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We define a pair-correlation function that can be used to characterize spatiotemporal patterning in experimental
images and snapshots from discrete simulations. Unlike previous pair-correlation functions, the pair-correlation
functions developed here depend on the location and size of objects. The pair-correlation function can be used to
indicate complete spatial randomness, aggregation, or segregation over a range of length scales, and quantifies
spatial structures such as the shape, size, and distribution of clusters. Comparing pair-correlation data for various
experimental and simulation images illustrates their potential use as a summary statistic for calibrating discrete
models of various physical processes.
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I. INTRODUCTION

Spatiotemporal patterning is observed in images of various
processes, including (i) an approximately uniform distribution
of cocultured cells that form multicellular aggregates [1], as
shown in Figs. 1(a) and 1(b), (ii) a segregated mixture of steel
and glass beads that is vibrated to produce a less segregated
mixture [2], as shown in Figs. 1(c) and 1(d), and (iii) aggregates
of dye placed on a viscous fluid that is stirred into folds of
laminar patterns [3], as shown in Figs. 1(e) and 1(f). The
evolution of such physical systems can be simulated using a
range of frameworks including discrete random-walk-based
methods [4–10] and other techniques [2,11–17]. Quantifying
the spatial structure predicted by such modeling frameworks
is essential when we consider comparing the model prediction
with an experimental image.

In this work, we define a discrete pair-correlation func-
tion [18–24] to characterize spatial structure in the two-
dimensional Cartesian plane. We assume that the spatial
domain can be represented by a two-dimensional integer lattice
with each site either being vacant or occupied by a single
unit square area agent (an area exclusion process [25,26]).
The area agent may represent an entire object, part of an
object, or a pixel in an experimental image [27–38]. The
pair-correlation function is formulated by normalizing the
counts of the pair distances, in either Cartesian direction,
between the area agents. For a domain populated uniformly at
random, at the exclusion complete spatial randomness (ECSR)
state [39–41], the normalization ensures that the expected
value of the pair-correlation functions is unity for all pair
distances. When the pair-correlation functions are greater than
unity we have aggregation, and when the pair-correlation
functions are less than unity we have segregation [18,19].
We analyze these signals over short, intermediate, and long
length scales. Our work extends previous studies that have
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focused on point processes and considered short length scales
and isotropic distributions [18,19].

We consider spatial data sets generated by a discrete model
of agent proliferation and motility [4,7–9,38,42,43]. This
modeling framework has been influential in quantifying the
role of cell proliferation and cell motility in many different
cell biology applications [38,43,44]. However, many important
questions about the interpretation and quantification of spatial
data sets remain unanswered, such as developing methods that
can distinguish between different kinds of spatial patterning
[45]. Our work confirms that the pair-correlation functions
can be used to distinguish between three basic types of
spatial patterning signals: (i) ECSR, (ii) aggregation, and
(iii) segregation [18,19]. Furthermore, we show that more
detailed signals are possible, such as wavelike oscillations
indicating aggregation and segregation at multiple length
scales. We demonstrate how these more detailed signals can be
quantified using the pair-correlation framework by analyzing
images from three different experiments [27,33,38].

II. PAIR-CORRELATION FUNCTION

Unlike previous studies [18–24] we consider an exclusion
process where objects cannot overlap. We represent this using
a two-dimensional integer lattice, with each site being vacant
or occupied by, at most, a single square of unit area [25,26].
Focusing on an exclusion process is relevant for the analysis of
experimental images that have been converted into a standard
black and white format where black pixels represent the
occupied area and white pixels represent the vacant area.
The exclusion process framework is also relevant when we
analyze snapshots from discrete models where agent exclusion
is enforced [4,46].

We consider an X × Y rectangular lattice of integers
(x,y) with unit spacing. The occupancy of the lattice can be
represented by a matrix, given by

Mxy =
{

0, if (x,y) is vacant,
1, if (x,y) is occupied.

(1)
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FIG. 1. Images of spatial patterning. (a),(b) An initially uniform coculture of cells forms multicellular aggregates (reprinted from Thomas
et al. [1], Fig. 3, with permission from Eur. Cells Mater.). (c),(d) A segregated mixture of steel and glass beads evolves to a less segregated
mixture when vibrated (reprinted from Yang [2], Fig. 2, with permission from Powder Technol.). (e),(f) Aggregates of dye on a viscous fluid
evolve to a more regular pattern when the fluid is stirred [reprinted from Kobayashi et al. [3], picture 4.1(1a and 1d), with permission from
Topol. Appl.].

The total number of area agents is

n =
X∑

x=1

Y∑
y=1

Mxy � XY. (2)

In either Cartesian direction, the nonperiodic counts of the
pair distances between area agents can be described using set
notation. We define the set of paired area agents as

ψab = {(a,b) | a = (xa,ya),b = (xb,yb),a �= b,

Mxa,ya
= Mxb,yb

= 1,xa,xb ∈ X,ya,yb ∈ Y }. (3)

The subsets of agent pairs at distance i ∈ X or j ∈ Y are

Si = {(a,b) | |xa − xb| = i,(a,b) ∈ ψab} and (4)

Sj = {(a,b) | |ya − yb| = j,(a,b) ∈ ψab}. (5)

The numbers of elements in the subsets Si and Sj indicate the
counts of pair distances

cx(i) = |Si | for i = 1, . . . ,X and (6)

cy(j ) = |Sj | for j = 1, . . . ,Y. (7)

As an example, the arrows in Fig. 2(a) connect pairs of agents
at (1,2), (3,1), and (4,2) on a lattice with X = 4 and Y = 2.
The counts of pair distances in the x direction are cx(1) = 1,
cx(2) = 1, cx(3) = 1, and cx(4) = 0. In general, the counts of
pair distances can be binned in the following way:

Cx(k�x) =
k�x∑

i=(k−1)�x+1

cx(i) for k = 1, . . . ,X/�x and

(8)

Cy(l�y) =
l�y∑

j=(l−1)�y+1

cy(j ) for l = 1, . . . ,Y/�y, (9)

where �x and �y are the bin widths. Note that X ≡ 0 mod �x

and Y ≡ 0 mod �y , as we require that X and Y are divisible
by �x and �y without any remainder. In the case that
�x =�y = 1, Eqs. (8) and (9) are equivalent to Eqs. (6) and (7).
Introducing variable bin widths allows us to analyze the spatial
distribution of objects over a range of length scales.

Figure 3(b) shows Cx and Cy for the random distribution of
objects in Fig. 3(a), indicating that we have a linear relationship
between the bin counts and pair distance. When there is
no spatial structure and we are at the ECSR state, as in
Fig. 3(a), we define a set of pair-correlation functions that
normalize Cx and Cy so that their expected values are unity
for all pair distances [18–24]. The normalization factor can be
interpreted as the probability that we choose a pair of agents,
on a randomly occupied domain, separated by a particular
pair distance. This probability is the product of three terms:
(i) the probability of selecting an agent, (ii) the probability
of selecting a second distinct agent, and (iii) the number of
combinations of pairs of sites separated by a particular pair
distance. We now present the details of how to derive this
normalizing factor by considering the x direction only and
note that a similar argument applies in the y direction.

The probability of selecting the first agent is the mean-field
density, ρ = n/XY , and the probability of selecting a second
distinct agent is given by

ρ̃ = n − 1

XY − 1
= ρ − 1/XY

1 − 1/XY
. (10)
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FIG. 2. (a) Gray squares represent sites that are occupied by unit
sized area agents on a lattice with X = 4 and Y = 2. The counts of
the pair distances between area agents in the x direction are indicated
with arrows. There is one pair of agents separated by a distance
of one [cx(1) = 1], one pair of agents separated by a distance of
two [cx(2) = 1], one pair of agents separated by a distance of three
[cx(3) = 1], and no pairs of agents separated by a distance of four
[cx(4) = 0]. (b)–(d) Counts of pairs of sites on a lattice with X = 4
and Y = 1. In (b) we have three pairs of sites separated by a distance
of one [rx(1) = 3]. In (c) we have two pairs of sites separated by a
distance of two [rx(2) = 2]. In (d) we have one pair of sites separated
by a distance of three [rx(3) = 1]. (e)–(g) Counts of pairs of lattice
sites on a lattice with X = 4 and Y = 2. In these subfigures we have
used a combination of solid and dashed arrows to make the counts
of pairs of sites clear. In (e) we have six pairs of sites separated by
a distance of one. In (f) we have four pairs of sites separated by a
distance of two. In (g) we have two pairs of sites separated by a
distance of three.

We now derive an expression describing the number of
combinations of pairs of lattices sites separated by a particular
pair distance. When the domain is populated at random the
area-agent counts are expected to be proportional to the
counts between lattice sites. We begin with reference to

Figs. 2(b)–2(d) by considering the counts between lattice sites
in a single row of a lattice, which is given by

rx(i) = (X − i) for i = 1, . . . ,X. (11)

For Y such rows, we have Yrx(i) combinations of pair
distances. If we consider any two distinct rows in the lattice,
the number of combinations of pair distances between two
sites, with each site belonging to a different row, is 2rx(i),
as illustrated in Figs. 2(e)–2(g). To account for all possible
combinations of pairs of sites from any two distinct rows
of a lattice containing a total of Y rows, we introduce a
binomial coefficient. Combining these considerations gives us
an expression for the counts of pair distances between lattice
sites,

dx(i) = Yrx(i) + 2rx(i)

(
Y

2

)
= Y 2(X − i) for

i = 1, . . . ,X. (12)

The normalization term to define our pair-correlation function
is given by

ĉx(i) = dx(i)ρρ̃

= Y 2(X − i)ρρ̃ for i = 1, . . . ,X (13)

for the counts of the pair distances in Eq. (6), when �x = 1.
A similar expression holds for ĉy(j ) when �y = 1 and the
normalization values can be binned according to

Ĉx(k�x) =
k�x∑

i=(k−1)�x+1

ĉx(i) for k = 1, . . . ,X/�x and

(14)

Ĉy(l�y) =
l�y∑

j=(l−1)�y+1

ĉy(j ) for l = 1, . . . ,Y/�y. (15)

To verify our arguments we plot Ĉx and Ĉy in Fig. 3(b), which
provides an excellent match to the binned counts of Cx and
Cy for the distribution shown in Fig. 3(a). Therefore, the two
pair-correlation functions are given by

Px(k�x) = Cx(k�x)

Ĉx(k�x)
for k = 1, . . . ,X/�x and (16)

Py(l�y) = Cy(l�y)

Ĉy(l�y)
for l = 1, . . . ,Y/�y. (17)
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FIG. 3. Domain populated uniformly at random with (black) unit square area agents. (a)–(c) XY = 1200, ρ = 0.25, and �x = �y = 1.
(a) Typical realization. (b) Counts of pair distances Cx and Cy (solid and dashed curves). The dotted lines are for the normalization values Ĉx

and Ĉy . (c) Average pair-correlation function P̄ , N = 10000, XY = 100, and � = 1. The dotted, dashed, and solid curves are for mean field
densities ρ = {0.10,0.25,0.5}. The upper three curves are for ρ̃, given by Eq. (10). The lower three curves are for ρ̃ = ρ.
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The pair-correlation function signals, Px and Py , for a
uniformly random distribution of area agents in Fig. 3(a),
fluctuate around unity as expected. We can average Px and Py

over N identically prepared realizations to give P̄x(k�x) and
P̄y(l�y). For an isotropic distribution, we can further average
to obtain P̄ (m�) = [Px(k�x) + Py(l�y)]/2, for X = Y, � =
�x = �y , and m = k = l.

Results in Fig. 3(c) show P̄ (m�) for a randomly populated
domain at three different mean densities, ρ = 0.10, 0.25, and
0.50. The significance of accounting for exclusion is illustrated
by comparing the three upper curves with the three lower
curves in Fig. 3(c). The three upper curves correspond to
our approach for the analysis of exclusion processes with
ρ = 0.10, 0.25, and 0.50, and we have P̄ (m�) ≈ 1 for all ρ

considered. The three lower curves show P̄ (m�) for ρ = 0.10,
0.25, and 0.50, where we made no distinction between ρ̃ and ρ,
such as in the case in a standard nonexclusion point process.
The three lower curves show that P̄ (m�) �= 1, confirming
that significant differences between the standard approach to
analyze point processes and our approach for dealing with
exclusion processes can occur.

We will now implement a discrete model to generate various
biologically inspired data sets, that are not necessarily spatially
uniform, and analyze these patterns using our discrete pair-
correlation functions. We note that all the theory developed in
Sec. II is for a single snapshot of a spatial process. Since we will
consider a discrete model we will apply the results from Sec. II
to snapshots from the model at the end of each discrete time
step to give an estimate of how the pair-correlation functions
change with time. When we evaluate P̄ , we choose N , the
number of realizations, to ensure that the fluctuations in P̄

are sufficiently small and we evaluate this based on a visual
examination of the results in each case.

III. SPATIAL ANALYSIS OF DISCRETE SIMULATIONS

We consider a discrete model of biological cell proliferation
and motility [4,7–9,43] on a nondimensional square lattice
of unit spacing, δ = 1. At time t the domain contains n̂(t)
square cellular agents, each of area s = (1 + 2α)2, where α

is a non-negative integer and s denotes the number of unit
square area agents contained in a cellular agent so that the total
number of area agents is n(t) = sn̂(t). If α = 0 with s = 1,
each cellular agent is represented by a single area agent. When
α > 0 the configuration of the cellular agent can be described
as follows. If the central area agent of the cellular agent is at
(x,y), then the four area agents at the corners of the cellular
agent are located at (x ± α,y ± α). The remaining s − 5 area
agents occupy lattice sites to form a single square cellular
agent. For example, a square cellular agent with α = 1 has nine
area agents at (x,y ± 1),(x ± 1,y), (x,y), and (x ± 1,y ± 1).

The temporal evolution of the discrete model is simulated
with a random sequential update method [25,26] with nondi-
mensional time steps of unit duration, τ = 1. On average,
each cellular agent is given the opportunity to undergo one
unbiased motility event during each time step and the motility
event will occur with probability Pm ∈ [0,1]. For example,
in a successful motility event, the central area agent at
(x,y) of a particular cellular agent would attempt to move
to (x ± 1,y ± 1), with the direction of movement chosen at

random. Since the model is an exclusion process, any potential
motility event that would place an area agent on a lattice site
that is occupied by another cellular agent is aborted. Once the
n̂(t) potential motility events have been assessed we then allow,
on average, each cellular agent the opportunity to undergo a
proliferation event with probability Pp ∈ [0,1] per time step,
and any new daughter agent that is produced is placed adjacent
to the mother agent. We consider an unbiased proliferation
mechanism where the direction of the target site is chosen
at random, and any potential proliferation events that would
place an area agent on an occupied site is aborted. Our discrete
simulations are nondimensional in the sense that we consider
a square lattice with unit spacing, δ = 1, and time steps of
unit duration, τ = 1 [26]. This nondimensional framework
can be applied to any particular biological application by
rescaling, using appropriate length and time scales, L and T ,
as discussed previously [26]. The parameters in the discrete
model are related to standard measures of cell diffusivity,
D = Pmδ2/(4τ ), and the cell proliferation rate, λ = Pp/τ [38].
The relationship between the parameters in the discrete model
and the cell diffusivity and cell proliferation rate have been
analyzed previously [26].

To mimic the way that experimental images are recorded
and analyzed [27–38] we always consider a central portion of
the domain so that the pair-correlation functions are unaffected
by the boundary conditions. To test the sensitivity of our
results to differences in the boundary conditions we used both
periodic and reflecting boundary conditions in our simulations
and found that the pair-correlation signals were insensitive to
these differences provided that the domain was sufficiently
large relative to the size of the central region of the domain
that we analyzed.

Snapshots in Figs. 4(a) and 4(b) correspond to proliferative
and immotile (Pp > 0,Pm = 0) unit square agents where the
domain is initially populated by sixteen evenly spaced agents.
The pair-correlation signals Px , Py , and P̄ in Fig. 4(c) are
all similar for the isotropic spatial pattern in Fig. 4(b). All
signals contain four maxima indicating aggregation on four
different length scales. The first maxima at pair distance
k�x = l�y = m� ≈ 1 corresponds to short scale aggregation
within each aggregate and the first minima at k�x = l�y =
m� ≈ 10 indicates segregation at a length scale corresponding
to the average aggregate length. The three remaining maxima
indicate intermediate and long scale aggregation between pairs
of nearest aggregates and pairs of next nearest aggregates.
The distance separating the adjacent maxima and minima,
k�x = l�y = m� ≈ 20, corresponds to the distance between
the central location of aggregates.

We now consider a more stochastic pattern by analyzing
randomly initialized domains containing proliferative and
immotile agents (Pp > 0,Pm = 0), with ρ(0) = 0.001. Typical
snapshots are given in Figs. 5(a) and 5(b), with P̄ shown in
Fig. 5(c) containing one maxima which indicates short scale
aggregation. The pair distance that the signals intersect with
unity gives us a measure of the average aggregate length. At
larger pair distances, the pair-correlation functions fluctuate
around constant values, less than unity, indicating intermediate
and long scale segregation. However, there is no other spatial
structure at these larger pair distances, which indicates that the
aggregates are distributed uniformly at random throughout the
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FIG. 4. Cellular-agent aggregates generated by the discrete proliferation mechanism, XY = 100 000, Pp = 1.0, Pm = 0, and s = 1.
(a) Initial condition. (b) Typical realization at t = 10. (c) Pair-correlation functions Px (solid) and Py (dashed) for (b), at t = 10 and
�x = �y = 1. The dotted curve is the average pair-correlation function P̄ , N = 1, and � = 1.

domain. This is expected as the domain was initially occupied
at random and the pair-correlation signal at t = 0 in Fig. 5(c)
fluctuates around unity.

The stochasticity in the simulations can be further increased
by considering randomly initialized simulations of prolifera-
tive and motile agents (Pp > 0,Pm > 0). A snapshot of such a
process in Fig. 6(a) suggests that, unlike the results in Fig. 5(a),
it is very difficult for us to visually assess whether there is
any aggregation present in the system. The corresponding
pair-correlation signal in Fig. 6(b) indicates that there is short
scale aggregation and we confirm this by considering an
independent measure of the spatial structure using an index
introduced by Phelps and Tucker [14]. The index, I (t), is a
scaled variance obtained by counting the number of agents in
B equally sized bins. For a lattice-based exclusion processes,
with s = 1, the ECSR limit [41,43,47,48] is

I (t)ecsr = 1

n(t)
− 1

XY
. (18)

Comparing averaged values of I (t) and I (t)ecsr gives us an
independent test for the presence of spatial structure. Results
in Fig. 6(c) show that I (t) > I (t)ecsr, which indicates that

the spatial distribution of objects in Fig. 6(a) is not at the
ECSR state. We note that the Phelps and Tucker index
provides us with relatively little information about the spatial
structure since this index only provides a test of whether a
particular distribution of objects is uniform. Since we have
I (t) > I (t)ecsr, the index indicates that the system is not
uniform; however, this test provides no further information.
In comparison, our pair-correlation data in Fig 6(b) reveals
far more information since it indicates that the distribution is
aggregated over a length scale of approximately m� ≈ 5 and
is distributed uniformly at larger length scales.

Our results so far have concentrated on simulations where
s = 1 and each square cellular agent is equivalent to a single
area agent. We now consider simulations with s > 1 so that
each cellular agent consists of several area agents. Interpreting
the pair-correlation signals in this more general case is relevant
when analyzing experimental images where a single image
agent consists of several pixels (or area agents). We begin by
examining a domain randomly populated with square cellular
agents, each of area s = 169 and length

√
169 = 13, as shown

in Fig. 7(a). Results in Fig. 7(b) show P̄ for all the area
agents, as well as showing P̄ for the central area agents of

0 20 40 60 80 100

20

40

60

80

100

(a)

Y

X

t=10

0 20 40 60 80 100

20

40

60

80

100

(b)

Y

X

t=20

0 25

1

2

(c)
Pair distance

P

FIG. 5. Cellular-agent aggregates generated by the discrete proliferation mechanism, XY = 100 000,Pp = 1.0,Pm = 0, and s = 1. Initially
the domain was populated uniformly at random with unit square cellular agents and ρ(0) = 0.001. (a),(b) Typical snapshots at t = 10 and 20,
respectively. (c) P̄ at t = 10 (dashed) and t = 20 (dotted) with N = 100 and � = 1. The solid curve is for the initial distribution of agents
with N = 1000 and � = 1.
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curve is for the agents that initially seeded the domain, N = 200. (c) Average index Ī (solid curve) for B = 400 and N = 100. The dashed
curve represents the average ECSR limiting value Īecsr.

each cellular agent. Results in Fig. 7(c) are equivalent to those
in Fig. 7(b) except that a different bin width was used. For
� = 1, both signals in Fig. 7(b) accurately predict the length of
the cellular agents m� ≈ 13. The pair correlation for the area
agents shows short scale aggregation indicating the size of the
cellular agents, whereas the pair correlation for the central area
agents of each cellular agent indicates short scale segregation
which is consistent with the fact that the distance between any
pair of central area agents cannot be less than m� = 13. Both
pair-correlation signals in Fig. 7(b) confirm a lack of spatial
structure at larger length scales indicating that the distribution
is uniform at these larger distances. The pair-correlation sig-
nals in Fig. 7(c) obtained with a larger bin width indicate that
some of the short scale information present in Fig. 7(b) is lost.
Regardless of these details, if we compare the pair-correlation
signals for Figs. 3(a), 5(a), and 7(a), we see that these different
types of spatial patterns produce distinguishable signals.

The snapshot in Fig. 8(a) corresponds to a typical simulation
of proliferative and immotile (Pp > 0,Pm = 0) cellular agents
(each of area s = 49 and length

√
49 = 7), for a domain that

is initial populated uniformly at random. The patterning is
isotropic and P̄ for the central area agents contains multiple

maxima indicating aggregation at multiple length scales, simi-
lar to Fig. 4(a), but distinguishable from Fig. 5(b). The periodic
maxima in Fig. 8(b) reflects the increased frequency of pair
distances between central area agents as proliferation events
lead to regular clustering. The emergence of new maxima
with time can be interpreted as a measure of generation
time. For example, the five maxima in Fig. 8(b) at t = 5
correspond to approximately five generations in this case.
The pair-correlation curve for all the area agents in Fig. 8(b)
indicates that there is one aggregation scale which corresponds
to the average length of the cellular-agent aggregates. Both
pair-correlation signals in Fig. 8(b) approach the same constant
level after a sufficiently large pair distance indicating that
the cellular agents are distributed uniformly throughout the
domain at large distances. This multiscale spatiotemporal
pattern, illustrated by the two signals, provides a measure of
cellular-aggregate size, with the dotted signal giving additional
information on both cellular-agent size and generation time.

We now consider an anisotropic spatial pattern from a
discrete simulation that mimics a scrape wound assay, which
is a standard experiment in the cell biology literature [33]. The
initial condition in Fig. 9(a) consists of two horizontal regions
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FIG. 7. Domain populated uniformly at random with square cellular agents, s = 169, XY = 10 000, and ρ = 0.1. (a) Typical realization.
(b),(c) Average pair-correlation functions P̄ . The solid curves are for all the area agents in the domain, N = 100. The dotted curves are for the
central area agents within each of the cellular agents, N = 10 000. (b) � = 1. (c) � = 10.
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t=5 FIG. 8. Aggregation patterns generated by
the discrete proliferation mechanism, XY =
100 000, Pp = 1.0, and Pm = 0. (a) Snapshot
of a realization at t = 5 for a domain ini-
tially populated uniformly at random with cel-
lular agents of size s = 49 and ρ(0) = 0.01.
(b) Average pair-correlation functions P̄ for (a).
The dotted curve is for the central area agents
within each of the cellular agents, N = 10000
and � = 1. The solid curve is for all the area
agents in the domain, N = 100 and � = 1.

populated uniformly at random with unit square cellular
agents. These two regions are separated by a third initially
vacant region which represents the wound. We consider
motile and proliferative agents (Pm > 0,Pp > 0), and typical
snapshots of the healing process are shown in Figs. 9(c) and
9(e). The evolution of Px and Py in Figs. 9(b), 9(d), and
9(f) shows Px(m�) ≈ 1, confirming the absence of spatial
structure in the x direction for all t > 0. The Py signal for
the initial condition in Fig. 9(b) indicates aggregation up
to m� ≈ 5, which is the half-width of the vacant region in
Fig. 9(a). For larger pair distances Py indicates intermediate
scale segregation. The minimum in the Py signal occurs at pair
distance m� ≈ 10, which is the height of the vacant strip in
Fig. 9(a). For m� > 15, Py indicates long scale aggregation
corresponding to the geometry of the initial condition. For
m� ≈ 20, Py reaches a constant maximum value indicating
a lack of any other spatial structuring for m� > 20. As the
simulation proceeds we observe that the shape of the Py

signal remains similar with time but that we have Py → 1

as t → ∞ and the domain becomes uniformly populated as
the wound closes. We note that applying the pair-correlation
signals to this kind of anisotropic process could be useful to
indicate the presence of short-scale aggregation, such as we
observed previously in Fig. 6 for the isotropic uniform initial
condition, which can be subtle and not always discernible using
visual inspection. Understanding whether or not short-scale
aggregation plays a role in such processes can have major
implications with regard to the use of standard continuum
models of such processes [42].

IV. SPATIAL ANALYSIS OF EXPERIMENTAL IMAGES

We conclude by considering three different images from
cell biology experiments: a scrape wound assay [33], multi-
cellular aggregates [27], and randomly distributed cells [38],
as shown in Figs. 10–12. Our pair-correlation functions
can be applied to two-dimensional digital images where a
pixel represents the smallest element in the image. We used
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FIG. 9. Simulation of a scrape wound assay, using the discrete proliferation and motility mechanism, s = 1, XY = 1200, Pp = 0.1, and
Pm = 1.0. (a) Initial condition at t = 0. The uniform density in each populated strip is ρs = 0.5. (c) and (e) Snapshots of the simulation
at t = 20 and t = 40. (b), (d), and (f) Pair-correlation functions Px (solid curves) and Py (dashed curves) for (a), (c), and (e), N = 1 and
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FIG. 10. Spatial analysis of a scrape wound assay, XY = 281 190. (a) Experimental image [reprinted from Glab et al. [33], Fig. 1(a), with
permission from Pattern Recogn.]. The black markers indicate the location of each cell, n = 554. (b) Overestimate of the total area (gray) of
the domain that is occupied by cells, S = 205 000 [reprinted from Glab et al. [33], Fig. 4(c), with permission from Pattern Recogn.]. (c) Px and
Py with �x = �y = 1 (solid curves) and �x = �y = 20 ≈ √

S/n (dashed curves). The curves that fluctuate around unity are for Px , while the
curves that deviate from unity are for Py .

MATLAB’s Image Processing Toolbox [49] to convert the
images into black and white, and we represent a black pixel
with a unit square area agent. We define a single (square)
image agent as a collection of adjacent unit square area
agents (pixels). Our aim now is to demonstrate that the pair-
correlation signals characterize the features in these images.
In all our analyses we choose a pixel to represent a unit
of length that is equivalent to the unit of pair distance in
Figs. 10–12.

Similar to the simulation results in Figs. 7 and 8, the
pair-correlation signals for the experimental images can be
calculated using either the center of individual cells or the area
of the cells. The position of individual cells is represented by
a single (unit square) area agent located approximately at the
center of the cell as indicated by the markers in Fig. 10(a)
and Fig. 12(a), with the area of the cells being represented by
a number of adjacent image agents such as those shown in
Fig. 11(b) and Fig. 12(b). We prefer to calculate both forms
of the pair-correlation signals where possible; however, for
some images, such as Fig. 11(a), where we cannot distinguish
between different cells within each multicellular aggregate,
this is not possible.

The pair-correlation signals for the scrape wound assay
in Fig. 10(a) are generated by identifying the locations of n

individual cells in the image. We calculated Px and Py for two
bin widths to give the results in Fig. 10(c). The largest bin width
approximates the average cell length

√
S/n, where S is an

upper bound estimate of the total area occupied by cells that is
given in Fig. 10(b). As the bin width increases, the fluctuations
in Px and Py decrease, but both sets of signals reflect the
same characteristics. For example, the two Py signals give
approximately the same estimate of (i) the pair distance where
the signal intersects with unity, (ii) the pair distance at which
Py is a maximum, and (iii) the same constant value of the signal
for pair distances l�y > 300. Moreover, the interpretation of
these signals is similar to the discussion about the results in
Fig. 9 where the bin width was equal to the length of the
cellular agents (i.e., �x = �y = √

s = 1).
To analyze the multicellular aggregates [27] in Fig. 11(a),

we processed the image so that the aggregates could be
represented by image agents of size s = 25, as shown in
Fig. 11(b). Visually we see that the size of the image agents is
less than the average cell size. We are unable to assess whether
the spatial patterning is isotropic by comparing P̄x and P̄y since
we only have access to the N = 1 image. However, there is no
reason to anticipate any directional bias in the experimental
procedure [27] so we calculated P̄ , given in Fig. 11(c) for
N = 1, in the usual way.
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FIG. 11. Spatial analysis of multicellular aggregates, XY = 90 000. (a) Experimental image [reprinted from Shimoyama et al. [27],
Fig. 4(L9-30), with permission from Biochem. J.]. (b) Image agents that approximate the area occupied with cells in (a), S = 31950, n̂ = 1278,
and s = 25. (c) Average pair-correlation function P̄ for (b), � = 5 and N = 1.
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The five maxima in P̄ in Fig. 11(c) indicate short,
intermediate, and long scale aggregation which corresponds
to aggregation within each of the cellular aggregates, between
pairs of nearest cellular aggregates, between pairs next nearest
cellular aggregates, and so on. The signal is similar to Fig. 4(c)
and provides quantitative information about the average
cellular aggregate size and the average distance between the
aggregates.

The image in Fig. 12(a) shows a population of cells in
a barrier assay, which is an experimental technique used to
quantify the spreading characteristics of different cell types.
The experiment was performed with great care to ensure that
the cells were placed within the barrier so that they were
distributed as evenly as possible [38,50]. To analyze this dis-
tribution we used N = 10 identically prepared experimental
images. For each image we recorded the number of cells
and the number of image agents required to approximate the
area occupied by cells. Using this information we estimated
the average area ā ≈ 400 and average diameter of a cell√

ā ≈ 20. The corresponding P̄ signal, shown in Fig. 12(c),
was calculated by considering both the central area agent and
the image agents that approximate the area occupied by cells in
these images. The pair-correlation signal for the image agents
indicates short scale aggregation, while the pair-correlation
signal for the central agents indicates short scale segregation.
Both signals fluctuate around constant values, close to unity,
for length scales that are greater than the average length of a
cell, m� >

√
ā ≈ 20, confirming that the cells are distributed

evenly.

V. DISCUSSION

We have derived a discrete pair-correlation function that
depends on the location and size of objects in an exclusion
process. We have demonstrated how to analyze spatial patterns
in images produced by discrete models and from cell biology
experiments, and our results indicate that these pair-correlation
functions can characterize and quantify different types of
spatial patterning over multiple length scales.

Pair-correlation functions have been used previously to
analyze point processes with various applications including
plant ecology [18–20]. We extend these previous studies by
using pair-correlation functions to account for both the location
and size of objects, such as biological cells or particles in a
granular material, as illustrated in Fig. 1. Our pair-correlation
functions explicitly incorporate area exclusion, and this allows
us to study more detailed spatial patterns. For example, the
pair-correlation signals from some discrete simulations and
experiment images showed both short-scale segregation and
short scale aggregation depending on whether we consider
the center of the object or the area of the object. These
details cannot be deduced using previous pair-correlation
functions, which only considered point processes without any
consideration of object size. For some of our proliferative
simulation data we observed multiple maxima in the pair-
correlation signals indicating aggregation over multiple length
scales. We anticipate that this kind of signal might be relevant
to images of certain types of cells that form clusters as a result
of being highly proliferative but relative immotile [42].

One application of our exclusion pair-correlation functions
could be as a summary statistic for parametrizing discrete
models to mimic a set of experimental observations such as
describing the closure of a scrape wound assay (see Figs. 9
and 10). Such applications could involve using inference
methods, such as approximate Bayesian computation [51,52],
to estimate parameters in a discrete model [38]. Another topic
for future research is to use the pair-correlation function to
attempt to distinguish between different mechanisms that give
rise to the formation of multicellular aggregates, such as
making a distinction between aggregation due to high cell
proliferation rates and aggregation due to strong cell-to-cell
adhesion [46].
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