N−1−k

]1/2
, (B9)

where γk := 2αβ cos(θNk).
Proof. The description of the components of x̂A relies on

Lemma 7. We write x̂ := [zk : k ∈ Z2N ] and x̂A := [zA,k : k ∈
Z2N−1 ]. We first prove that zA,0 and zA,2N−2 are real Gaussian
random variables. By Lemma 7, we have that

zA,0 = α(z0 + z2N−1 ). (B10)

Since z0 and z2N−1 are real Gaussian random variables, from
(B10) and Lemma 1 we know that zA,0 is a real Gaussian
random variable. Noting 2N−1 − 2N−2 = 2N−2, it also follows
from Lemma 7 that

zA,2N−2 = α(x2N−2 − y2N−2 ), (B11)

where x2N−2 and y2N−2 are, respectively, the real part and the
imaginary part of z2N−2 . Hence, we conclude that zA,2N−2 is also
a real Gaussian random variable. By Lemma 7, we have that

zA,k = (α + βeiθN k)zk + (α − βeiθN k)z2N−1+k. (B12)

Thus, by Lemma 9, zA,k is a complex Gaussian random
variable. The independence of the random variables zA,k ,
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k ∈ Z2N−2+1, is ensured by Lemma 8 from the fact that
the random variables zk , k ∈ Z2N−1+1, are independent. By
applying Lemma 9 to Eq. (B12) with the symmetric property
(12) and Lemma 1 to Eqs. (B10) and (B11), we obtain (B9).

Now we are ready to prove Proposition 3.
Proof of Proposition 3. We denote by Âf the discrete

Fourier transform of Af. To prove Âf is a 1/f random vector,
we need to show that the first 2N−2 + 1 elements of Âf are
independent Gaussian random variables with mean 0, and for
all k ∈ Z2N−2+1, δA,k � c′

1+k
for some constant c′.

Since f is a 1/f random vector, from the definition of a 1/f

random vector we know that the first 2N−1 + 1 elements of f̂
are independent Gaussian random variables with mean 0. Thus,
from Lemma 10, we have that the first 2N−2 + 1 elements of
Âf are independent Gaussian random variables with mean 0.

We next show that for all k ∈ Z2N−1+1, δA,k � c′
1+k

for some
constant c′. Let γ +

k := α2 + β2 + 2αβ cos(θNk) and define γ −
k

by replacing the second “+” in the definition of γ +
k with “−.”

When α + β �= 0, we have that γ +
k �= 0 and γ −

k �= 0 for all
k ∈ Z2N−1+1. Thus, from (B9), we have for all k ∈ Z2N−2+1

that

δ2
A,k = γ +

k δ2
k + γ −

k δ2
2N−1−k

� c

1 + k

(1 + 2N−1 − k)γ +
k + (1 + k)γ −

k

1 + 2N−1 − k
. (B13)

Note that k ∈ Z2N−2+1 and thus 0 � cos(θNk) � 1. Then
the second fraction in the last term of formula (B13)
is an increasing function of k, which has the maximum
value 2(α2 + β2) when k = 2N−2. This gives the desired
estimate. �

Finally, we prove Proposition 4. We first recall a known fact
of the discrete Fourier transform, whose proof may be found
in [32] (Lemma 2.37).

Lemma 11. If M ∈ N, N = 2M , z is a vector of length N ,
and u, v are vectors of length M defined by uk := z2k and
vk := z2k+1 for k ∈ ZM , then for m ∈ ZM ,

ẑm = ûm + e−2π m
N v̂m, ẑm+M = ûm − e−2πi m+M

N v̂m.

From Lemma 11, we shall show in the next lemma that
the vector obtained by interlacing two 1/f random vectors is
again a 1/f random vector.

Lemma 12. If g and h are 1/f random vectors of length n,
then the random vector f defined by

f := [g0,h0,g1,h1, . . . ,gn−1,hn−1]

is also a 1/f random vector.
Proof. Since g and h are 1/f random vectors, by the

definition of the 1/f random vector we know that ĝk and

ĥk , k ∈ Zn, are independent Gaussian random variables with
mean 0 and there exist positive constants c,c′ such that their
standard deviations δg,k and δh,k satisfy

δg,k � c

1 + k
and δh,k � c′

1 + k
(B14)

for any k ∈ Zn.
It follows from Lemma 11 that for m ∈ Zn, f̂m = ĝm +

e−2πim/N ĥm, and for m = n,n + 1,n + 2, . . . ,2n − 1, f̂m =
ĝm−n − e−2πim/N ĥm−n. By applying Lemma 9 to the formulas
for f̂m and using conditions (B14), we know for m ∈ Z2n that
f̂m is a Gaussian random vector with mean 0 and the standard
deviation of f̂m, δf,m, satisfies δf,m � c′′

1+m
, where c′′ =√

(1 + n)[2c2 + (c′)2]. The independence of f̂m,m ∈ Z2n, can
be proved by using a similar computation used in the proof
of Lemma 4 for proving the independence considering that
[1,e−2πim/N ] and [1, − e−2πim/N ] are orthogonal. Therefore, f
is a 1/f random vector. �

We next recall a known fact that the sum of two 1/f random
vectors is also a 1/f random vector. Its proof can be found
in [33].

Lemma 13. If f1 and f2 are 1/f random vectors, then f1 + f2

is also a 1/f random vector.
We are now ready to prove Proposition 4. The filtered 1/f

random vector through the piecewise linear filter A defined in
(1) is again a 1/f random vector. Here, A is referred to as the
linear filter defined in (1).

Proof of Proposition 4. Let A1 and A2 denote the matrices
formed, respectively, by the first row and the second row of
A. Since (I2N−2 ⊗ A)f may be obtained by interlacing (I2N−2 ⊗
A1)f and (I2N−2 ⊗ A2)f, according to Lemma 12, it suffices
to prove that (I2N−2 ⊗ A1)f and (I2N−2 ⊗ A2)f are 1/f random
vectors.

Let f1 := [f0,f2, . . . ,fN−2], f2 := [f0,f1,f4,f5,

. . . ,fN−4,fN−3], and f3 := [f2,f3,f6,f7, . . . ,fN−2,fN−1].
Since f is a 1/f random vector, it follows from Lemma
12 and Corollary 1 that f1, f2, and f3 are 1/f random
vectors. By Proposition 3, (I2N−2 ⊗ [1/2,1/2])f1 is a 1/f

random vector. Since (I2N−2 ⊗ A1)f = (I2N−2 ⊗ [1/2,1/2])f1,

we conclude that (I2N−2 ⊗ A1)f is a 1/f random vector.
Note that

(I2N−2 ⊗ A2)f = (I2N−2 ⊗ [−
√

3/4,1/4])f2

+ (I2N−2 ⊗ [
√

3/4,1/4])f3. (B15)

By Proposition 3, both (I2N−2 ⊗ [−√
3/4,1/4])f2 and (I2N−2 ⊗

[
√

3/4,1/4])f3 are 1/f random vectors. Hence, by Lemma 13
and (B15), (I2N−2 ⊗ A2)f is a 1/f random vector. �
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