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Registration and analysis of the shape fluctuations of nearly spherical lipid vesicles
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The analysis of shape fluctuations of giant nearly spherical lipid vesicles observed via optical microscopy is
one of the widely used methods for the determination of the bending elasticity of lipid membranes. Although
the method has been used already for three decades, the values of this material constant, obtained by different
groups for membranes of the same composition, in identical conditions, differ significantly. The aim of the
present work is the development of the method, enabling us to avoid the influence of artifacts on the value
of the measured bending modulus. This is achieved by rejection of some images of the vesicle or the whole
vesicle when they do not satisfy the requirements (selection criteria) of the applied theory. The bending modulus
of 1-stearoyl-2-oleoyl-sn-glycerol-3-phosphocholine lipid membranes is determined via the advanced method
described here. The results are compared with the values in the literature and their difference is discussed.
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I. INTRODUCTION

Giant unilamellar lipid vesicles, the simplest model of
the complex biological cell, are the preferred objects for the
study of important physical properties (mechanical, electrical,
rheological, etc.) of biomembranes and the influence of
various additives on these properties [1]. Their size (radius
of the vesicle greater than several micrometers) allows direct
observation via optical microscopy. Giant unilamellar lipid
vesicles are readily and reproductively formed with controlled
composition and in desired aqueous solutions [2–9]. Their lipid
membranes permit us to successively approach the structure of
real living membranes in physiologically relevant conditions
by adding proteins, cholesterol, carbohydrates, salts, etc., to
the membrane and/or surrounding medium.

The mechanical properties of biomembranes are one of
the physical factors ensuring the proper functioning of living
matter. This is the reason for the interest in the investigation of
these properties and their dependence on diverse physicochem-
ical parameters (temperature, composition of the membrane
and aqueous solutions, etc.). The mechanical properties of
lipid membranes in their liquid state are characterized by their
bending elasticity, saddle-splay bending elasticity, stretching
elasticity, and spontaneous curvature [10].

Various methods for the investigation of the mechanical
properties of lipid membranes have been developed and
used for the past few decades. Some of them are based on
the response of the lipid membrane to the applied force:
mechanical deformation by micropipette aspiration [11–13],
electric field [14–18], optical force [19], etc. Others are
based on the observation and analysis of the thermal shape
fluctuations of tubular [20,21] or nearly spherical vesicles
[18,21–28]. The latter class of experimental methods has the
advantage of being noninvasive and applicable in a variety
of aqueous solutions around the membrane, including a pure
water environment. In recent years these experimental methods
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have been improved in terms of the experimental setup as well
as the processing of the acquired data.

A typical experiment for analyzing the shape fluctuations
of nearly spherical lipid vesicles consists in the acquisition of
many images of the equatorial cross section of the fluctuating
vesicle, taken at equal time intervals. The equatorial cross
section of a fluctuating nearly spherical lipid vesicle is
recorded using a CCD camera for a given period of time
(approximately 5–10 min). The obtained sequence of images is
analyzed and two mechanical characteristics of the vesicular
membrane (bending elasticity modulus and membrane ten-
sion) are calculated. Due to diffusion processes in the water
environment, the studied vesicle is chaotically moving within
the experimental volume, thus generating a given amount of
out-of-focus images and requiring periodic refocusing of the
object of interest. Due to the finite integration time of the
CCD camera, the fastest deformations of the membrane are
smeared out, thus undesirably altering the calculated values
of the mechanical constants. This blurring effect is overcome
by using a short-impulse stroboscopic illumination [29] or a
high-speed camera [18].

Various algorithms for detecting the points of the vesicle
contour, representing the equatorial cross section of the
vesicle, have been proposed for symmetrical and asymmetrical
aqueous environments (with the same and different refrac-
tive indices of the solution inside and outside the vesicle,
respectively) [25,28,30]. Later in this paper only symmetrical
systems will be considered. Lipid vesicles are low-contrast
objects, which is why they are observed via phase contrast
microscopy. Under these conditions the algorithms used are
based on extracting the minimum of the intensity profile in both
horizontal and vertical directions [25], using a weighted mean
in four directions of the profile [30], or fitting the intensity
profile along a given direction with a Lorentzian function [28].

Lipid vesicles can be formally divided into two classes:
vesicles without defects, which are appropriate for experimen-
tal treatment, and vesicles with defects (sometimes invisible
like thin threads, connecting them to other vesicles or lipid
packages) that have to be taken from the acquired set of data.
An objective criterion for qualification of a given vesicle has
to be introduced. An example for such a criterion, based on a
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comparison of the vesicle behavior with the model predictions,
has been proposed by Méléard et al. [28].

In the case of high-quality vesicles, a set of good (manda-
tory focused) and bad (out-of-focus or with disconnected
momentum defects in the focal plane of observation) images
is recorded. A soft criterion for acceptance or rejection of a
given image in the sequence has been proposed [31], taking
into consideration the relative change in the length of the
contour of the equatorial cross section of the studied vesicle
or the area enclosed by it. Still there is much to be done
in the way of having an automated vesicle digitization and
processing algorithm that imposes strict objective criteria for
selection of high-quality nearly spherical stationary vesicles
and rejection of the bad contours in the image sequence of a
given liposome. The large scattering of the values published
in the literature so far for the bending elasticity modulus
for a given type of lipid membranes [18,32,33] testifies to
the necessity of establishing an artifact-free experimental
procedure for the determination of this material constant.
In this paper we propose an algorithm for digitalization and
processing of image sequences of fluctuating vesicles with a
detailed procedure for obtaining the mechanical constants of
the vesicular membrane, applying strict objective criteria for
qualification of the vesicle as a whole as well as for acceptance
or rejection of a given contour of the sequence of recorded
images.

II. MATERIALS

Giant vesicles were prepared from 1-stearoyl-2-oleoyl-sn-
glycerol-3-phosphocholine (SOPC, Avanti Polar Lipids Inc.,
AL, USA) in water with pH ∼ 5.5 (double distilled in quartz
distiller). Electroformation [2] was performed on indium-tin
oxide (ITO) electrodes (100 ± 20 nm of ITO with a resistance
of 20 �/Square) in specially constructed hermetic chambers
[34]. As a result, dilute suspensions of fluctuating vesicles
without observable defects on their membranes were produced
and consequently used for membrane fluctuation analysis. The
observation chamber consisted of an objective glass, a cover
slip, and an inert spacer with a thickness of 0.5 mm (CoverWell,
Sigma-Aldrich Inc., USA).

III. OBSERVATION AND REGISTRATION
OF VESICLE IMAGES

Sample observation and registration were performed in
phase contrast with an inverted Axiovert 100 (Zeiss, Germany)
microscope equipped with an oil-immersed objective (100×,
with a numerical aperture of 1.25). A CCD camera (C3582,
Hamamatsu Photonics, Japan) was mounted on the microscope
and connected to the video input of a frame grabber board
(DT3155, Datatranslation, USA), installed in a computer for
the digitization of the registered video signal in 768 × 576
eight-bit pixel format with a pixel size of 0.106 μm/pixel.
In order to capture the fast modes of the vesicle fluctuations,
which otherwise would be smeared due to the finite integration
time (40 ms) of the camera, stroboscopic illumination of
the sample was applied using a Xenon Flash Lamp (L6604,
Hamamatsu, Japan) [29,35]. Images of the equatorial cross
section of the fluctuating vesicle with the focal plane of the

objective were acquired in real time (25 frames per second),
digitized and recorded on a PC in order to obtain a long image
sequence (∼ 104 frames).

For the deduction of the bending modulus at the free
exchange of molecules between the two monolayers com-
prising the bilayer (free flip-flop [10]) every 25th frame is
taken from the recorded image sequence [25–27]. Thus a new
sequence for the given vesicle is obtained with a lapse of 1 s
between two adjacent frames. In most cases the fluctuations
of the contour recorded in these frames are not correlated.
If necessary, the time lapse can be increased to ensure the
independence of the fluctuations. The lack of correlation
between the fluctuations permits us to use standard statistical
methods for the calculation of the mean values and their errors
of an ensemble of numbers.

IV. ACQUISITION AND ANALYSIS OF THE VESICULAR
CONTOUR FLUCTUATIONS

When using phase-contrast microscopy, the lipid membrane
of a vesicle is seen as a dark ring, clearly distinguishable on
a bright background (see Fig. 1). The assumption is made
that if for some image a profile of the intensity along the
pixel rows or columns of the image, given in 255 levels of
gray, is determined, the points (if they exist) belonging to the
contour and lying on the corresponding row or column are
those with a minimum of illumination. In our experimental
equipment the width of the peaks around these minima are
determined by the spatial resolution of the optical system and
appear to be about 6–7 pixels. The existence of noises of
various origin makes the minima not clearly defined and their
positions cannot be determined with satisfactory accuracy. To
overcome this problem, every image frame is divided into
groups of 3 × 3 pixels and each group is replaced by one

FIG. 1. Phase-contrast image of a vesicular contour. The upper
white fluctuating line presents the profile of the light intensity along
the straight white line before the coarse graining of the pixels, while
the lower fluctuating line shows the scaled profile after the coarse
graining (for details see the text). The cross points of the straight line
with the contour are characterized by minima in the profile.
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pixel with illumination equal to the average of those of the
nine pixels. In this way, a new set of coarse-grained images is
constructed, having three times greater pixel size. The noise in
the coarse-grained images is considerably reduced due to the
filtering of its higher frequencies. As a result, the accuracy of
determining the position of the contour point on a given row
(or column) is not worse than one-half of a pixel. It is worth
noting that the coarse graining applied by us is not equivalent
to a smoothing of the image. Later in this work, only the images
obtained after the coarse graining of the pixels of the initial
ones are considered.

Let a laboratory frame of reference X′O ′Y ′ be attached to
the focal plane of the microscope. Let its axis X′ be parallel
to the rows of the image and the axis Y ′ be parallel to its
columns. Let a frame of reference XOY be attached to an
image of the fluctuating vesicle. Let its axes X and Y be
parallel to X′ and Y ′, respectively. Let the origin O coincide
with the contour center, whose coordinates (x ′,y ′) in X′O ′Y ′
have been previously determined [25,26] and appropriately
scaled after the coarse graining of the pixels of the original
image.

Our procedure for extracting the contour from the image
and the determination of its quality (good or bad) is the
following. By means of homemade acquisition software, direct
measurement of the vesicle radius Rves in pixels on a randomly
chosen image from the image sequence is made. Its approx-
imate value is necessary for the further image processing.
The determination of the contour continues by defining a
region of interest (ROI) representing a ring containing the
vesicular contour (see Fig. 2). The center of the ROI is made
to coincide with the center of the contour. The ROI is delimited
by two concentric circumferences with radii Rint and Rext

(Rint < Rves < Rext), between which the contour lies.
The scan of the intensity along the rows and columns is

done only inside the ROI. As a result, two points of the
contour along every row and two along every column inside the
ROI are found, for which the profile intensity has its minimal

O

Rint

Rext

Rves

ROI

FIG. 2. Region of interest (ROI) representing a ring, containing
the vesicular contour. The ROI is delimited by two concentric
circumferences with radii Rint and Rext(Rint < Rves < Rext), between
which the contour lies. The center of the ROI coincides with the
center of the contour. Here Rves is the vesicle radius.
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FIG. 3. Schematic representation of the equatorial cross section
of a vesicle. Here O is the center of the vesicle, lying on the focal
plane of the microscope, and XOY is a frame of reference with an
origin O and axes X and Y , parallel to the rows and the columns of the
image, respectively. The contour consists of four arcs: right, upper,
left, and lower. The polar angles ϕright, ϕupper, ϕleft, and ϕlower of the
points, belonging to each of the four arcs, satisfy the inequalities
−π/2 < ϕright < π/2, π/2 < ϕupper < 3π/2, 3π/2 < ϕleft < 5π/2,
and 5π/2 < ϕlower < 7π/2, respectively.

value (see Fig. 1). In this way, four rough arcs are obtained,
the right and the left, from the minima of the profiles along
the X′ axis, and the upper and the lower, from the minima of the
profiles along the Y ′ axis (see Fig. 3). Each right or left rough
arc is interrupted at the point x having at least one neighbor
from the two adjacent rows, whose coordinate differs from
the x coordinate of the point with more than four pixels. The
final (right or left) arc is enclosed between interruption points,
nearest the axis X, above and below this axis. The final upper
and lower arcs are determined in exactly the same manner.

In what follows, the criteria for the goodness of the
contours, extracted from the image sequence, are presented
and discussed. The contour is not rejected if the four arcs
overlap so as to obtain a continuous contour and if this contour
does not touch the circumferences of the ROI. In this way,
out-of-focus frames or contours corrupted by the presence of
optical defects in the background image are disregarded in
the further analysis. This step represents the first criterion for
rejection of a contour.

Further, the upper half of the right arc of the contour is
considered (see Fig. 4). Let A and B be points of this part of
the contour, belonging to two adjacent rows. Let these points
have coordinates (xA,yA) and (xB,yB) and polar angles ϕA

and ϕB in the frame XOY . The coordinates are measured
in coarse-grained pixels. Let yB > yA and yB − yA = 1. We
denote by FAB the expression, conjugated to the couple of
points AB,

FAB = xA − xB − tan(ϕA). (1)

As shown in Appendix A, in our experimental setup the
probability for the modulus of FAB to be greater than four
pixels is negligible for a good contour. Consequently, a contour
possessing one or more pairs of points of the kind described
above with such a value of the corresponding expression can
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FIG. 4. Part of the contour representing the equatorial cross
section of the vesicle. Here XOY is a frame of reference, similar
to that of Fig. 3. A capital letter (say, A) denotes a point of the
contour with coordinates (xA,yA). The corresponding lowercase letter
(in this case, a) denotes the point with coordinates (xa,ya), lying on
a circumference with center O and a radius, equal to the radius Rves

of the vesicle and having the property yA = ya .

be classified as bad and rejected from the sequence of accepted
contours.

Exactly in the same manner we can determine the respective
expression for two points, belonging to two adjacent rows from
the lower half of the right arc or from the left arc of the contour.
For the contour points of the upper and of the lower arcs,
obtained via scanning of the light intensity along the columns,
the y coordinates and the polar angles measured with respect
to the axis Y have to be used.

The restrictions on the values of the quantity FAB (and the
corresponding quantities for each of the four arcs building
up the contour) presented above is our second criterion for
determining and eliminating bad contours. The coordinates of
the center O of the contour in the X′O ′Y ′ are defined as the
average of the x ′ and the y ′ coordinates of the contour points
in this frame.

A number N of rays starting from the center and making
angles 2πn/N , n = 1,2, . . . ,N , with the axis X of the
laboratory frame of reference are traced. The N rays determine
N sectors with equal angles 2π/N . The contour is not rejected
if in each of these N sectors there is at least one of the contour
points obtained above. This is the third criterion for rejection
of a contour.

The sector between the nth and the (n + 1)th ray is
numbered with n, n < N , and the sector between the N th
and the first ray with N . Let rn be the distance between the
center O of the contour and the point of the contour with the
lowest illumination among the points in the nth sector. An
assumption is made that the length of the radius vector of the
point where the nth ray intersects the contour is equal to rn.

The contour of the equatorial cross section can be presented
as an ensemble of radius vectors R(ϕ,t) in the frame of
reference XOY , where ϕ are the polar angles of the contour
points and t is the time of the registration (it can be determined
knowing the number of the image and the time between two
consecutive images: 40 ms in our setup). In this way each

accepted contour is presented by a discrete ensemble of N

points with radius vectors R(2πn/N,t), n = 1,2, . . . ,N .
The optimal values for the radii Rint and Rext of the ROI are

those for which the number of approved contours is maximal.
Usually these are about 90% of all contours in the sequence.
The outsourced data contain the numbers of the rejected
images from the full record of the fluctuating vesicle and
the distances between the center of the contour and each of
its points in the N directions defined above for each of the
approved images.

One of the possibilities to recover all the contour R(ϕ,t)
(evidently with some precision) is to present it in the form

R(ϕ,t) = Rves

{
1 + a0 +

N/2−1∑
n=1

[an(t) cos(nϕ)

+ bn(t) sin(nϕ)] + aN/2(t) cos

(
N

2
ϕ

)}
, (2)

where Rves is the radius of a sphere with volume equal to
that of the vesicle. The Fourier amplitudes an(t) and bn(t) can
be determined from the known values of the radius vectors
R(2πn/N,t), n = 1,2, . . . ,N . The choice of N = 2k permits
us to determine these amplitudes via a fast Fourier transform
(FFT).

The assumption that R(ϕ,t) can be presented in the form of
Eq. (2) does not take into account the existence of harmonics
with n > N . We are interested in amplitudes of harmonics with
relatively low values, usually n � 19. The rejection of higher-
order harmonics influences mainly the amplitudes around N . If
the value of N is high enough, the influence on the amplitudes
of the low-order harmonics is expected to be negligible.

The following step consists in the calculation of the
autocorrelation function ξ (N,γ ) defined as [24]

ξ (N,γ )

=
〈

1

2π

∫ 2π

0

[R(ϕ,t) − Rves][R(ϕ + γ,t) − Rves]

(Rves)2
dϕ

〉
,

(3)

where 〈A(t)〉 denotes the time average of the time-dependent
quantity A(t) and ξ (N,γ ) is calculated from the amplitudes
an(t) and bn(t) [see Eq. (2)], obtained from the experimental
data via a FFT. The function R(ϕ,t) can be presented as

R(ϕ,t) = Rves + �Rfluct(ϕ,t) + �Rnoise(ϕ,t), (4)

where �Rfluct(ϕ,t) are the changes of the radii due to the
thermal shape fluctuations of the vesicle and �Rnoise(ϕ,t) are
the alterations of the radii due to the experimental errors in the
determination of the quantities R(2πn/N,t), n = 1,2, . . . ,N .
These errors are considered as white noise, i.e., they are
normally distributed around zero with respect to time; the
errors for different values of n are not correlated and their
variances do not depend on n. Because of their different
origins, �Rfluct(ϕ,t) and �Rnoise(ϕ,t) are not time correlated:

〈�Rfluct(ϕ,t) × �Rnoise(ϕ + γ,t)〉 = 0. (5)

As a result, ξ (N,γ ) can be presented as

ξ (N,γ ) = ξfluct(N,γ ) + ξ noise(N,γ ), (6)
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where ξfluct(N,γ ) is determined by �Rfluct(ϕ,t) and
ξ noise(N,γ ) by �Rnoise(ϕ,t):

ξfluct(N,γ )

=
〈

1

2π

∫ 2π

0

[�Rfluct(ϕ,t)][�Rfluct(ϕ + γ,t)]

(Rves)2
dϕ

〉
(7)

and

ξ noise(N,γ )

=
〈

1

2π

∫ 2π

0

[�Rnoise(ϕ,t)][�Rnoise(ϕ + γ,t)]

(Rves)2
dϕ

〉
. (8)

The function ξ (N,γ ) can be decomposed into a series with
respect to the Legendre polynomials Pl[cos(γ )] [25] as

ξ (N,γ ) =
N−1∑
l=0

Bl(N )Pl[cos(γ )], (9)

where N is the number of rays starting from the center of the
contour. The amplitudes Bl(N ) can be presented as

Bl(N ) = Bfluct
l (N ) + Bnoise

l (N ), (10)

where

ξfluct(N,γ ) =
N−1∑
l=0

Bfluct
l (N )Pl[cos(γ )] (11)

and

ξ noise(N,γ ) =
N−1∑
l=0

Bnoise
l (N )Pl[cos(γ )]. (12)

As shown elsewhere [25], for l � 2, Bfluct
l (N ) are given by the

expression

Bfluct
l (N ) = kT

4πkc

2l + 1

(l − 1)(l + 2)[l(l + 1) + σ ]
, (13)

where kT is the Boltzmann factor, kc is the bending elasticity
modulus of the vesicle membrane [10], and σ = σ (Rves)2/kc is
the normalized membrane tension, where σ is the real tension
of the membrane.

To calculate ξ noise(N,γ ) we introduce the quantities
hn(N,t), n = 1,2, . . . ,N as follows:

hn(N,t) = �Rnoise(2πn/N,t)

Rves
. (14)

As hn(N,t) are relevant to white noise [see the text after
Eq. (4)], the time mean squares 〈[hn(N,t)]2〉 do not depend on
n under the assumption that no systematic errors originating
from the microscope or other sources exist. We denote their
values by

[h(N )]2 = 〈[hn(N,t)]2〉. (15)

The quantity h(N ) has the meaning of a standard deviation of
the white noise, presented by the functions hn(N,t). Assuming
�Rnoise(2πn/N,t) ∼ 0.5 pixel and Rves ∼ 35 pixel (typical
for our experiments), we estimate [h(N )]2 ∼ 0.25 × 10−3.

As shown in Appendix B, ξ noise(N,γ ) can be expressed by
[h(N )]2 in the following way:

ξ noise(N,γ )

= [h(N )]2

N

[
1 + 2

N/2−1∑
n=1

cos (nγ ) + 1

2
cos

(
N

2
γ

)]
. (16)

Again, there it is shown that ξ noise(N,γ ) can be decomposed
into a series with respect to the Legendre polynomials
Pl[cos(γ )] with amplitudes Bnoise

l (N ) [see Eq. (12)]:

Bnoise
l (N,γ ) = (2l + 1)

2[h(N )]2

N2
F (N,l). (17)

Since the quantity ξ noise(N,γ ) is an interpolation of the
correlations 〈R(2πn′/N,t)R(2πn′′/N,t)〉 ∼ δn′n′′ (δn′n′′ is
the Dirac symbol and n′,n′′ = 1,2, . . . ,N ) of the radius
fluctuations R(2πn/N,t), it must be independent of N at
γ = 0. The quantity ξ noise(N,γ ) obtained above satisfies this
requirement and is proportional to 1/N . However, ξ noise(N,γ )
is a δ-like function of γ with width proportional to the distance
between two adjacent pixels representing the contour, i.e., to
1/N . Hence the amplitudes Bfluct

l (N,γ ) must depend on 1/N2

as calculated here. The F (N,l) in Eq. (17) are factors of the
order of unity that were calculated numerically here and are
given in Table I.

Finally, for l � 2,

Bl(N ) = kT

4πkc

2l + 1

(l − 1)(l + 2)[l(l + 1) + σ ]

+(2l + 1)
2[h(N )]2

N2
F (N,l). (18)

This equation shows that there are three parameters kc, σ , and
[h(N )]2 that must be calculated to fit the best dependence of
Bl on them. So far, only the first two were taken into account

TABLE I. Numerically calculated values of the factors F (N,l)
from Eq. (17) for N = 64, 128, and 256 and l = 2–19.

N

l 256 128 64

2 1.004152892 1.008810030 1.019715027
3 1.000366401 1.001467890 1.005908441
4 1.004585808 1.010569908 1.027053663
5 1.000916758 1.003681894 1.014970679
6 1.005267238 1.013354144 1.038913577
7 1.001713325 1.006905978 1.028503621
8 1.006198701 1.017188205 1.055770420
9 1.002757865 1.011169340 1.047045044
10 1.007382278 1.022107776 1.078352039
11 1.004052701 1.016511367 1.071394929
12 1.008820635 1.028159702 1.107734640
13 1.005600731 1.022982664 1.102722266
14 1.010517029 1.035403275 1.145506234
15 1.007405448 1.030646445 1.142745978
16 1.012475336 1.043911924 1.194052940
17 1.009470958 1.039580339 1.194052940
18 1.014700072 1.053775412 1.257087409
19 1.011802008 1.049878725 1.260689379
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in the fitting procedure [25]. As will be seen in Sec. V, in many
cases the effects of the third parameter, appearing due to the
white noise, have to be taken into account.

In the present study the calculation of Bl(N ) is carried out as
follows. For the accepted contours, auxiliary autocorrelation
functions ξ aux(N,γ,ti) are introduced, defined as

ξ aux(N,γ,ti)

= 1

2π

∫ 2π

0

[R(ϕ,ti) − Rves][R(ϕ + γ,ti) − Rves]

(Rves)2
dϕ,

(19)

where ti is the moment of acquisition of the ith image. The
N radius vectors R(2πl/N,ti), l = 1,2, . . . N , of the contour
are determined and the Fourier amplitudes from Eq. (2) are
calculated via a FFT. By means of these amplitudes the
functions R(ϕ,ti) and ξ aux(N,γ,ti) are calculated.

Let Baux
l (N,ti) be the amplitudes of the decomposition

of ξ aux(N,γ,ti) into a series with respect to the Legendre
polynomials Pl[cos(γ )]:

ξ aux(N,γ,ti) =
N−1∑
l=0

Baux
l (N,ti)Pl[cos(γ )]. (20)

Let M be the number of accepted contours. Then Bl(N ) is
expressed by Baux

l (N,ti) as

Bl(N ) = 1

M

∑
i ′

Baux
l (ti ′), (21)

where i ′ is the ensemble of numbers of accepted contours.
The fitting procedure for obtaining kc, σ , and [h(N )]2 and

their errors from Bl(N ) requires the knowledge of the errors
�Bl(N ) of Bl(N ). If the time interval �t = ti − ti−1 is long
enough (1 s for the case when every 25th frame is taken from
the recorded image sequence), the values of the amplitudes
Baux

l (ti ′) are not correlated and then the standard procedure for
the error determination can be applied:

�Bl(N ) =
√∑

i ′
{[

Baux
l (N,ti ′)

]2 − [Bl(N )]2
}

M − 1
. (22)

A sufficient condition ensuring that Baux
l (N,ti ′ ) are not corre-

lated is the validity of the inequality �t � τ2, where τ2 is the
correlation time of the (slowest) modes with numbers l = 2
in the decomposition of the vesicle shape fluctuations in a
series with respect to the spherical harmonics Ym

l (θ,φ) [see
Eqs. (A2) and (A3) in Appendix A] [36]. Here it is assumed
that the inequality is fulfilled if �t > 2τ2.

After the calculation of the mean values Bl(N ) and their
standard deviations �Bl , the fitting parameters kc, σ , and
[h(N )]2 are determined, ensuring the best fit of Bl(N ) with the
theoretical results from Eq. (18). If the calculated goodness
of fit is lower than 0.1, this is considered as an indication for
hidden defects and the vesicle is rejected. This is the first of
our criteria for the goodness of the treated vesicle.

The second criterion is the conservation of its volume
during the experiment. The fulfillment of this requirement
is controlled via the time evolution of the amplitudes of the
second harmonics of the radius fluctuations. If such evolution
exists, the vesicle volume and/or area is not conserved and the
vesicle is rejected.

V. RESULTS AND DISCUSSION

In this section the experimental results for the bending
elasticity of SOPC lipid bilayers are presented. They are
obtained from the analysis of the shape fluctuations of nearly
spherical lipid vesicles as described above.

As noted in Sec. III, the image sequences we processed
consist of vesicle images registered every second during a
period of ∼7 min (i.e., about 400 images per vesicle). For
vesicles with radii Rves ∼ 10 μm and with this frequency
of registration the contour frames of the sequence are not
correlated unless τ2 � 0.5 s [τ2 depends on Rves and σ ; see the
text after Eq. (22)]. The inequality τ2 � 0.5 s was fulfilled
for all the vesicles we considered. Thus the mean values
and their standard deviations for the quantities related to the
fluctuations were calculated using the standard methods for
calculation applicable for ensembles of uncorrelated numbers
with Gaussian distributions.

The ensemble of accepted vesicles included only samples
satisfying all criteria for good vesicles. For each of them the
bending elasticity modulus and its error were calculated. The
fit of these bending elasticities with a constant kc gave the
following results for its value and its error (in ergs):

kc = (1.88 ± 0.17) × 10−12. (23)

The fit of the experimental data presented above has a goodness
of fit equal to 0.59. Consequently, the assumption that the
membrane bending elasticity of the ensemble of vesicles is
the same for all of them is relevant from a statistical point of
view. This membrane property for different vesicles, which
is obvious from a theoretical point of view, is experimentally
shown to be in accord with statistical predictions, obtained
from the experimental data.

For comparison, the value of the bending constant was
estimated without accounting for the white-noise contribution.
In order to quantify its effect on the calculated bending
modulus, the experimental data were fitted without taking
into account the terms corresponding to the white noise,
i.e., the �Rnoise(ϕ,t) terms in the above equations were
taken to be equal to zero. The value obtained, kc = (1.45 ±
0.08) × 10−12 ergs, is significantly lower than the value
reported above [see Eq. (23)]. This result is consistent with
previous experimental values for kc of phosphatidylcholine
bilayers found in the literature [18,32], where the white-noise
contribution to the measured value of the bending modulus
was not considered. Another important step in our analysis
was to probe for any radius dependence of the calculated
bending constant for every SOPC vesicle satisfying the criteria
discussed in the preceding sections. From our experimental
data no statistically significant dependence on Rves is captured
for either case, with and without accounting for the white-noise
terms during the kc calculation.

To ensure that the contours from an image sequence will not
be rejected because of the third criterion for contour selection
(see Sec. IV) it was shown that 64 directions presenting the
fluctuating contour of the equatorial cross section of the vesicle
must be taken for vesicles with radii less than 132 pixels. For
this number of directions the effects of the quantity [h(N )]2

[see Eq. (15) and the text after it] are not negligible and it must
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be taken into account in the fitting procedure, permitting the
determination of kc from the experimental data [see Eq. (18)].

The value of the bending modulus reported here is higher
than those that can be found in the literature (see [18,32] and
references therein). This difference is most probably due to
two important reasons. The first one consists in the fact that in
the present study the bad vesicles and the bad contours from
the good vesicles, both of which artificially decrease this
value, are rejected. The second important point is the
accounting for the white-noise contribution in the thermal
fluctuation analysis.

The values of the parameters of the experimental setup
(magnification of the optical system, number of pixels per unit
length, etc.) are essentially used in most of the estimations
reported here. Obviously, for a different setup the estimations
must be recalculated using the respective values.
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APPENDIX A: ESTIMATION OF THE DIFFERENCE OF
THE COORDINATES OF TWO POINTS OF THE CONTOUR
BELONGING TO TWO ADJACENT ROWS OR COLUMNS

A contour is considered, representing the cutoff of the
vesicle, with the focal plane of the microscope (see Fig. 4). The
vesicle is focused, i.e., the center of the vesicle lies on the focal
plane. The contour is extracted from the image with coarse-
grained pixels. For the conditions of our experimental setup,
described in Sec. IV, the dimension of the pixel is ∼0.3 μm.
Usually the radii Rves (defined in Sec. IV) of the vesicles
we studied were ∼10 μm, which corresponds to ∼35 pixels.
Later in the numerical estimations Rves = 35 is taken.

Let us consider first the upper half of the right arc of the
contour. In the frame of reference XOY , introduced in Sec. IV,
the points of this part have polar angles ϕ in the interval (0,π/4)
and are obtained from the scan of the light intensity along the
rows of the image. Because of the symmetry, all the results
obtained for this part of the contour will be valid for the other
parts too.

We assume first that we dispose of the true contour repre-
senting a continuous two-dimensional planar curve. Its points
are denoted by capital letters possessing an upper index 0.

Let A0 be a point of the true contour with coordinates
(xA0 ,yA0 ). Let ϕA0 be the polar angle of A0. Then

tan(ϕA0 ) = yA0

xA0
. (A1)

Let a circumference with radius Rves and center coinciding
with the center of the vesicle be traced (see Fig. 4). A small
letter, conjugated to the capital one and possessing an upper
index 0 (in the considered case a0), denotes the point lying on
the circumference having coordinates (xa0 ,ya0 ) and possessing
the property ya0 = yA0 . Let the oriented length LA0

X of the
segment A0a0, conjugated to the point A0, be defined as LA0

X =
xA0 − xa0 . This length can be determined for each of the points
of the contour.

We proceed with the calculation of the oriented length LA0

X .
Let R(θ,φ,t) be the radius vector of a point on the surface of
the fluctuating vesicle at time t with polar angles (θ,φ) in a
frame of reference with origin coinciding with the center of
the vesicle and axis Z perpendicular to the focal plane of the
microscope. The modulus R(θ,φ,t) of this radius vector can
be presented in the following way [36,37]:

R(θ,φ,t) = Rves[1 + u(θ,φ,t)], (A2)

where u(θ,φ,t) can be developed in a series with respect to
the spherical harmonics Ym

l (θ,φ) as

u(θ,φ,t) =
lmax∑
l=2

l∑
m=−l

um
l (t)Ym

l (θ,φ). (A3)

In this equation lmax is of the order of the square root of
the number of molecules in the vesicle membrane. The time
mean squares of the amplitudes um

l (t) satisfy the well known
relation [36]〈∣∣um

l (t)
∣∣2〉 = kT

kc

1

(l − 1)(l + 2)[l(l + 1) + σ ]
, (A4)

where kT , kc, and σ are defined after Eq. (13).
Using the fact that the equatorial cross section of the

vesicle corresponds to θ = π/2 and that on this plane φA0

is equal to ϕA0 , the oriented length LA0

X of the point A0 (see
Sec. IV and Fig. 4) is expressed to first-order precision with
respect to um

l (t) as

LA0

X ≈ Rves

cos(ϕA0 )

[
lmax∑
l=2

l∑
m=−l

um
l (t)Ym

l

(
π

2
,ϕA0

)]
. (A5)

Let B0 be a point of the contour with coordinates (xB0 ,yB0 )
satisfying the condition yB0 = yA0 + 1 (in this way we
take into account that B0 lies on a row adjacent to that of
the point A0) and having polar coordinate ϕB0 . We define
δA0B0 = ϕB0 − ϕA0 . It can be shown that with precision to
first order with respect to um

l and 1/Rves this angle can be
expressed as (the distances are measured in pixels)

δA0B0 ≈ 1

Rves cos(ϕA0 )
. (A6)

Let LB0

X be the oriented length conjugated to B0. Then the
difference xA0 − xB0 satisfies the relation

xA0 − xB0 − tan(ϕA0 ) = LA0

X − LB0

X . (A7)

To estimate the order of magnitude of the fluctuations of
LA0

X − LB0

X due to the thermal fluctuations of the vesicle, we
first find the time mean square 〈(LA0

X − LB0

X )2〉. The result is〈(
LA0

X − LB0

X

)2〉
= (Rves)

2 kT

4πkc

lmax∑
l=2

{
2l + 1

(l − 1)(l + 2)[l(l + 1) + σ ]

×
[

1

[cos(ϕA0 )]2
+ 1

[cos(ϕA0 + δA0B0 )]2

− 2Pl[cos(δA0B0 )]

[cos(ϕA0 )][cos(ϕA0 + δA0B0 )]

]}
. (A8)
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The quantities kT , kc, and σ in this equation are defined
after Eq. (13). The time mean square calculated above is
an increasing function of ϕA0 in the interval (0,π/4) and
practically does not depend on Rves. Taking kT

kc
= 1

20 , we

find the value of this function to be 0.035 pixel2 for ϕA0 = 0
and 0.14 pixel2 for ϕA0 = π/4. Later on we assume that the
distribution of LA0

X − LB0

X due to the thermal fluctuations of
the vesicle has properties not essentially different from those
of a normal distribution around zero with an effective variance
of 0.14 pixel2 [slightly overestimated because the highest
calculated value of 〈(LA0

X − LB0

X )2〉 is taken].
Let us consider now the case when A and B are points

of the contour, extracted from a coarse-grained image and
consisting of discrete points. Let (xA,yA),(xB,yB) and ϕA,ϕB

be their coordinates and polar angles, respectively. They can
be presented as

xA = x0
A + �xA,

xB = x0
B + �xB,

ϕA = ϕ0
A + �ϕA,

ϕB = ϕ0
B + �ϕB,

(A9)

where x0
A, x0

B , ϕ0
A, and ϕ0

B are the true values of xA, xB , ϕA,
and ϕB and �xA, �xB , �ϕA, and �ϕB are their errors due
to the finite size of the pixels. The fluctuations of the values
of FAB = xA − xB − tan(ϕA) are due also to the experimental
errors of xB , xA, and tan(ϕA) determined from the experimental
data [see Eq. (A7)].

As noted in Sec. IV, the precision of the determination of
xA and xB is ∼0.5 pixel. We assume that the distributions of
these two errors are also normal. Their variances are equal to
the square of their experimental error (appearing as a standard
deviation of this distribution), i.e., 0.25 pixel2 for each of
them. Assuming that the error of yA is also of the order of 0.5
pixel and taking into account that in the upper part of the right
arc of the contour the coordinate xA is between 17 and 35
pixels, we calculated a very low value for the error � tan(ϕA)
of tan(ϕA) and neglected it.

In summary, there are three essential contributions to the
fluctuations of FAB : the vesicle thermal shape fluctuations
and the experimental errors in the measurements of xA and
of xB . They are not correlated and are assumed with a
normal distribution. In this case FAB should have also a
normal distribution around zero with variance 
2 equal to
the sum of the three variances: 
2 = 0.14 pixel2 + 0.25
pixel2 + 0.25 pixel2 = 0.64 pixel2. The standard deviation 


of FAB is equal to the square root of its variance: 
 =√
0.64 pixel2 = 0.8 pixel.
One quantity with a normal distribution can take values

in the whole interval (−∞,∞). If restrictions on the values
of FAB are imposed, some part of the good contours will be
rejected. We chose an interval of acceptable values of FAB ,
ensuring that less than 1% of the good contours will be rejected.
Taking into account that each contour contains ∼200 points, it
can be shown that the ensemble of good contours containing
at least one pair of points A and B with FAB satisfying the
inequality |FAB | > 4
 is about 1% of the whole ensemble
of good contours; however, 4
 = 3.2 pixels. If a contour
contains at least one pair of points A and B with |FAB | > 4
pixels (taking into account that FAB is a whole number, we

choose the smallest whole number superior to our estimation),
either it is bad or it is good with negligible probability. In both
cases such a contour can be rejected.

APPENDIX B: INFLUENCE OF THE WHITE NOISE ON
THE CALCULATION OF THE BENDING ELASTICITY

We consider the function R(ϕ,t) from Eq. (2), which
is periodic with respect to ϕ with period 2π . We define
the function h(ϕ,t) as h(ϕ,t) = [R(ϕ,t) − Rves]/Rves [Rves

is defined after Eq. (2)]. Let N be a natural number with
the property N = 2l [see the text after Eq. (2)]. We use the
quantities, introduced in Eq. (14), hn(N,t), n = 1,2, . . . ,N .
We assume that h(ϕ,t) can be developed in a Fourier series
containing N different amplitudes, as it was assumed for
R(ϕ,t) [see Eq. (2)]:

h(ϕ,t) = 1

N

{
H0(t) +

N/2−1∑
n=1

[Hn(t) exp (inϕ) + H ∗
n (t)

× exp (−inϕ)] + HN/2(t) cos

(
N

2
ϕ

)}
, (B1)

where i is the imaginary unit and H ∗
n (t) is complex conjugate

to Hn(t). In this equation H0(t) and HN/2(t) are real numbers
and h(ϕ,t) is a real function. Equation (B1) can be obtained
from Eq. (2) after appropriate substitutions.

As noted after Eq. (14), we assume that the quantities
hn(N,t) have the character of white noise not depending on n

standard deviation. Consequently,

〈hk(N,t)hl(N,t)〉 = δkl[h(N )]2, (B2)

where δkl is the Dirac symbol and [h(N )]2 is defined via
Eq. (15). From Eqs. (B1) and (B2) and from the relation

N−1∑
k=0

exp

(
i
2π

N
nk

)
= δn0N (B3)

we obtain

Hn(t) =
N−1∑
k=0

hk(t) exp

(
− i

2π

N
nk

)
(B4)

and

〈Hm(t)H ∗
n (t)〉 = δmnN [h(N )]2. (B5)

These results permit us to calculate the correlation
〈h(ϕ,t)h∗(ϕ + γ,t)〉:

〈h(ϕ,t)h∗(ϕ + γ,t)〉 = [h(N )]2

N

{
1 + 2

N/2−1∑
n=1

cos (nγ )

+ 1

2

[
cos

(
Nϕ + N

2
γ

)

+ cos

(
N

2
γ

)] }
. (B6)

After averaging this equation with respect to ϕ, Eq. (16) is
obtained.

From Eqs. (12) and (16) we calculate the amplitudes Bfluct
l

and obtain the result from Eq. (17). The numerical results for
the factors F (N,l) are presented in Table I.
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