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Generalized cable theory for neurons in complex and heterogeneous media
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Cable theory has been developed over the last decade, usually assuming that the extracellular space around
membranes is a perfect resistor. However, extracellular media may display more complex electrical properties
due to various phenomena, such as polarization, ionic diffusion, or capacitive effects, but their impact on cable
properties is not known. In this paper, we generalize cable theory for membranes embedded in arbitrarily complex
extracellular media. We outline the generalized cable equations, then consider specific cases. The simplest case
is a resistive medium, in which case the equations recover the traditional cable equations. We show that for
more complex media, for example, in the presence of ionic diffusion, the impact on cable properties such as
voltage attenuation can be significant. We illustrate this numerically, always by comparing the generalized cable
to the traditional cable. We conclude that the nature of intracellular and extracellular media may have a strong
influence on cable filtering as well as on the passive integrative properties of neurons.
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I. INTRODUCTION

Cable theory, initially developed by Rall [1], is one of
the most significant contributions of theoretical neuroscience
and has been extremely useful to explain a large range of
phenomena (reviewed in Ref. [2]). However, cable theory
makes a number of assumptions, one of which is that the
extracellular space around neurons can be modeled by a
resistance, or in other words, that the medium around neurons
is resistive or ohmic. While some measurements seem to
confirm this assumption [3], other measurements revealed a
marked frequency dependence of the extracellular resistivity
[4,5], which indicates that the medium is nonresistive. Indirect
measurements of the extracellular impedance also show
evidence for deviations from resistivity [6–9], which could
be explained by the influence of ionic diffusion [10]. Despite
such evidence for nonresistive media, the possible impact on
cable properties has not been evaluated.

The effect of nonresistive media can be investigated by
integrating this effect in the impedance of the extracellular
medium, Ze, and in particular, through its frequency de-
pendence. For example, it can be shown that Ze ∼ 1/ω for
capacitive effects or electric polarization [11], Ze ∼ 1/

√
ω for

ionic diffusion (also called the “Warburg impedance” [12]),
while Ze would be constant for a perfectly resistive medium.
To integrate such effects in a given formalism, such as the
genesis of extracellular potentials, our approach has been to
integrate a general frequency-dependent function Ze(ω) in the
formalism, and then consider specific cases [10,12].

In the present paper, we follow this approach and gen-
eralize cable equations for media with arbitrarily complex
frequency-dependent impedance. With numerical simulations,
we consider specific cases such as resistive media, ionic
diffusion, capacitive media, etc. We evaluate a number of
possible consequences on the variation of the membrane
potential along the cable, and how such effects could be
measured experimentally.

II. METHODS

All simulations were done using MATLAB. To simulate
the cable structure of the models, a classic compartmental

model strategy was used for simulations [see Fig. 3(f)],
but was different from the one used in common simulator
programs such as NEURON ( [13]). Each cylindric compartment
is connected to intracellular and extracellular resistances or
impedances, and these are normally used to solve the cable
equations. In the present paper, we used another, equivalent
method which consists of defining an auxiliary impedance,
given by Za = Vm

ii
, where Vm and ii are, respectively, the

transmembrane potential and the axial current per unit length
at the point where Za is connected (see Fig. 1). This auxiliary
impedance allows one to take into account the influence of
other compartments, including the soma, over the axial current
and transmembrane potential. It is mathematically equivalent
to consider the continuity conditions on axial current and
transmembrane potential.

The electric and geometric parameters are considered
constant in each compartment, but are allowed to vary between
compartments. In these conditions, Vm and ii are solutions of
partial differential equations (cable equations) and thus depend
on spatial coordinates.

The cable equations simulated in this paper are generalized
to allow one to include media with complex electrical
properties. We have designed a MATLAB code that simulates
such generalized cable structures, using different types of
linear density of complex impedances ([�/m]) and specific
impedances ([� m]) in each compartment. (See Results for
details of this method.)

All computations were made in Fourier space. We have
applied the theory to four different types of media to evidence
their effect on the spatial and frequency profile of the
membrane potential. These models are called SC, FC, FO,
and NIC, respectively (see Table I). The SC model is the
“standard model” as defined by Tuckwell [14]; the FC model
corresponds to a model similar to the standard model (based
on a closed circuit), but the cytoplasm and extracellular media
impedances can be frequency dependent. The FO type model
is the same, with an open circuit (no return current). The NIC
model includes a nonideal capacitance similar to a previous
study [15]. (See Results for details of these models.)

All numerical simulations were made using a “continuous
ball-and-stick” model, consisting of a single cylindric
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FIG. 1. (Color online) Convention used to calculate the input
impedance and transfer function. A cable segment of length l is
represented, with an impedance Za in series, at the end of the cable.
This “auxiliary impedance” Za takes into account the influence of
the other compartments on the axial current ii and transmembrane
potential Vm in a compact form. Za = Vm(l)

ii (l) , where ii(l) is the current
per unit length and Vm(l) is the transmembrane voltage at coordinate
x = l.

compartment, described as a continuum (see Results), and
a spherical soma. The dendritic compartment has a radius
of 2 μm and a membrane time constant of 5 ms, which
corresponds to typical values of in vivo conditions. The soma
compartment had a radius of 7.5 μm and the specific capac-
itance was of 0.01 F/m2. These parameters represent typical
values used in a number of previous studies [2,14,16,17].

III. RESULTS

We start by generalizing the cable equations for membranes
embedded within extracellular media of arbitrarily complex
electrical properties. Next, we consider a few specific cases
and numerical simulations.

A. Generalized cable equations

In this section, we redefine the cable equations taking
into account the presence of complex and/or heterogeneous
properties of extracellular and intracellular media. Because
electrically complex or heterogeneous media can display
charge accumulation, one cannot apply the usual (free-charge)

current conservation law. One needs to use a more general con-
servation law based on the generalized current. In Sec. III A1
below, we derive this generalized current conservation law,
while in Sec. III A2, we use this generalized conservation law
to derive the generalized cable equations.

1. Generalized current conservation
law in heterogeneous media

In this section, central to our theory, we show that the
free-charge current conservation law ( �jf ) does not apply to
systems with complex electrical properties. Another, more
general, conservation law must be used: the generalized current
conservation law. We derive here the conservation law for the
membrane current in arbitrarily complex media, starting from
first principles.

Maxwell theory of electromagnetism postulates that the
following relation is always valid for any medium:

∇ × �H = �jf + ∂ �D
∂t

, (1)

where �H is the magnetic field, �jf is the current density of free
charges, and ∂ �D

∂t
is the displacement current density.

We define the generalized current density �jg as

�jg = �jf + ∂ �D
∂t

= �jf + �jd, (2)

where �jd is the displacement current density. It is important
to note that the term ∂ �D

∂t
= εo

∂ �E
∂t

is different from zero, even
in the vacuum (assuming that the electric field varies in time).
The interest of using the generalized current, is that it is always
conserved in any given volume, for any type of medium, as we
explain below (see also Appendix D).

In the case of an electric field in a homogeneous and locally

neutral medium, we have ∇ · �jf = − ∂ρ

∂t

f = 0 because there
cannot be charge accumulation anywhere. Because the relation
∇ · �jg = 0 applies to any type of medium, we also have
∇ · ( ∂ �D

∂t
) = 0. Thus, in a homogeneous locally neutral medium,

we have two independent current conservation laws: one law

TABLE I. Summary of dendritic cable types and parameters. The table gives the parameters z(m)
e , λ2, and κλ for different model types. The

standard model (SC) is the cable model as given by Rall, Koch, and Tuckwell [1,14,17]. The “frequency-dependent model” (FC) corresponds
to a standard cable (closed circuit), but where the parameters zi and ze are allowed to be frequency dependent. In the “frequency-dependent
open-circuit model” (FO), the current in the extracellular medium is “perpendicular” to the membrane (see Fig. 6). The “nonideal cable” model
(NIC) is similar to the standard model, but the capacitance of the membrane is nonideal, as developed previously [15]. zi [see Eq. (10)] and ze

are, respectively, the impedance per unit length of the cytoplasm and of the extracellular medium, respectively, for FC type models. We write
ri and re when the parameters zs do not depend on frequency (SC type model). The parameter z(m)

e [see Eq. (18)] is used in FO type models.

Types Model z(m)
e λ2 κ2

λ = 1+iωτm

λ2

SC Standard cable z(m)
e = − rmre

(ri+re )(1+iωτm)
rm

ri+re

(ri+re )(1+iωτm)
rm

(closed circuit)
FC Frequency-dependent cable z(m)

e = − rmze

(zi+ze )(1+iωτm)
rm

zi+ze

(zi+ze)(1+iωτm)
rm

(closed circuit)

FO Frequency-dependent cable z(m)
e

rm
zi

[
1 + z

(m)
e

rm
(1 + iωτm)

]
zi (1+iωτm)

rm[1+ z
(m)
e
rm

(1+iωτm)](open circuit)

NIC Nonideal cable z(m)
e = − ω2rmτmτM

[1+iω(τm+τM )][1+iωτm]
rm
zi

[ (1+iωτm)(1+iωτM )
1+iω(τm+τM )

]
zi

rm

[
1 + i ωτm

1+iωτM

]
(closed circuit)
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applies to the free-charge current if and another one applies
to the displacement current id . Note that in a homogeneous
medium id is not necessarily negligible, but the application of
the current conservation law on if can be done independently
of the existence of id because the two laws are independent.

This is the framework assumed in the standard cable
theory, in which the extracellular medium is resistive and
homogeneous, the displacement current id is negligible, and
there cannot be charge accumulation inside the dendrites or
in the extracellular medium. We will see below that these
assumptions do not hold for complex extracellular media.
If the medium is heterogeneous, then charge accumulation
will necessarily appear in the presence of an applied electric
field. Capacitive effects are an example of such charge
accumulation. In such a case, the two current conservation
laws on if and id do not apply to every region of space (see
Appendix B). However, the generalized current conservation
on ig is still valid in all cases. Thus, to derive cable equations
in heterogeneous media, one must use the generalized current
conservation law, as done in the next section.

2. Application of the generalized conservation
law to cable equations

To start, we consider a small portion of membrane surface
and build a domain in the intracellular side, which is limited by
the interior surface of the membrane, while the other surfaces
of the domain are located inside the cytoplasm (see Fig. 2).

Using such a definition, in resting conditions, the intracellu-
lar side has an excess of negative charges, which are adjacent to

FIG. 2. (Color online) Definition of a domain D inside the
cytoplasm and adjacent to the membrane. Due to conductance
variations in the membrane, or due to charged currents, the total
charge in domainD varies. One cannot consider that the displacement
current across the surface of domain D is zero, because this would
be in contradiction with Maxwell-Gauss law (see Appendix B).
Black circles represent negative charges on the interior surface of the
membrane, as well as in the cytoplasm, while blue circles indicate
positive charges at the exterior side of the membrane.

the membrane. In such a state, we can calculate the free-charge
density in this domain from Maxwell-Gauss law:

Q(t) =
‹

∂D

�D · n̂dS = cst, (3)

where ∂D is the surface of the considered domain.1

Now, suppose that a conductance variation occurs in the
domain (for example, following the opening of an ion channel).
This will induce a charged current in domain D and therefore,
there will be a variation of the total charge included within
domain D, which implies a nonzero displacement current id

across the surface ∂D surrounding domain D (without this
current, the system would be in contradiction with Maxwell-
Gauss law; see Appendix B).

In such conditions, we have

id = dQ

dt
=

‹

∂D

∂ �D
∂t

· n̂dS �= 0. (4)

Can we neglect this current to study the variations of the
membrane potential along the cable? Because it is difficult to
give a rigorous answer to this question [18,19], in particular,
when id is nonzero, we consider the generalized current ig

because this current is conserved independently of id (see the
previous section). This will allow us to treat cable equations
without making any hypothesis about charge accumulation
inside or outside of the cable.

Moreover, to stay as general as possible, we include a
frequency and space dependence of the electric parameters,
which will allow us to simulate the effect of media of different
electric properties, such as capacitive or diffusive [10–12]. In
this context, the linking equations must be expressed in their
most general form [10]:

�D(�x,t) =
ˆ +∞

−∞
εi(�x,t − τ ) �E(x,τ )dτ,

(5)
�jf (�x,t) =

ˆ +∞

−∞

[
σ e

i (�x,t − τ ) �E(�x,τ )
]
.

According to this scheme, the generalized current density
�jg

i inside the cytoplasm obeys

�jg

i (�x,t) =
ˆ +∞

−∞

[
σ e

i (�x,t − τ ) �E(�x,τ )

+ εi(�x,t − τ )
∂ �E
∂t

(�x,τ )

]
dτ, (6)

where σ e
i (�x,t) is the intracellular electric conductivity function

and εi(�x,t) is the intracellular electric permittivity function.
The first term in the integral accounts for energy dissipation

phenomena, such as calorific dissipation (Ohm’s differential
law) and diffusion phenomena. The second term represents the
effect of charge density variations in the volume elements.

1Note that if the negative charges are exclusively on the membrane
(neglecting Debye layers), then the surface integral simplifies to the
side of the domain in contact with the membrane. In this case, the
electric displacement is different from zero only in the latter portion
of the surface.
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. (Color online) Compartments and equivalent electrical
circuits of the membrane and cable segments. (a) and (c) depict
different configurations in a cable of constant diameter, with their
respective equivalent electrical circuits shown in (b) and (d).
(e) is the equivalent electrical circuit of a membrane compartment
of the cable, and (f) is the equivalent circuit obtained for three
compartments. Vi is the intracellular potential relative to the reference,
Ve is the extracellular potential relative to the same reference, zi is
the cytoplasm impedance, and rm/dx and z(m)

e /dx are, respectively,
the impedances of ion channels and the input impedance of the
extracellular medium as seen by the transmembrane current. ie is
the output current of a cable element in the extracellular medium, and
ii is the axial current. The membrane potential Vmj

equals Vij − Vej

and may vary according to the position xj .

In Fourier frequency space, Eq. (6) becomes algebraic.

�jg

i (�x,ω) = [
σ e

i (�x,ω) + iωεi(�x,ω)
] �E(�x,ω). (7)

Moreover, we have ∇ × �E = 0, which implies �E = −∇V

because electromagnetic induction is negligible in biological
tissue (in the absence of magnetic stimulation2).

If we now consider a one-dimensional cylindric cable of
constant radius a [Fig. 3(a)], the generalized current at a
position x of the cable can be written as

i
g

i (x,ω) = �jg

i (x,ω) · (πa2n̂)

= −πa2
[
σ e

i (x,ω) + iωεi(x,ω)
]∂Vi

∂x
(x,ω), (8)

where Vi is the intracellular voltage difference with respect to
a given reference (which can be far away). In the following of
the text, we will call “compartment” a cylindric cable with
constant radius and with uniform electric parameters (see
Fig. 1). It is important to note that this compartment does
not need to be isopotential, and the membrane potential will

2In the presence of magnetic stimulation, such as, for exam-
ple, transcranial magnetic stimulation, we have [20–22] ∇ × �E =
− ∂ �B

∂t
�= 0.

depend on the position on the compartment (see scheme in
Fig. 1).

If we assume that the impedance (per unit length) of
cytoplasm zi can be expressed as

zi = 1

πa2
[
σ e

i (x,ω) + iωεi(x,ω)
] , (9)

then the axial current can be written as

i
g

i (x,ω) = − 1

zi

∂Vi

∂x
(x,ω). (10)

This expression is similar to the traditional cable equation
[2,14,16], with the exception that the parameter zi is complex
(with units of [�/m]).3 In addition, the transmembrane current
i⊥m over a cable length dx can be expressed as

i⊥m (x,t) = im(x,t)dx

= 2πadx

[
Cm

∂Vm(x,t)

∂t
+ σ e

m

e
[Vm(x,t) − Em]

]

= dx

[
cm

∂Vm(x,t)

∂t
+ [Vm(x,t) − Em]

rm

]
, (11)

where Vm is the transmembrane voltage, Em is the resting
membrane potential, Cm is the specific membrane capacitance
(in F/m2), cm is the membrane capacitance per unit length
(in F/m), σ e

m is the electric conductivity (in S/m), 1/rm is
the linear density of membrane conductance (in S/m), e is
the membrane thickness (in m), and im is the transmembrane
current per unit length (in A/m) [Figs. 3(c)–3(e)]. Applying
the inverse Fourier transform, we obtain

i⊥m (x,0) = im(x,0)dx

= 1

rm

[Vm(x,0) − 2πEmδ(0)]dx, ω = 0,

(12)
i⊥m (x,ω) = im(x,ω)dx

=
[
iωcm + 1

rm

]
Vm(x,ω)dx, ω �= 0.

Note that we assume here that the resting membrane potential
Em does not depend on time or on position in the cable.

Thus, we can see that the Fourier transform of Eq. (10)
generates a Dirac delta function for null frequency. In the
following of the text, we consider frequencies different from
zero, because the zero-frequency component of i⊥m is zero for
a signal of finite duration, which is always the case in reality.

In the model above, the expression of the transmembrane
current is identical to the generalized membrane current for
frequencies different from zero. In this case, the generalized

3This law can be simplified if one assumes that the cytoplasm is
Ohmic and homogeneous (zi = ri) for negligible permittivity. In this
case, we have

i
g

i = i
f

i = �ji

f · (πa2n̂) = −πa2σ e
i

∂Vi

∂x
= − 1

ri

∂Vi

∂x
.
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current is given by

igm = Ajg
m = −2πadx

(
σ e

m + iωεm

)∇V

= 2πadx
(
σ e

m + iωεm

)Vm

l
= dx

(
1

rm

+ iωcm

)
Vm

= dxim = i⊥m, (13)

where l is the membrane thickness and A is the membrane
surface.

Assuming that the charge variations inside the channels are
negligible, then the generalized current conservation law can
apply to point B in the equivalent scheme [see Fig. 3(c)], and
we can write

i
g

i (x + dx,ω) = i
g

i (x,ω) − igm(x,ω)

= i
g

i (x,ω) − i⊥m (x,ω). (14)

It follows that

di
g

i (x,ω) = ∂i
g

i

∂x
dx = −i⊥m (x,ω) = −im(x,ω)dx. (15)

Using Eqs. (6) and (11), we obtain

πa2 ∂

∂x

[[
σ e

i (x,ω) + iωεi(x,ω)
] ∂Vi

∂x
(x,ω)

]

=
[
iωcm + 1

rm

]
Vm(x,ω).

Applying the partial derivative on the left-hand term, and
dividing by πa2(σ e

i + iωεi), one obtains

∂2Vi

∂x2
+ 1(

σ e
i + iωεi

) ∂
(
σ e

i + iωεi

)
∂x

∂Vi

∂x

= 1

πa2
(
σ e

i + iωεi

)
[
iωcm + 1

rm

]
Vm = ziim. (16)

Note that if the right-hand term was zero, then this equation
would be identical to the equation describing the electric
potential outside of the sources [10,12,23], because the ∇
operator equals êx

∂
∂x

in one dimension, in which case the right

would be equal to ∇2Vi + ∇γi

γi
∇Vi , where γi = σ e

i + iωεi .
We can simplify Eq. (14) if the cytoplasm is quasihomo-

geneous (assuming the scale considered is large compared
to inhomogeneities due to subcellular organelles), in which
case we can consider that the electric parameters of the
cytoplasm are independent of position x: σ e

i (x,ω) = σ e
i (ω)

and εi(x,ω) = εi(ω). This leads to the expression

1

zi

∂2Vi

∂x2
(x,ω) = 1

πa2
(
σ e

i + iωεi

) ∂2Vi

∂x2
(x,ω)

=
[
iωcm + 1

rm

]
Vm(x,ω) (17)

in Fourier space.
If we now assume that the extracellular medium can also

be considered as homogeneous (which will be valid at scales
larger than the typical size of the cellular elements), then we
can model the variations of the membrane potential caused by
the transmembrane current i⊥m . We can model this effect from
the notion of impedance, without making any hypothesis on the
current field in the extracellular medium. In this case, one can

associate to each cable segment dx the specific impedance of
the extracellular medium, z(m)

e , as seen by the transmembrane
current. z(m)

e has a similar physical meaning as rm, except that
it is a complex number in general. In Sec. III B, we will see
that z(m)

e depends on the direction of the current field in the
extracellular medium.

Without any loss of generality, we can write in Fourier
space,

Vi(x,ω) = Vm(x,ω) + z(m)
e (ω)im(x,ω). (18)

By substituting this last expression in Eq. (15), we obtain

rm

zi

[
1 + z(m)

e

rm

(1 + iωτm)

]
∂2Vm

∂x2
= [1 + iωτm]Vm,

where τm = rmcm.
Thus, we can write the system in a form similar to the

standard cable equation:

λ2 ∂2Vm(x,ω)

∂x2
= κ2Vm(x,ω), (19)

where

λ2 = rm

zi

[
1 + z(m)

e

rm

(1 + iωτm)

]
= rm

z̄i

, κ2 = 1 + iωτm

(20)

for a cylindric compartment [see Eq. (C8) in Appendix C]. It
follows that the general solution of this equation in Fourier
space ω �= 0 is given by

Vm(x,ω) = A+(ω)eκ(l−x)/λ + A−(ω)e−κ(l−x)/λ (21)

for each cylindric compartment of length l and with constant
diameter (see Fig. 1 for a definition of coordinates). For a given
frequency, we have a second order differential equation with
constant coefficients.

In general, one can apply Eq. (21) for different cylindric
compartments, as in Fig. 3(f). In this case, one must adjust
the different compartments to their specific limit conditions
(continuity of Vm and of the current igi = − 1

z̄i

∂Vm

∂x
[see Eq. (C4)

in Appendix C]).
Note that Eq. (21) is exact for a cylindric compartment of

constant diameter. Thus, it is possible to use this property to
simulate exactly the full cylindric compartment as a continuum
with no need of spatial discretization into segments, as usually
done in numerical simulators. This is only possible if the
cylindric compartment has a constant diameter. This leads to an
efficient method to simulate the cable equations. We will refer
to this approach as “continuous compartment” in the following.

As mentioned above, the mathematical forms of Eqs. (19)
and (21) are identical to that of the standard cable model,
but with different definitions of λ. Thus, we directly see that
the nature of the extracellular medium will change the value
of these parameters, which become frequency dependent. In
particular, we see from Eq. (19) that changing these parameters
will impact on the spatial profile of the variations of Vm,
if the frequency dependence of the ratio κλ = κ

λ
is affected

by the nature of the medium. Thus, experimental measurement
of the spatial variations of Vm will be able to identify effects
of the extracellular impedance only if the ratio κλ is affected.

In the next section, we derive expressions to calculate the
input impedance Zin(P ) = Vm(P,ω)

ii (P,ω) and the transfer function
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(a) (b)

FIG. 4. (Color online) Branching cables. The panels (a) and (b),
respectively, represent a branched cable where a dendrite separates
into two daughter branches, and its equivalent electrical circuit. The
equivalent impedance of segment 1 is equal to the input impedances
of segments 2 and 3 (zout2 and zout3) taken in parallel.

of the transmembrane voltage FT (ω) = Vm(Pb,ω)
Vm(Pa,ω) between two

positions in the cable (as a function of the ratio κλ). Later
in Sec. III B, we will see that it is necessary to know these
quantities to calculate the spatial variation of Vm and compare
the standard model with the cable model embedded into
complex extracellular media.

3. Method to solve the generalized cable

In this section, we present the theoretical expressions which
will allow us to calculate the input impedances needed for
computing the membrane voltage on a cable with varying
diameter. We consider the input impedance of the membrane,
as well as the impedance of the extracellular medium, both of
which are needed to calculate the spatial profile of the Vm in a
given cable segment.

We proceed according to the following steps:
(1) In the previous section, we saw that it is necessary

to calculate the ratio Zin(P ) = Vm(P,ω)
ii (P,ω) at the position of the

current source, to calculate the Vm produced at that point.
One strategy is, in a first step, to separate the cable into

a series of continuous compartments of constant diameter,
where parameters a [Eq. (8)], zi [Eq. (10)], rm [Eq. (11)], and
z(m)
e [Eq. (18)] are constant and specific to each compartment.

In a second step, one calculates the (transmembrane) input
impedance Zn+1

in = Vm(0)
ii (0) at the beginning of each compartment

by taking into account the auxiliary impedance at the end
of this compartment, Za = Zn+1

out = Vm(ln+1)
ii (ln+1) = Zn

in (see Fig. 1)
if there is no branching point. At the branching points, the
auxiliary impedances are simply equal to the equivalent input
impedance of n dendritic branches in parallel (where n is the
number of “daughter” branches; see Fig. 4). Thus, because the
input impedance at one end is equal to the input impedance
of the other compartment connected to this end, one obtains a
recursive relation [see Eq. (C9) in Appendix C]:

Zn+1
in

[
Zn

in

] = z̄in

κλn

(
κλn

Zn
in + z̄in

)
e2κλn ln + (

κλn
Zn

in − z̄in

)
(
κλn

Zn
in + z̄in

)
e2κλn ln − (

κλn
Zn

in − z̄in

) , (22)

where

z̄i = zi

1 + z
(m)
e

rm
(1 + iωτm)

.

Thus, we can write

Zn+1
in = F

[
Zn

in; z̄in ,κλn
,ln

]
.

This leads to the following expression to relate the first to the
nth segment:

Zn+1
in = F

[
...F

[
F

[
Z1

in; z̄i1 ,κλ1 ,l1
]
; z̄i2 ,κλ2 ,l2

]
...; z̄in ,κλn

,ln
]
.

(23)

Note that this algorithm is a generalization of that used to
calculate the equivalent resistance for resistances in series. In-
deed, for resistance in series we have req = F (...F (r1; r2); rn)
where F (ra; rb) = ra + rb. The difference between this recur-
rence function and that of Eq. (25) essentially comes from the
fact that there is no current leak in a resistance, while there is
one in a dendritic compartment.

(2) To calculate the profile of Vm along the cable, one must
use the spatial transfer function Vm(Pn+1,ω)

Vm(Pn,ω) on a continuous
cylindric compartment of arbitrary length, and calculate the
product of the transfer functions between each connected
compartment. This leads to [see Appendix D and Eq. (D3)]

FT

(
l,ω; Zn

out

) = κλZ
n
out

κλZ
n
outcosh(κλl) + z̄isinh(κλl)

, (24)

Vm(Pn,ω)

Vm(P1,ω)
=

n−1∏
i=1

Vm(Pi+1,ω)

Vm(Pi,ω)
. (25)

(3) To evaluate zproximal we must calculate the first
impedance Z1

in which enters the recursive relation (24). This
impedance corresponds to the impedance of the soma, which
is given by

Z1
in = Zs + Zcs, (26)

where Zs is the soma membrane impedance and Zcs is
the cytoplasm impedance inside the soma. This relation is
obtained under the hypothesis that the soma is isopotential,
and the application of the generalized current conservation
law implies ig = Vi−Ve

Zs+Zcs
≈ Vm

Zs+Zcs
where Vi and Ve are the

electric potentials at both sides of the membrane, inside and
outside, respectively, relative to a reference located far away.

The impedance of the bilipidic membrane is approximated
by a parallel RC circuit where R = Rm is the resistance and
τm = RmCm is the membrane time constant. Thus, Z1

in can be
written as

Z1
in = Zs + Zcs = Rm

1 + iωτm

+ Zcs. (27)

Finally, to evaluate zdistal, we use the “sealed end” bound-
ary condition Z1

in = ∞. In this condition, we have Z2
in =

z̄i1
κλ1

coth(κλ1 l1) [see Eq. (22)]. In the case of a single dendritic
branch, we can write

Zdistal
in = z̄i

κλ

coth(κλl), (28)

where l is the total length of the cable.
In the next section, we turn to numerical simulations to

investigate passive cable properties in the presence of complex
media. We consider the most general case, where both the
impedance of the extracellular medium and that of cytoplasm
can be frequency dependent, and determine the respective
impact on the spatial profile and frequency content of the
transmembrane voltage at the level of the proximal and distal
ends of the cable.
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iR Re iz

ze

ze

Closed−circuit model Open−circuit model

FIG. 5. (Color online) Two different cable models for neurons.
Left: Closed-circuit model. This is the standard cable model which
forms a closed system (all inward and outward currents are balanced)
and can be described by an equivalent circuit (bottom; shown here
for a two-compartment model; Re and Ri are the extracellular and
intracellular resistances, respectively). In this model, the current flows
parallel to the neuron. Right: Open-circuit model. In this more general
model, the current is allowed to flow between neighboring neurons,
or between the neuron and extracellular space, with no necessary
condition of local balance (top). In this case, the neuron is modeled
by an open circuit (bottom), and the current flows “perpendicular”
to the membrane. The equivalent circuit is modeled more generally
with impedances (Ze, extracellular; Zi , intracellular).

B. Numerical simulations

The goal of the numerical simulations is to show how
the physical nature of extracellular and intracellular media
can influence the spatial and frequency profiles of the trans-
membrane potential. We present simulations of a continuous
ball-and-stick model, which consists of a continuous cylindric
compartment [described by Eq. (21)], connected to a spherical
soma. In this case, the impedance Za of the continuous
cylindric compartment is the soma impedance (see Fig. 1).
We do not investigate here the effect of complex dendritic
structures, which is left for future studies. Note that what we
call a “continuous cylindric compartment” actually represents
an infinite number of compartments, each represented by a
resistance in series with a parallel RC circuit [see Fig. 3(f)].

In a first step, we list the different types of models of
intracellular and extracellular media that were used (Fig. 5). In
a second step, we present the results of numerical simulations.

1. Different types of cable models

We now explain the parameters used for the simulations of
the cable presented in Sec. III C. Because the cable equation
[Eq. (19)] is completely determined by the value of κλ

for a given frequency, the spatial and frequency profiles of
the transmembrane voltage are completely determined if the

geometry and boundary conditions are set. In addition, because
κλ is a function of four parameters (rm,τm,zi,z

(m)
e ) [Eq. (20)]

for a given frequency, we have a four-dimensional parameter
space where the two last parameters (zi,z

(m)
e ) can be frequency

dependent. We will limit our exploration of this parameter
space by only varying the physical nature of these impedances
for realistic values of rm and τm, because the influence of
these parameters has been largely characterized in previous
studies [1,16,17]. Furthermore, with τm and ω fixed, the
relation κλ = 1+iωτm

λ
depends only on λ, and thus, like the

classic studies on cable equations, we will use this parameter
as a main determinant of the cable properties.

We will explore the generalized cable equations by consid-
ering several typical cases:

Standard cable model. The first type of model that we
will consider is the “standard cable model” (model SC in
Table I), identical to that considered by Rall, Koch, and
Tuckwell [1,14,17]. In this model, the neuron is a closed
system, where the inward and outward currents are balanced,
forming a closed circuit (see Fig. 5, left). The extracellular
current flows parallel to the dendrite, as noted previously [14].
This model is equivalent to consider that the field produced by
the neuron corresponds to an electric dipole configuration. In
addition, this model considers that the extracellular medium is
resistive, or in other words, that the extracellular impedance is
a constant.

In this standard model, the extracellular impedance z(m)
e

is either zero (no extracellular resistivity) as in Rall’s and
Koch’s formulations [1,2,17], or is equal to a constant, which
is equivalent to model the extracellular medium by a resistance,
as in other formulations [14,24]. Besides its physical non-sense
(the extracellular medium considered as a supraconductor),
using a zero resistance is usually justified from the fact that
the extracellular resistivity is much smaller than the membrane
impedance. We will see that this justification does not hold
if the medium is frequency dependent, in which case for
some frequency range the extracellular resistivity may be
determinant. Thus, to obtain the general expression of λ and
κλ for the standard model, we set z(m)

e = − rmre

(ri+re)(1+iωτm) in
Eq. (20) (see Table I).

Frequency-dependent cable model. The second type of
model is an extension of the standard model, where the
intracellular and extracellular impedances (zi and z(m)

e , respec-
tively) are allowed to depend on frequency. This “frequency-
dependent cable model” (model FC in Table I) can account,
for example, for a neuron embedded in capacitive or diffusive4

extracellular media, or if the intracellular medium has such
properties, or both. In such cases, the appropriate frequency-
dependent profiles for the impedances must be used.

In this frequency-dependent model, if τm is fixed, the
quantity ze + zi completely determines the spatial and fre-
quency profiles of the Vm, and how they deviate from the
standard model (see Table I). To explore the effect of the
impedances zi + ze, we consider three typical cases: “resis-
tive,” “capacitive” (which is, in fact, resistive and capacitive

4A medium is said to be “diffusive” when ionic diffusion is non-
negligible in the presence of an electric field.
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in parallel), and “diffusive” (which is equivalent to a Warburg
type impedance). Such impedances have also been considered
in previous studies [8,12,25].

Note that, in order to simulate the standard model, one must
necessarily assume that the real part of z(m)

e is negative,5 which
implies that z(m)

e is not a passive impedance per unit length,
but is active, and thus requires a source of energy, as pointed
out previously [26,27]. This point will be further considered
in the Discussion.

Open-circuit model. In a third type of model, the “open-
circuit” model (FO in Table I), we use a different approach.
Instead of considering the neuron as a closed system, where
all outward currents must return to the neuron, we make no
hypothesis about the return currents, and allow, for example,
that neighboring neurons exchange currents.6 In this case, one
does not need to describe each neuron by a closed circuit,
but all neurons are open circuits and are connected together
(through the extracellular space). Figure 5 shows the current
fluxes of the two models: The standard model is a closed circuit
where the outward currents loop into the inward currents
[Fig. 5, left], while in the open-circuit model, all currents are
exchanged with the surrounding medium [Fig. 5, right]. These
two models correspond to different equivalent circuits (Fig. 11
in Appendix E).

Note that the open-circuit cable model is practically
equivalent to the traditional (closed-circuit) cable model for an
isolated neuron, if the impedance of the extracellular medium
is negligible compared to the membrane impedance. Indeed,
if z(m)

e and ze tend to 0, then we have (see Table I)

lim
z

(m)
e →0

λ2
FO = rm

zi

= lim
ze→0

λ2
FC. (29)

Similar to the frequency-dependent cable model, we will
consider the three types of impedances discussed above
(resistive, capacitive, and diffusive) in the simulations of the
open-circuit model. In this case, we separately consider the two
quantities zi and z(m)

e because these two parameters directly
determine the value of λ in models of FO type (see Table I).
Note that in the open-circuit model, the real part of z(m)

e is
always positive, so there is no need of any additional energy
source (see Discussion).

Nonideal cable model. The fourth type of model consid-
ered here is the “nonideal cable model” introduced previously
[15]. This model postulated that the membrane capacitance
is nonideal, through the use of an additional resistance at the
arms of the capacitor; this resistance models the fact that there
is some inertia time to charge movement (or equivalently, a
friction). Such a nonideal capacitance resulted in a shallower
frequency scaling, which is a higher capacity of the dendritic
tree to propagate high-frequency events [15]. Note that in this
model, the extracellular medium is modeled as a resistance, so

5For example, if ze = re and zi = ri , then we have R(z(m)
e ) =

− rmre
ri+re

1
1+ω2τ2

m
< 0.

6This will be the case, for example, if two neighboring dendrites
have current sources of opposite sign, there will be a direct
current flow between them. If they belong to different neurons,
this configuration necessarily requires an open-circuit model to be
accounted for.

in this respect, the nonideal cable model is equivalent to the
standard model. Mathematically, the nonideal cable appears
through the use of z(m)

e (see Table I), which can therefore be
viewed as a particular case of an influence of the extracellular
medium on cable properties. Indeed, the nonideal cable can
be shown to be equivalent to—or a particular case of—the
open-circuit model, where the Vm corresponds to Vi with a
far-away reference (see Appendix E). We keep this model
here for comparison.

C. Simulation of the different models

In this section, we present the results of numerical sim-
ulations of the models presented in the previous section (see
Methods). The goal of these simulations is not to be exhaustive
in considering all possible combinations of models, but present
a few typical configurations. The central question is whether
the nature of the extracellular medium can have determinant
impact on cable properties, and for what type of configuration
or parameter values does it happen?

1. Analysis of the spatial profiles of Vm variations

In this section, we investigate analytically and numerically
different particular cases of extracellular and intracellular
media to determine how the nature of these media affects
the spatial and frequency profile of the membrane potential.
We consider the transfer functions as defined in Table I.
The analyses presented here are limited to a ball-and-stick
model, which allows a better interpretation of the effect of the
physical nature of the different media. The effect of complex
dendritic tree morphology will be the subject of a future study.
To compare the results from the different models, we have
considered models with identical geometry (see Methods for
parameters).

Resistive models. We first considered the “standard model”
with resistive intracellular and extracellular media, as well as
the nonideal cable model [15]. In Fig. 6, we can see that
the nature of the cable model (closed-circuit or open-circuit;
nonideal) influences the modulus and the phase of κλ, as well
as the spatial profile of the transfer function |FT |. The modulus
of the transfer function depends more strongly on frequency
in the FC model compared to the two other cases [Fig. 6(c)],
as observed previously [15]. Note that the parameters of the
FO and NIC models were chosen such that they are equivalent
(see Appendix B).

Capacitive models. Next, we considered models where the
cytoplasm and extracellular medium are both of capacitive
(RC-circuit) type. Note that we considered capacitive effects
without ionic diffusion, because if both are combined, the
resulting impedance is of Warburg type. This type of model
will be considered next. With purely capacitive media, we
observed effects very similar to the resistive model shown in
Fig. 6, with slight differences only visible for large frequencies
[greater than about 200 Hz (not shown)]. The small dimension
of organelles (�1 μm2) within cells, as well as the distance
between neighboring cells (∼30 nm on average) [28,29] imply
that the capacitance values of the media are necessarily
small compared to the membrane capacitance, and thus the
purely capacitive effects (without diffusion) are likely to be
negligible.
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FIG. 6. (Color online) Spatial and frequency profile of the
membrane potential in the cable model with resistive media. (a) and
(b), respectively, show the modulus |κλ| and the phase �[κλ] of κλ

as a function of frequency ν for a continuous ball-and-stick model.
(c) Modulus of the transfer function |FT | as a function of distance L

in the dendritic compartment, for frequencies equal to 5, 50, 100, and
150 Hz [see corresponding frequencies in (a) and (b)]. The blue curves
in − · − correspond to a standard cable model (FC, closed circuit),
with ri = 28 × 109 �/m and re = 18 × 109 �/m. The red curves
correspond to the same model but in an open-circuit configuration
(FO model), with ri = 28 × 109 �/m and z(m)

e = 0.01τm/2πaCm =
0.4 × 103� m. The black curves in −− show a nonideal cable (NIC)
model with τM = 0.01τm, ri = 28 × 109 �/m, and re = 0 �/m.

Resistive models with diffusive cytoplasm. We next con-
sidered models where the extracellular medium was resistive
as above, but where the intracellular medium (cytoplasm) was
diffusive, and described by a Warburg impedance. Figure 7
shows the spatial and frequency behavior of this model. We
can see that the open-circuit (FO) model shows less attenuation
with distance compared to the closed-circuit (FC) model.
Note that these two models give opposite variations when
the extracellular medium has a zero resistance: In FC type
models, |FT | attenuates more steeply as a function of distance
when the extracellular impedance increases, whereas in FO
type models, the attenuation becomes less steep. However,
the spatial profile of |FT | also attenuates less with a diffusive
cytoplasm compared to a resistive cytoplasm. The latter result
is expected, because the higher the frequency the more the
impedance “shortcuts” the membrane in this case. Note that
the Warburg impedance used in all diffusive models considered
here was applied for frequencies larger than 5 Hz.

It is interesting to note that in the FC model, a resonance
appears around 24 Hz in the modulus of the transfer function
κλ [Fig. 7(a)]. In contrast, the FO model does not display a
resonance.
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FIG. 7. (Color online) Spatial and frequency profiles of the
membrane potential for a model with resistive extracellular medium
and diffusive cytoplasm. (a), (b) Modulus |κλ| and phase �[κλ]
of κλ as a function of frequency, for a continuous ball-and-stick
model. (c) Modulus of the transfer function |FT | as a function of
distance for different frequencies (same arrangement as Fig. 6). The
red curves correspond to a model with zero extracellular resistance.
The blue curves (− · −) show models with open-circuit configuration
(FO model with z(m)

e = 0.5τm/2πaCm = 20 × 103 � m) and diffu-

sive cytoplasm (zi = 28×109

(1+i)
√

w
�/m). The black curves (−−) show

the same model with closed-circuit configuration with a resistive
extracellular medium (FC model, re = 18 × 109 �/m). Note that for
the FC model, |FT | progressively increases from 5 to 50 Hz, then
decreases between 50 and 100 Hz.

Resistive cytoplasm with diffusive extracellular medium.
Next, we considered the opposite configuration as previously,
namely, a resistive model for the cytoplasm, but a diffusive
extracellular medium. Three sets of parameters were chosen
for the extracellular space. First, a FO type model with
a resistive cytoplasm and a diffusive extracellular medium
described by a Warburg type impedance (black curve in Fig. 9),
and second, a FC type model with similar parameters (blue
curve in Fig. 8). These two models can be justified if one takes
into account the Debye layer at the edge of the membrane
[8–10]). The case with a zero extracellular resistance (short
cut) is also shown for comparison (red curve in Fig. 9). The
latter model represents the same limit case for both FO and
FC models, and therefore constitutes the frontier between the
two families of curves.

Fully diffusive cable models. Next, we have considered
the case where both intracellular and extracellular media are
diffusive. Figure 9 shows the frequency and spatial profiles of
the Vm for such fully diffusive models. Taking the FO model
with low extracellular impedance (|ze| = re at 1 Hz) leads to
large differences with the FC model (Fig. 9, black) compared
to the FO model (blue) or the FC model with zero extracellular
resistance (red).

We can see that, in FC type models, the larger ze, the steeper
the transfer function attenuates with distance. In contrast,
in FO type models, larger zm

e lead to less attenuation. This
paradoxical result can be explained as follows: In FC models,
ze plays a similar role as zi , such that for large values of
their real part, thermal diffusion attenuates the signal; in FO
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FIG. 8. (Color online) Spatial and frequency profiles for a model
with resistive cytoplasm and diffusive extracellular medium. Same
arrangement of panels as for Figs. 6 and 7, but for different media.
The black curves (−−) show the behavior of a closed-circuit (FC) type
model with resistive cytoplasm (ri = 28 × 109 �/m) and diffusive
extracellular space with Warburg impedance (ze = 18×109

(1+i)
√

w
�/m).

The red curves correspond to a closed-circuit (FC) type model
with zi = 28 × 109 �/m and ze = 0 �/m. The blue curves (− · −)
correspond to an open-circuit (FO) type model (ri = 28 × 109 �/m,
z(m)

e = τm

2πaCm

0.5
(1+i)

√
w

= 20×103

(1+i)
√

w
� m).

models, zm
e plays a similar role as rm, and large values of

|zm
e | limit the leak membrane current, reducing the attenuation

with distance. Thus, for large |zm
e |, the dendrites become more

“democratic” in the sense that the effect of a given input will
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FIG. 9. (Color online) Spatial and frequency profiles for fully
diffusive cable models. Same arrangement of panels as for Figs. 6–8,
but using a continuous ball-and-stick model where both cytoplasmic
and extracellular impedances are of diffusive (Warburg) type. The
black curves (−−) correspond to a closed-circuit (FC) type model
with zi = 28×109

(1+i)
√

w
�/m and ze = 18×109

(1+i)
√

w
�/m. The red curves corre-

spond to a closed-circuit (FC) type model with zi = 28×109

(1+i)
√

w
�/m and

ze = 0 �/m. The blue curves (− · −) correspond to a closed-circuit
(FO) type model with zi = 28×109

(1+i)
√

w
�/m and z(m)

e = 20×103

(1+i)
√

w
� m.

Note that for both types of models (FO and FC), |FT | increases
between 5 and 50 Hz, then decreases between 50 and 100 Hz.
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FIG. 10. (Color online) Parameter κλ as a function of frequency
for fully diffusive models. The black curves (−−) correspond to FO
and the red curves to FC type models with a time constant of τm =
2, 3, 4, 5, 6, 8, 10, 20, and 40 ms. The FC type model was with zi =

28×109

(1+i)
√

w
�/m and ze = 18×109

(1+i)
√

w
�/m. For the FO type model zi =

28×109

(1+i)
√

w
�/m and z(m)

e = τm

2πaCm

0.5
(1+i)

√
w

= 20×103

(1+i)
√

w
� m (see Table II

for the corresponding resonance frequencies).

be less dependent on its position on the dendrite. This is only
the case for FO models, however.

As above, the model with zero extracellular resistance
represents the same limit case for both FO and FC models,
and therefore constitutes the frontier between the two models.

Resonances with diffusive models. One interesting finding
is that resonances appear in several models using diffusive
extracellular impedances (Figs. 7 and 9). This type of reso-
nance was studied further in Fig. 10, where one can see that
a resonance in |κλ| also implies a resonance in |FT |: The Vm

still attenuates with distance independently of the frequency, so
that we always have ∂|Vm|

∂x
< 0. In addition, Eq. (19) shows that

| ∂2Vm

∂x2 | = |κλ||Vm|, so that the quantity | ∂2Vm

∂x2 | increases when
|κλ| increases with frequency, which implies that ∂|Vm|

∂x
becomes

more negative because this derivative is always negative. It
follows that |FT | attenuates more steeply with distance when
|κλ| increases with frequency. Using a similar reasoning, one
can show that |FT | attenuates less steeply with distance when
|κλ| diminishes with frequency. We conclude that the rate of
variation of |FT | with frequency is always opposed to that

TABLE II. Resonance frequencies of fully diffusive models for
different membrane time constants. The resonance frequencies of |κλ|
as a function of the membrane time constant τm (see Fig. 10).

τm(ms) νr (Hz)

2 83
3 54
4 40
5 30
6 25
8 20
10 18
20 8
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of |κλ|. Consequently, the resonance frequency must be the
same for |κλ| and d|FT |

df
= 0 because we have d|FT |

df
� 0 when

d|κλ|
df

� 0 and d|FT |
df

� 0 when d|κλ|
df

� 0.
We also see that the peak frequency of the resonance

continuously depends on the membrane time constant (not
shown). For example, for τm = 5 ms, the resonance is at about
24 Hz, and for τm = 20 ms, the resonance is at about 8 Hz
(for more details see Fig. 10 and Table II). It is interesting to
note that we have observed resonances only in FC type models
with resistive extracellular media and diffusive cytoplasm (see
Fig. 7), but resonances are present in the two types of models
(FO and FC) when they are fully diffusive.

IV. DISCUSSION

In this paper, we have introduced a generalization of
cable equations to membranes within media with complex
or heterogeneous electrical properties. We have shown that
generalized cable equations can treat a number of problems
presently not treatable by the traditional cable equations. We
have shown that the nature of the extracellular medium has
a significant influence on fundamental neuronal properties,
such as voltage attenuation with distance, and the spectral
profile of the transmembrane potential. We enumerate below
the consequences and predictions of this work, as well as
outline directions for future studies.

A first main result of this paper is to generalize cable equa-
tions to describe membranes in complex and heterogeneous
media. To solve this problem, we have introduced the concept
of generalized current, and show that the generalized current
is conserved in all situations. This stands in contrast with the
free-charge current, which is conserved only in special cases.
For example, if the medium is electrically nonhomogeneous
(with conductive and nonconductive domains), there will be
charge accumulation and nonconservation of the free-charge
current. Thus the traditional cable formalism, which is based
on the free-charge current, cannot treat this problem. With
the generalized current, however, this problem can be treated
in a physically plausible way, in accordance with Maxwell
equations.

One drawback of generalized cable equations is that they
cannot be solved with available neural simulation environ-
ments, such as NEURON [13], which implements the traditional
cable formalism. Consequently, we have developed a specific
method for the numerical simulation of generalized cables.
This method is implementable with traditional simulation
programs, such as MATLAB. Further work would be needed
to determine if generalized cable equations could be included
in neural simulators, as a special case.

Note that specialized models different from the standard
model were introduced relatively recently Ref. [25,30] to
include aspects which cannot be treated by the standard model.
In [25], the cytoplasm was considered as nonresistive but
capacitive, and was modeled by a RC circuit. It was estimated
that this capacitive aspect is important to understand the nature
of thermal noise in thin dendritic branches. [30] considers
the case of the interaction between closely located dendritic
branches. In this case, the authors study the phenomenon of
surface polarization (see also [11]) and evaluate the magnitude

of the Maxwell-Wagner time of the effective impedance
of the extracellular medium, needed to have a significant
influence over the attenuation profile of the Vm. These two
studies show that the physical nature of the intracellular or
extracellular media can have a significant influence on cable
properties. However, they do represent very particular cases,
which motivated the present study where we have attempted
to consider a broad range of cases, including both intracellular
and extracellular media, as well as ionic diffusion, which was
not treated previously. Thus, the present study generalizes
those prior studies.

A second main result of this paper was to also generalize
the electrical circuit representing neuronal membranes. Instead
of considering the neuron as a closed system, where all
outward currents return to the neuron, we have considered
the more general case which allows current exchange between
neighboring neurons, and thus each is represented by an open
circuit. We have systematically compared open-circuit (FO)
models with the traditional closed-circuit (FC) models, and
found some important differences. FO models have a transfer
function that depends much less on frequency and space,
compared to FC models (see Figs. 7 and 8).

We also showed that a previously introduced model of
nonideal cable [15] is equivalent to a traditional cable with
appropriately scaled extracellular resistances (for frequencies
smaller than 100 Hz; see Figs. 7 and 8 in Ref. [15], as well as
the discussion in that paper).

One of the most important results of this paper is the
finding that the nature of extracellular or intracellular media
can have a strong impact on cable properties such as voltage
attenuation with distance. We have observed that the nature
of the extracellular medium has an opposite impact on
distance attenuation in FO and FC models. In FO models,
larger extracellular impedances lead to less attenuation and
electronically more compact dendrites. The attenuation can
be remarkably diminished for fully resistive FO models, with
only a few percent attenuation (Fig. 9), whereas for FC type
models, the opposite was seen; the dendrites become more
compact for low extracellular impedances. We can say that
in these cases, the effect of distal inputs is close to that of
proximal inputs, and thus the dendrite is more “democratic.’ It
may be that this remarkable property is present in some types
of neurons to reduce the attenuation of distal inputs, which
constitutes another interesting direction to explore in future
work.

Another interesting observation is that diffusive extracellu-
lar impedances can give rise to resonance frequencies (see
Figs. 7 and 9), which also appear as a resonance in |κλ|
(Fig. 10). The resonant frequency depends on the membrane
time constant, and is in the range of 5–40 Hz, which is well
within the frequency range of brain oscillations such as θ , α, β,
or γ rhythms [31]. It is therefore possible that this resonance
plays a role in the genesis of oscillatory activity by single
neurons.

Interestingly, we observed that the input impedance of the
extracellular medium (z(m)

e ) must necessarily be negative in
the standard model where the medium is resistive. In a closed-
circuit configuration, this means that one must necessarily
assume a source of energy, such as an electromotive force. This
source of energy can be simulated by a negative impedance.
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This important point was pointed out in previous work, where
it was called “anomalous impedance” [26,27]. Interestingly,
this constraint disappears in the open-circuit configuration. If
the current field is open in the extracellular medium, then it is
not necessary to assume that z(m)

e is negative, and there is no
need of such a source of energy.

Finally, while our analysis shows that the nature of the
extracellular or intracellular media may be influential on
single-neuron behavior, we can also foresee consequences
at the network level. First, the resonance found for some of
the media may introduce a bias in the genesis of oscillatory
behavior by populations of neurons. The fact that the resonance
frequency only depends on membrane parameters, but not
on structural parameters such as cell size, suggests that
different neurons in the network will have the same resonance
frequency. It is thus conceivable that population oscillatory
activity may occur at this resonance frequency. Second, the
fact that the diffusive properties of media were found to be
particularly impactful on the attenuation of distal inputs sug-
gests that any regulation of these properties could have drastic
consequences at the network level. If diffusive properties are
modified—for example, by glial cells, which are known to
regulate extracellular ionic concentrations [32,33]—it may
affect the voltage attenuation of all cells in the network and
therefore change the network behavior.

In conclusion, we think that the generalized cable equations
allow one to treat the problem of how neuronal membranes
behave in complex extracellular and heterogeneous media.
Given the possible strong impact of such media as found here,
future studies should evaluate in more depth whether such
media are indeed influential. A possible approach would be to
find “signatures” of the extracellular medium from the power
spectral density of experimentally observable variables, such
as the membrane potential (for a related approach, see [8]).
The direct measurement of the extracellular impedance, at
present bound to contradictory experimental results [3–5],
should give a definite indication whether the generalized cable
is a necessary approach to accurately model neurons.
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APPENDIX A: GENERALIZED CURRENT AND
CHARGE CONSERVATION

In this Appendix, we derive the charge conservation laws
for different definitions of currents [see Eqs. (1) and (2)].
Consider a domain D delimited by a closed surface ∂D. If we
assume that the medium and the field are sufficiently regular,
then the divergence theorem applies in D, and we have

‹

∂D

∇ × �H · n̂dS ≡
˚

D

∇ · (∇ × �H )dv ≡ 0 (A1)

because the following equality always applies: ∇ · (∇ × �H ) ≡
0.7

From Eqs. (1), (2), and (A1), we have the following identity:‹

∂D

�jg · n̂dS ≡
˚

D

∇ · �jgdv = 0, (A2)

which is valid for an arbitrary domain D.
One can distinguish three different types of current: the

generalized current ig , the current due to free charges if , and
the displacement current id . These currents can be defined
across an arbitrary surface S, according to

ig
def=

¨

S

�jg · n̂dS,

if
def=

¨

S

�jf · n̂dS, (A3)

id
def=

¨

S

∂ �D
∂t

· n̂dS.

Within these definitions, we can write that the generalized
current ig is conserved at every time and independently
of the nature of the medium. At every time, the inward
current entering a given domain D is always equal to the
outward current exiting that domain, independently of the
homogeneous or heterogeneous nature of the medium. It is also
independent of the fact that there may be charge accumulation
in some elements of volume, because Eq. (A2) always applies.

Note that this generalized current conservation law does not
express anything new on a physical point of view, but is the
charge conservation law expressed as a function of currents.
Indeed, taking into account Maxwell-Gauss law (∇ · �D = ρf ),
the definition of �jg [Eq. (2)], and the identity given by Eq. (A2),
we obtain the differential charge conservation law:

∇ · �jg = ∇ · �jf + ∇ · ∂ �D
∂t

= ∇ · �jf + ∂∇ · �D
∂t

= ∇ · �jf + ∂ρ

∂t

f

= 0. (A4)

APPENDIX B: DISPLACEMENT CURRENT, FREE
CURRENT, AND CHARGE ACCUMULATION

In this Appendix, we show explicitly that the displacement
current id can be used to formally calculate the charge variation
in a given domainD. Moreover, we show that the displacement
current across a closed surface ∂S which surrounds a given
domain D is zero when there is no charge variation inside the
domain.

By definition, the density of displacement current
[Eq. (A3)] in frequency space is given by

�jd (�x,ω) = iωε(�x,ω) �E(�x,ω), (B1)

7We use the symbol ≡ for a mathematical identity while the symbol
= will mark an equality or a physical law.
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where ω = 2πf . By applying the divergence on �jd and taking
into account Maxwell-Gauss law, we obtain

∇ · �jd = iω∇ · (ε �E) = iωρf . (B2)

Thus, we can calculate the amount of free charges in a
given domain D from the density of displacement current in
frequency space. To do this, we have

Qf (ω) =
˚

D

ρf (�x,ω)dv = 1

iω

˚

D

∇ · �jd (�x,ω)dv

≡ 1

iω

‹

∂D

�jd · n̂dS = id (ω)

iω
, (B3)

where id is the displacement current flowing across surface
∂S. Applying the inverse Fourier transform, we obtain the rate
of free-charge variation in domain D:

dQf

dt
(t) = id (t). (B4)

Therefore, one can say that the charge in the considered volume
does not vary if the displacement current across surface ∂D
is zero. Finally, because the differential conservation law for
free charges implies

dQf

dt
(t) =

˚

D

∂ρf (�x,t)

∂t
dv = −

˚

D

∇ · �jf (�x,t)dv

≡ −
‹

∂D

�jf · n̂dS = −if (t), (B5)

we can then write

ig(t) = id (t) + if (t) = 0 (B6)

when the surface is closed and when the free-charge conser-
vation law applies.

Thus, the generalized current entering a given closed
surface ∂D is always equal at every time to the generalized
current exiting ∂D, even if there is free-charge accumulation
inside ∂D. However, this equality does not allow one to deduce
if there are variations of free-charge density inside ∂D, because
the displacement current must necessarily be zero across ∂D
to have dQ

dt

f = 0 [see Eq. (B4)]. In other words, it is necessary
that the displacement current entering ∂D is equal to the
displacement current exiting ∂D to have a constant charge
inside ∂D. Note that in any given circuit, Kirchhoff’s current
law always applies to the generalized current, even if there
is charge accumulation inside the circuit, whereas it applies
to the free-charge current only assuming there is no charge
accumulation inside the circuit.

APPENDIX C: INPUT IMPEDANCE OF A CABLE
SEGMENT IN SERIES WITH AN ARBITRARILY

COMPLEX IMPEDANCE

In this Appendix, we calculate the input impedance of a
cable segment of length l when this segment is connected to
an arbitrary impedance Za (see Fig. 4).

By definition, we have in x = 0:

Zl
in[Za] = Vm(0,ω)

i
g

i (0,ω)
. (C1)

Applying Eq. (21) allows us to directly express Vm as a
function of the cable parameters. We have

Vm(0,ω) = A+(ω)eκλl + A−(ω)e−κλl . (C2)

Similarly, applying Eqs. (10), (13), and (18), we obtain

i
g

i = − 1

zi

[
1 + z(m)

e

rm

(1 + iωτm)

]
∂Vm

∂x
.

This last expression allows us to express the current at
coordinate x = 0 as a function of the cable parameters:

i
g

i (0,ω) = κλ

z̄i

[A+(ω)eκλl − A−(ω)e−κλl], (C3)

where

z̄i = zi

1 + z
(m)
e

rm
(1 + iωτm)

. (C4)

Thus, the expression for the input impedance Zl
in is given by

Zl
in[Za] = z̄i

κλ

(
A+
A−

)
e2κλl + 1(

A+
A−

)
e2κλl − 1

. (C5)

We can then evaluate the ratio A+
A− by using the conditions

of continuity of the current and of the voltage at point x = l.
Applying Eqs. (21) and (10) to that point gives

Vm(l,ω) = A+(ω) + A−(ω), (C6a)

i
g

i (l,ω) = κλ

z̄i

[A+(ω) − A−(ω)]. (C6b)

Thus, we have

Za = Vm(l,ω)

i
g

i (l,ω)
=

A+
A− + 1

κλ

z̄i

[
A+
A− − 1

] , (C7)

and we can write

A+

A− = κλZa + z̄i

κλZa − z̄i

. (C8)

It follows that the input impedance Zl
in is given by

Zl
in[Za] = z̄i

κλ

(κλZa + z̄i)e2κλl + (κλZa − z̄i)

(κλZa + z̄i)e2κλl − (κλZa − z̄i)
, (C9)

where

z̄i = zi

1 + z
(m)
e

rm
(1 + iωτm)

.

Note that Zl
in[Za] → z̄i

κλ
when l → ∞, and Zl

in[Za] →
z̄i

κλ
coth(κλl) when Za → ∞.

APPENDIX D: CALCULATION OF THE TRANSFER
FUNCTION FT

In this Appendix, we calculate the transfer function
FT (l,ω; Za) = Vm(l,ω)

Vm(0,ω) using the same conditions and conven-
tions as for Appendix C.
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Applying Eq. (C6a) gives

Vm(0,ω) = A+(ω)eκλl + A−(ω)e−κλl,
(D1)

Vm(l,ω) = A+(ω) + A−(ω).

Thus, we have

FT (l,ω; Za) = A+(ω) + A−(ω)

A+(ω)eκλl + A−(ω)e−κλl
. (D2)

Applying Eq. (C7) gives the transfer function

FT (l,ω; Za) = κλZa

κλZacosh(κλl) + z̄isinh(κλl)
, (D3)

where

z̄i = zi

1 + z
(m)
e

rm
(1 + iωτm)

.

Note that FT (l,ω; 0) = 0 and FT (l,ω; ∞) = 1
cosh(κλl)

.

APPENDIX E: AN INTERPRETATION
OF THE NONIDEAL CABLE

In this Appendix, we show that the nonideal capacitance
model introduced previously [15] is equivalent to an open-
circuit resistive model if we assume that the circuits A and B
in Fig. 11 are linked by the following transformation:

ra = rm − rmrsc

rm + rsc

, rm = ra + rb

rb = rmrsc

rm + rsc

, rsc = rb + r2
b

ra

(E1)

ca = (rm + rsc)

rm − rmrsc

rm+rsc

cm, cm = r2
a

(ra + rb)2
ca.

We show that the Vm in the nonideal cable model corre-
sponds to Vi in an open-circuit (FO) type resistive model, with
a reference located far away. According to circuits A and B in
Fig. 11, we have

circuit A: (rsc ⊕ cm) ‖ rm,

circuit B: (ra ‖ ca) ⊕ rb.
(E2)

It follows that the impedances of circuits A and B are equal
if we have

V12(ω)

i(ω)
= rm + iωrmrsccm

1 + iωcm(rm + rsc)
= ra + rb + iωcararb

1 + iωcara

.

(E3)

We see that the ratio V12(ω)
i(ω) is a homographic transform of

variable ω. Consequently, ∀ω we have the relation V12(ω)
i(ω) =

aA+bAω
1+dAω

= aB+bBω
1+dBω

when the two circuits are equivalent. The

(a) (b)

FIG. 11. (Color online) Equivalence of the electrical circuits of
open-circuit and nonideal cable models. The circuits A and B are
equivalent when the ratio V12(ω)

I (ω) of the voltage difference between
points 1 and 2 and the input current between these points is invariant,
and when the correspondence between the elements of these circuits
are independent of frequency. Note that the values of the elements
between the two circuits are related by a transformation law which
is independent of frequency; this equivalence also applies to the
temporal domain. In other words, according to this equivalence, the
two circuits are equivalent when it is impossible to distinguish their
topology from external measurements. The circuit A corresponds to
the nonideal capacitance model introduced previously [15], while
circuit B corresponds to a “standard cable model” with a short cut
(zero extracellular resistivity).

only way to guarantee that the equivalence is independent of
frequency is to assume that the corresponding coefficient of the
transformations are equal. We can thus set aA = aB , bA = bB ,
and dA = dB . This gives us three equations which link the three
parameters of circuit A to those of circuit B. The solution is the
transformation law [Eqs. (E1)]. Thus, on a physical point of
view, one cannot distinguish the topology of circuits A and B if
we would perform external measurements. Moreover, because
the functions rm = fm(ra,rb.rc), rsc = fsc(ra,rb.rc), and rcm

=
fcm

(ra,rb.rc) do not depend on frequency, their equivalence
will also be valid for all frequencies. We can deduce that the
two circuits will behave identically as a function of time.

It follows that the Vm (between points 1 and 2) in circuit
A (nonideal capacitance) corresponds to the Vi relative to
a faraway reference in circuit B (see Table I). Therefore,
a model with nonideal capacitance and zero extracellular
resistance should produce a Vm equivalent to the Vi of a model
with ideal capacitance and resistive extracellular medium.
Thus, the frequency-scaling behavior of the Vm obtained in
a previous nonideal cable model [15] also applies to the
resistive FO model, but only if one studies the intracellular
potential Vi .
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