
PHYSICAL REVIEW E 88, 022712 (2013)

Protein translocation in narrow pores: Inferring bottlenecks from native structure topology
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Coarse-grained simulations of protein translocation across narrow pores suggest that the transport is
characterized by long stall events. The translocation bottlenecks and the associated free-energy barriers are
found to be strictly related to the structural properties of the protein native structure. The ascending ramps of the
free-energy profile systematically correspond to regions of the chain denser in long range native contacts formed
with the untranslocated portion of the protein. These very regions are responsible for the stalls occurring during
the protein transport along the nanopore. The decomposition of the free energy in internal energy and entropic
terms shows that the dominant energetic contribution can be estimated on the base of the protein native structure
only. Interestingly, the essential features of the dynamics are retained in a reduced phenomenological model of
the process describing the evolution of a suitable collective variable in the associated free-energy landscape.
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I. INTRODUCTION

Nanopore-based protocols for macromolecule detection
offer the technology for developing sensors and devices able
to operate at single-molecule level. Their working principle,
based on the Coulter resistive method, is very simple [1]. A
nanopore connects two chambers containing an electrolyte
solution and an applied voltage across the chambers generates
a net ion current. When one of the macromolecules dispersed
in the solution engages the pore, the ion flux is altered and
a drop in the current is commonly detected. The intensity
and the duration of the drop depend on the physicochemical
properties of the passing molecule and on the microscopic
dynamics. Hence, nanopores can, in principle, provide precise
information on a single-molecule level. Significant efforts
have been devoted to nanopore DNA sequencing [2] and
only recently possible proteomic applications have started
being explored [3–12] using both solid-state and biological
pores.

A widely used nanopore is the α-hemolysin (αHL) that
reproducibly self-assembles into the lipid membrane resulting
in a �100-Å-long and �20-Å-wide channel. The protein
passage across a narrow pore, like α-hemolysin [3,5,7], occurs
via a capture stage followed by single-file translocation. Folded
proteins are extremely hard, if not impossible, to capture [5] in
standard voltage-driven experiments with biopores, requiring
a prior chemical unfolding in the bulk before translocat-
ing. Clearly, chemical unfolding has the disadvantage to
erase native-structure information and can be detrimental
to nanopore-based protein characterization. Nevertheless, it
has been recently shown that proteins can be engineered
with designed linkers able to promote capture and retention
of even folded conformations [13,14]. In such conditions,
translocation is accomplished concurrently with mechanical
unfolding and takes the form of a multistep process revealed
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by different current levels that can be, in principle, exploited
for protein recognition. The multistep dynamics, with the
molecule stuck at specific conformations (stall events), has
been addressed in theoretical and numerical studies, see
Ref. [15] for maltose-binding protein (MBP) translocation
across αHL-like channels and Ref. [16] for a rod-coil polymer
passing through a model nanopore. Moreover, experimental
studies [5–7] have shown that certain translocation can be
characterized by long tails in the blockade time distributions
with the suspect that, besides the capture, some other kind of
rate-limiting mechanism could be at work during the migration
determining the bottlenecks.

In the present paper, we show that (i) the stalling events are
associated with specific regions of the protein particularly rich
of backward contacts, i.e., the contacts an amino acid forms
with the portion of the chain still outside the pore entrance, and
(ii) the backward contact profile reflects directly into a step-
like structure of the freeenergy G as a function of a suitably
defined collective variable Q. Also, remarkably, (iii) the one-
dimensional Langevin dynamics of Q based on the free-energy
profile G(Q) retains the essence of the phenomenon.

Simulations involving different proteins support the con-
jecture that these results are generic. The decomposition of
the free energy into its entropic and energetic components
confirms the crucial role of the protein regions that are denser
of long-range interactions (native contacts) in hindering the
translocation dynamics. The breaking of such contacts leads
to an internal energy gain that dominates the entropy variation,
with a final overall free-energy increase. It is worth stressing
that, in contrast with unstructured polymers, the entropy
variation for native-like proteins is not trivial, as it is the result
of the competition between the disorder produced by contact
breaking and the order associated with chain confinement
inside the pore.

Method and results are first introduced for the MBP and then
generalized to a MBP-mutant and to another globular protein
(Bacillus Agaradherans family 5 Endoglucanase—PDB:id
1A3H [17]), selected for its substantially different native
topology.
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II. SYSTEM SET-UP

The protein is described by a Gō-like model [18–20], a
widely employed off-lattice coarse-grained approach where
the protein is modeled as a sequence of beads, each
one corresponding to a single amino acid. An important
feature of the Gō-like force field is its ability to account for
the influence of the protein native state on both folding and
translocation pathways [15,18,19,21]. The model is described
in Appendix A. Here, for the reader’s convenience, we briefly
report the reference quantities useful to discussing data and
results. We select the angstrom as unit of length, the mass ma

of the bead representing an amino acid (in the description all
the amino acids have the same mass) as mass unit, and the
characteristic energy scale ε that appears in the Gō-like force
field as energy unit. These three reference quantities define all
the other units, in particular the force and the time unit. All
the quantities discussed in the paper are represented as ratios
with respect to the corresponding reference one.

It is worth noting that the model is built on the basis
of the crystallographic protein structure, implicitly assuming
that, except for compatible thermal distortions, it is the
actual structure retained by the protein in solution prior to
translocation. A basic parameter of the model is the cut-off
radius Rc that determines the number of native (attractive)
contacts between nonbonded amino acid and controls the
stability of the native structure [15].

A cylindrical potential is tailored to mimic the confinement
effect of a narrow pore (roughly corresponding to the actual
dimensions of the αHL channel) that allows the protein
translocation in single-file conformations only. This model
of the nanopore is expected to reproduce the relevant phe-
nomenology as far as nonspecific interactions are involved.
The results we provide do not depend on the pore size as long
as the migration remains single file (see the numerical exper-
iments for a graphene-like pore, reported in the supplemental
material [22]).

Translocation simulations are performed following the
same protocol described in our previous works [15,21] and
here briefly sketched. Protein dynamics is simulated by a
Langevin equation to control the temperature (kBT = 0.75),
integrated via a Verlet algorithm generalized to include
friction and stochastic forces [23], with friction coefficient
γ = 0.25 and time step h = 0.005. The origin of the reference
frame is the center of the left entrance of the pore. The
x axis coincides with the pore axis and it is directed from
left to right. The simulation procedure is the following:
(i) Suitable initial conditions for translocation runs are pre-
pared by constraining the protein to the proximity of the
channel entrance. Specifically, the terminus to be pulled inside
the pore (C or N) is restrained at point (−1,0,0) by a stiff
harmonic potential. We verify that the conformations obtained
this way maintained a reasonable native similarity with the
crystallographic structure. Thermalized protein conformations
are sampled every 104 time units (10% of the selected
translocation simulation time window) in order to obtain
uncorrelated initial conditions for the translocation runs.
(ii) In each translocation run the protein is pulled inside the
pore by means of a constant force applied to the foremost
residue present in the active region, i.e., x ∈ [−2,L], where L

is the pore length. The transport is considered accomplished
when the last residue exits the pore. This pulling strategy
can be thought of as a model of the average effect of the
electric field in a voltage-driven translocation experiment or,
even better, as a model of the action of a molecular motor like
in the unfoldase-mediated translocation recently reported in
Ref. [13]. For in vivo translocations, this pulling strategy may
not be appropriate.

Throughout the paper, the C-pull and N-pull data (i.e.,
data concerning translocations pulled from the C- and the
N-terminus) are always represented as leftright and rightleft
translocations, respectively (see Fig. 1). For a given importing
force Fx , the protein accomplishes the translocation in the
allotted time window with a certain probability [15]. The
present simulations are all run at critical force Fx = Fc, i.e.,
the force at which the translocation probability is one-half. In
this condition, on one hand, the dynamics is slow enough to
detect the occurrence of the transport stalls and, on the other,
it generates a sufficient number of complete translocations to
yield meaningful statistics. The critical force Fc is summarized
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FIG. 1. (Color online) (a) Sketch of a translocating protein
conformation. Nleft, Nright, and Npore are the number of monomers on
the left side, on the right side, and inside the pore. In our presentation
of data, translocations pulled from the C-terminus (red, right) are
reported from left →right, while those pulled from the N-terminus
(blue, left) from right → left. (b) Histograms: average residence time
τ (Q) from nonequilibrium MD simulations (C-pull = Red, bottom;
N-pull = Blue, top). Solid line: free-energy profile G(Q) of MBP
as a function of the collective variable Q = Nright → Nleft. Dashed
lines: τ (Q) from the 1D Langevin model, Eq. (1). Langevin data
are rescaled to match the uniform background value. For N-pulling
simulations, the τ (Q) scale is reversed (values within parentheses on
the right y axes).
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in Table S1 in Ref. [22] for all the translocation simulations to
be discussed.

III. COLLECTIVE VARIABLE AND STALLING POINTS

The high dimensionality of the protein conformation space
calls for a reduced description of translocation in terms of a
collective variable, a convenient choice is

Q = Nright − Nleft,

with Nright and Nleft the number of residues outside the pore
on its right and left side, respectively [Fig. 1(a)]. Q ranges
from −m, all the chain in the CIS side, to m, full chain in the
TRANS side, with m the total number of residues (m = 370
for MBP). This nomenclature is used consistently throughout,
with C-pulling experiments proceeding from Q = −m to Q =
m and N-Pulling simulations proceeding from Q = m to Q =
−m. The associated color code used in the figures is red for
C- and blue for N-pulling. The average residence time τ (Q)
the protein spends in configurations with a given Q value—
Fig. 1(b), filled histograms—clearly indicates that the transport
is not uniform, as most of the time is spent in specific states,
here referred to as stalling points (events C-st1, C-st2, and
C-st3 for C-pulling and N-st1, N-st2, N-st3, and N-st4 for N-
pulling). In order to better understand the nature of such stalls,
the free-energy landscape G(Q) is reconstructed by umbrella
sampling simulations combined with the WHAM algorithm
[24,25], an approach that requires a continuous version of the
collective variable Q (see Appendix B).

The free-energy profile G(Q) [Fig. 1(b), solid curve] is
characterized by a step-like shape with the ramps correlated to
the stalling events. This noteworthy correspondence suggests
that a significant amount of information on the translocation is
encoded in G(Q). To highlight the dynamical correspondence
between stalls and free-energy ramps, we consider a Langevin
model of the translocation over the profile G(Q),

Q̇ = − 1

γe

∂G

∂Q
+ 1

γe

∂W

∂Q
+

√
2kBT

γe

ξ , (1)

with γe the effective friction coefficient, W (Q) the work done
by the importing force, and ξ a zero-average Gaussian white
noise of unit variance. Numerical implementation of Eq. (1)
requires an explicit relationship between FQ = ∂W/∂Q and
Fx , (the latter being the force used in the three-dimensional
translocation simulations). Upon requiring that the work done
by Fx and FQ be the same, we obtain

FQ = ∂W

∂x

∂x

∂Q
� Fx

(
�x

�Q

)
;

thus, the knowledge of the factor �x/�Q is needed. From
the definition of Q and the observation that the distribution of
the number of residues inside the pore Npore is sharply peaked
around its average N̄pore (see Fig. S3 of Ref. [22]), it follows
that �Q � k(N̄pore/L)�x. Here, �x is the displacement of
the application point of Fx (corresponding to a shift in the
pulled residue), with k = 2 if the pore is fully occupied
(i.e., the protein straddles the pore) or k = 1 for a partial
occupation (i.e., Nleft = 0 or Nright = 0). Noteworthy, the
Langevin dynamics Eq. (1) is robust in catching the stall points

of the MD simulations as checked by exploring a range of
possible values for the effective friction, importing force, and
N̄pore [see Fig. 1(b) dashed lines for τ (Q) obtained this way].

IV. STALLING POINTS AND NATIVE STRUCTURE

The sharp correspondence between the τ (Q) profile and
the ascending ramps of G(Q) calls for an interpretation of the
step-like free-energy landscape in terms of specific structural
features of the protein native state. In particular, the stalls
take place in correspondence with residues forming a large
number of long-range native contacts with the untranslocated
chain portions. The number of such contacts is called here
the backward burial of the residue. It clearly depends on the
pulling direction and for C-pulling reads

BC(i) =
i−δ∑
j=1

�ij , (2)

where �ij is the contact matrix (�ij = 1 for residues i and
j in native contact and 0 otherwise) and δ skips the closest
contacts to include only interactions that are far enough in the
sequence (|i − j | > δ = 20). A similar expression holds for
the N-pulling backward burial BN (i).

In order to highlight the connection with the free-energy
profile G(Q), it is instrumental to reexpress the backward
burials as a function of the collective variable Q. Indeed,
as shown in more detail in the Supplemental Material [22],
the single-file nature of the translocation makes Q sharply
related to the amino acid found at the pore entrance. Given
the intrinsic noise in the functions BC/N , a smoothed version
B̃C/N is reported in the figures for better readability.

In Fig. 2, the peaks in B̃N (Q) and B̃C(Q) apparently
correspond to the ascending ramps of G(Q). To verify that
the correspondence is not accidental, the MPB is “mutated,”
that is, in line with the Gō-model force-field, we remove the
native contacts formed by two of the residues mainly involved
in the C-st3 stall. In the bottom panel of Fig. 3, we highlight
in red the contacts turned off in the mutated MBP. Mutation
entails the lowering of the G(Q)-profile slope around the C-st3
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FIG. 2. (Color online) Smoothed backward burials B̃C(Q) (red,
bottom) and B̃N (Q) (blue, top) for C- and N-pulling for MBP. The
solid and dashed lines denote the MBP free-energy G(Q) [already
plotted in Fig. 1(b)] and the one of its mutant, respectively. For N-
pulling simulations, the B̃ scale is reversed (values within parentheses
on the right y axes).
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FIG. 3. (Color online) Top: Contact maps. Native interactions are
reported in transparent light blue (lighter tone in the printed version)
circles (left: MBP, Rc = 7.5; right: 1A3H, Rc = 7.2). Bottom: The
red filled (darker tone in the printed version) circles correspond to the
14 contacts removed in order to obtain the mutated maltose-binding
protein.

stall (dashed line in Fig. 2) and the shortening of the related
residence time (Fig. S1 in the Supplemental Material [22]).

The correspondence among average residence time τ (Q),
free-energy profile G(Q), and backward burial B̃(Q) appears
to be a generic feature of protein-like structures, which is
mainly determined by the protein topology. Indeed, such a view
is supported by addressing the protein 1A3H, a 300-residue
long globular protein. Figure 3 (upper panels) reports
the contact maps for MBP and 1A3H, where residues in
native contact are represented as circles. Such maps reveal the
completely different native-state topology of the two proteins.
In particular, MBP long-range interactions are more uniformly
distributed and are mainly associated with either distal clusters
or β sheets, whereas the 1A3H contacts are primarily formed
by adjacent α helices, with also a small set of clustered contacts
formed by the region close to the N-terminus with the rest of
the structure.

Similarly to MBP, the 1A3H-dynamics is hindered by
several stalls; the peaks of τ (Q) and B̃(Q) closely match,
and the larger clusters of contacts are again associated with
the ramps in G(Q), Fig. 4. Also in this case, the Langevin
dynamics Eq. (1) stalls around the same Q values of the MD
simulations. Here, however, the agreement is less satisfactory
for the N-pulling process. This partial discrepancy is presum-
ably due to the high critical force [22] of the N-pulling 1A3H
translocation. In these conditions, the system is far from the
quasistatic limit needed for accurate modeling in terms of
a Langevin-like approach based on equilibrium free-energy
landscapes.

We repeated the translocation protocol for MBP employing
a graphene-like pore [22], narrower and much shorter than the
αHL (length, 5 Å; diameter, 10 Å), which roughly reproduces
the geometry of the pore recently obtained in Ref. [26].
The stall events occur at the same positions found for the
αHL-like pore, with an overall equivalent picture of the process
(see Fig. S2 of Ref. [22]). This suggests that the crucial feature
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FIG. 4. (Color online) Protein 1A3H. The filled histograms in the
central panel represent the average residence time τ (Q) from MD
simulations, while the dashed lines refer to the Langevin dynamics.
Upper and lower panels report the smoothed backward burials, B̃C(Q)
(red, bottom) and B̃N (Q) (blue, top). For N-pulling simulations, the
τ (Q) scale in the central panel is reversed (values within parentheses
on the right y axes).

responsible for the observed phenomenology is the peculiar
and specific unfolding pathway induced by the single-file
motion.

Given the strong link between stalls and free-energy profile
G(Q), it is natural to wonder about the energetic or entropic
nature of the stalls. To answer the question, it is convenient
to split G(Q) into its energetic Vtot(Q) and entropic T S(Q) =
Vtot(Q) − G(Q) contributions [Fig. 5(a)]. Vtot(Q) is defined
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FIG. 5. (Color online) (a) Energetic (red circles) and entropic
(gray squares) contributions to the free-energy profile G(Q) (solid
line) for wild type MBP. (b) Main contributions to Vtot: Vnat (green
diamonds) and V� (blue triangles). The dashed line represent the
heuristic estimate of V ∗

nat – Eq. (4) – based on the backward burial.
(c) Energetic and entropic contributions of G(Q) for an unstructured
polymer.
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as the conditional averages over the protein conformations
compatible with a selected Q; i.e.,

Vtot(Q) =
∫

d3mr Vtot(r)e−βVtot(r)δ[Q − Q(r)]∫
d3mr e−βVtot(r)δ[Q − Q(r)]

, (3)

where r = (r1, . . . ,rm) is the configuration vector. The above
conditional average can be taken directly over configurations
from all the umbrella sampling runs without the need of
reweighting. Indeed, the presence of the δ[Q − Q(r)] makes
Eq. (3) unchanged upon the simultaneous shift Vtot(r) →
Vtot(r) + Vumb[Q(r)] in the Boltzmann weights at numerator
and denominator; thus, the conditional average Vtot(Q) turns
to be independent from the umbrella potential Vumb(Q).
Since translocation implies a gradual unfolding, the energy
increment due to contact breakage is accompanied by an
entropy increase as the chain explores less compact and
more disordered conformations, up to a maximum at Q � 0
corresponding to the protein straddling the pore symmetrically,
Fig. 5(a). The figure shows that the relevant contribution to
G comes from Vtot, suggesting a main energetic origin of
the stalls. Therefore, the further decomposition of Vtot into
its components is expected to contain crucial information
on the stalls. In Fig. 5(b), we plot, as a function of Q,
the two dominant contributions to Vtot, namely, Vnat (the
potential of the long-range native interactions) and V� (the
potential of the dihedral interactions responsible for the correct
formation of secondary structures). In Fig. 5(c), we also report
the free-energy decomposition into energetic and entropic
contributions for an unstructured polymer, obtained by the
MBP protein model where all the attractive interactions are
removed. In this case, the shape of G(Q) is very simple:
symmetric, with a long plateau at the center when the polymer
straddles the pore. Moreover, at variance with globular protein
translocation, where entropy during the migration increases
due to the unfolding, here the entropy decreases. The reason is
that, in single-file translocation, the lateral chain fluctuations
inside the pore are substantially frozen and, missing the
structure, no entropic contribution is produced by unfolding
outside the pore. The Vnat and Vφ contributions are reported in
Fig. S5 of Ref. [22] for the sake of completeness.

For the folded portion of the chain, a heuristic argu-
ment based on the notion of backward burial allows an
approximation of the long-range potential, Vnat(Q), that works
remarkably well [22],

V ∗
nat(Q) =

Q∑
q=−m

{B̃C(q) − B̃N (q)}. (4)

The state Q is here assumed to be reached from the C-terminus
(the summation starts from q = −m). The first contribution
in Eq. (4) accounts for the number of contacts broken to
reach state Q for a left-to-right translocation and the second
one accounts for the number of contacts reformed by the
translocated part of the chain; see Fig. 6. The same result
is obtained by considering N -pull, right-to-left translocations,
as shown in the Supplemental Material [22]. V ∗

nat [dashed line
in Fig. 5(b)] quantitatively reproduces the actual data.

Figure 7 reports the decomposition of the free-energy
into energetic and entropic parts [Fig. 7(a)] and the main
contributions to the energy [Fig. 7(b)] for 1A3H, to be

FIG. 6. (Color online) Sketch illustrating the empirical argument
used to estimate the V ∗

nat contribution, Eq. (4). The image refers to
a C-pull (Left-to-Right) translocation. In the present exemplification
the state Q is reached from the C-terminus (Q = −m). The first
contribution of Eq. (4) accounts for the number of contacts broken to
reach state Q while the second one accounts for the refolding on the
right side of the pore.

compared with the corresponding plots in Fig. 5 for MBP.
Also, in this case, a very good agreement between the estimate
Eq. (4) and the actual data is observed.

The above considerations strongly suggest that the bot-
tlenecks of the protein translocation are mainly determined
by the resistance to rupture of certain clusters of long-range
attractive contacts. This is a further confirmation that the
essence of the translocation can be interpreted through
the structural properties of the native conformation encoded in
the contact map.

V. CONCLUSIONS

In this paper, we have shown, within the framework of
coarse-grained native-centric protein modeling, that single-
file translocation of a protein-like structure is characterized
by stalling events. There is a tight correlation between the
geometrical properties of the native structure and the stall

 0

 100

 200

 300

V

Vtot

TS

G

 0

 100

 200

-300 -200 -100  0  100  200  300

V

Q

Vnat

V*
nat

V

(a)

(b)

FIG. 7. (Color online) Upper panel. Energetic (red circles) and
entropic (gray squares) contributions to the free-energy profile G(Q)
for 1A3H protein. Lower panel. Main contributions to Vtot: Vnat (green
diamonds) and V� (blue triangles). The dashed line represents the
heuristic estimation of V ∗

nat [Eq. (4)] based on the backward burial.
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occurrence to suggest that the stall sequence is specific for each
protein and constitutes a sort of signature, potentially useful for
protein misfolding detection via voltage driven translocation
experiments. The identification of the features responsible
for the bottlenecks of the transport allows us to develop a
heuristic procedure able to estimate the native contribution
to the free-energy profile by a summation Eq. (4) upon the
backward burial trend. This feature appears to be generic and
independent of the specific globular protein, possibly opening
the way for systematic prescreening of the proteome that could
also take advantage of the one-dimensional Langevin approach
able to qualitatively reproduce the stall sequence. As a final
comment, our results seem to suggest that, to some extent,
“structure determines stall patterns,” in the sense that a change
in the stall pattern is a hallmark of structural modifications.
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APPENDIX A: THE Gō AND PORE MODELS

The phenomenological off-lattice model proposed by
Nobuhiro Gō (minimalist off-lattice native-centric Cα , Gō-
model [27]), is a coarse-grained model where the protein is
reduced to a sequence of beads of equal masses ma coinciding
with the Cα atoms of the main backbone chain. The model is
characterized by a single energy scale ε (see below). Several
versions and refinements have been suggested in the literature,
our paper implements the approach of Ref. [18]. The force
field is constituted by four terms: (I) peptide potential (or bond
potential), Vp; (II) bending angle potential, Vθ ; (III) twist angle
potential, Vφ ; and (IV) nonbonded long-range interaction, Vnb.
The peptide potential Vp reads

Vp(ri,i+1) = kp

2
(ri,i+1 − Ri,i+1)2, (A1)

with ri,i+1 = |ri+1 − ri |, Ri,i+1 = |Ri+1 − Ri |, where Ri and
ri indicate the position of the ith Cα atom in the native
and current conformation, respectively. The spring constant
is kp = 1000ε/d2

m and dm = 3.8 Å (average distance between
two consecutive residues). The angular bending potential Vθ

reads

Vθ (θi) = 1
2kθ (θi − �i)

2, (A2)

where kθ = 20ε rad−2 and �i , θi are the bond angles formed
by three consecutive beads in the native and current confor-
mations, respectively. Since kθ is stiff, θi undergoes small
fluctuation around its native value �i . The dihedral potential
Vφ is a function of the twist angles �i and φi (i.e., the
angle formed between the two planes determined by four
consecutive amino acids along the chain, in native and current
conformations), and it reads

Vφ(φi) = k
(1)
φ [1 − cos(φi − �i)] + k

(3)
φ [1 − cos 3(φi − �i)],

(A3)

where k
(1)
φ = ε and k

(3)
φ = ε/2 are the dihedral constants.

Finally, the nonbonded (long-range) potential Vnb includes
the pair-wise interaction selected to promote the native-like
interactions found in the Protein Data Bank (PDB) structure.
More specifically, residues i and j (with |i − j | � 3) attract
each other via the 12-10 Lennard-Jones potential when they are
considered in native contact. Otherwise, they repel one another
with an excluded volume effect. Two residues are considered
to be in native contact when their distance Rij in the PDB
structure is lower than a chosen cutoff radius Rc; thus, the
pair-wise potential is

Vnb(rij ) = ε

⎧⎨
⎩

5
(Rij

rij

)12 − 6
(Rij

rij

)10
Rij < Rc

10
3

(
σ
rij

)12
Rij > Rc,

(A4)

where σ = 4.5 Å is a parameter defining the excluded volume
of each residue.

The global potential acting on all the m residues of the
protein is then

VGō =
m−1∑
i=1

Vp(ri,i+1) +
m−2∑
i=1

Vθ (θi) +
m−3∑
i=1

Vφ(φi)

+
∑

i,j�i+3

Vnb(rij ). (A5)

The values of the parameters reported above are the
typical ones used in similar Gō-like schemes, see, e.g.,
Refs. [18,28,29].

The confinement of the nanopore is described as a step-like
soft-core repulsive cylindrical potential acting on the protein,
where the axis of symmetry is taken as the x axis of the
reference frame,

Vpore(x,y,z) = V0

(
y2 + z2

R2
p

)q

�[x(L − x)]. (A6)

Here, �(s) = [1 + tanh(αs)]/2 is a smooth steplike function
limiting the action of the pore potential in the effective region
[0,L]. L and Rp are pore length and radius, respectively.
A convenient choice of the other parameters is q = 1, α =
3 Å

−2
, and V0 = 2ε, [21].

Therefore, the overall potential a residue is subjected to is
expressed as

Vtot = VGō +
m∑

i=1

Vpore(ri). (A7)

The unit system employed in the paper is specified in terms
of the intrinsic scales of the coarse-grained model. Specifically,
lengths are given in Å, while energy and mass are expressed
as multiples of ε and ma , which parametrize energy and mass,
respectively. For the sake of definiteness, we mention here
that all our simulations are run at kBT = 0.75. All these units
can be in principle converted to conventional ones. To this
purpose, specific experimental data are needed to set the energy
scale. As reported, e.g., in Refs. [21,25], thermal unfolding
simulations can be performed to determine the unfolding
temperature Tu in code units, then the energy scale ε in physical
units is set by matching the computational and experimental
unfolding temperatures. The knowledge of ε allows also the
conversion of the code time unit into seconds. For the case of
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MBP, where experimental thermal unfolding data are available,
we performed this calculation in a previous paper [21], with a
slightly different value of the cut-off radius Rc. This led to a
value of the time unit of ∼10 ps, implying that a translocation
occurring in 104–105 time units (as in the present work)
would correspond to about 1 μs, i.e., more than one order
of magnitude faster than the fastest experimentally observed
translocations. This is a general feature of coarse-grained
methods that typically do not reproduce actual time scales.
In such conditions, the conversion of the code time unit into
seconds does not provide further insights into the physics of
the translocation. Indeed, the power of coarse-grained methods
lies on their ability to describe significant qualitative features
of the translocations, like stalling dynamics, which are still
beyond the capabilities of the full-atom techniques. We refer
the interested reader to Ref. [30] for a thorough discussion
about coarse-grained approaches on polymers and colloids.

APPENDIX B: UMBRELLA SAMPLING

The free-energy profile G(Q) = −kBT ln P (Q), where
P (Q) is the probability to find the protein in conformations
characterized by a given value of the collective variable Q, is
obtained via umbrella sampling combined with the multiple
weighted histogram analysis method (WHAM) [24]. Here we
provide a description of the parameters used in the procedure.
We found convenient defining the continuous version of of the
collective variable, Q = Nright − Nleft introduced in the text,

Q̄(x1, . . . ,xm) = 1

2

m∑
i=1

{tanh(axi) + tanh[a(xi − L)]},
(B1)

with xi being the axial coordinate of the ith residue, m the
number of residues of the protein, L the pore length, and
a = 3 Å−1 a smoothing parameter.

The umbrella potential,

Vumb(x1, . . . ,xm) = 1
2ku[Q̄(x1, . . . ,xm) − Qw]2, (B2)

is superimposed to the system Hamiltonian in order to
restrain the dynamics around the target value of the collective
variable Qw. The presence of the umbrella potential is clearly
enhancing the exploration of just those Q states with low

probability. The system evolves under the combined potential
V = Vtot + Vumb to estimate the probability density (pdf)
Pumb(Q) to find the biased system in configurations with
Q values around Qw. The unbiased probability P (Q), i.e.,
without the umbrella potential, is recovered by the reweighting

P (Q) = Pumb(Q)e−βku/2(Q−Qw)2
Zumb/Z,

where Z and Zumb are the partition function of the original and
the biased system, respectively.

To reconstruct the free-energy profile all over the pore size
by the WHAM algorithm, we select a set of 200 umbrella
windows equally spaced in the interval [−m,m] centered
around different values of Qw (w = 1, . . . ,200). We find it
convenient to introduce, in Eq. (B2), a dependence of the
type ku = ku(Qw) to reduce the number of windows while
maintain a reasonable overlap between adjacent histograms.
The elastic constant of the umbrella potential covers the range
ku ∈ [0.22,2]; the highest values are chosen near the pore ends,
where the protein can be too easily lost in the bulk under small
thermal fluctuations.

Input configurations for the umbrella sampling runs were
extracted among the conformations of translocation simula-
tions (i.e., in the presence of the importing force) with the
nearest Q to the window center, Qw. Each simulation is run
for a time suited to collect uncorrelated statistics, 103 points
for each histogram with a decorrelation time equal to 150
internal time units (the latter being determined by preliminary
simulations). Moreover, the first 104 time units (equal to 10%
of the translocation simulation time window) are discarded
for thermalization and to allow the possible refolding at the
trans side. Since analogous results were obtained by using only
one-half of the sampled data, the statistics was assumed to have
reached convergence. The histograms that were collected from
the biased simulations were finally combined with optimal
weights according to the WHAM method [24] to reconstruct
the free-energy profile G(Q) that minimizes the resulting
statistical error.

Finally, the statistical quality of the G(Q) profile has been
enhanced by combining half of the umbrella sampling runs
obtained from C-terminus pulling initial conditions (Qw < 0)
with the complementary simulations from the N-terminus case
(Qw > 0).
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