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Dynamic light scattering and viscosity measurements in a ternary and quaternary discotic lyotropic
nematic liquid crystal: Tuning the backflow with salt

C. L. S. Risi* and A. M. Figueiredo Neto
Instituto de Fı́sica, Universidade de São Paulo, Caixa Postal 66318, 05314-970 São Paulo, São Paulo, Brazil

E. Akpinar
Department of Chemistry, Arts and Sciences Faculty, Abant Izzet Baysal University, 14280 Bolu, Turkey

M. B. Lacerda Santos
Instituto de Fı́sica, Universidade de Brası́lia, 70919-970 Brası́lia, Distrito Federal, Brazil

(Received 20 April 2013; revised manuscript received 5 July 2013; published 26 August 2013)

Using a dynamic light scattering technique, we measure the damping rate of thermal fluctuations of the nematic
director for the so-called disklike nematic ND phase of both the ternary lyotropic K-laurate–1-decanol–H2O
system and the quaternary one of similar composition except for the addition of salt (K2SO4). By varying the
scattering angle in suitable geometries and polarizations, we are able to measure the orientational diffusivities
associated with the pure deformations of splay and twist. A previous study made in the ND phase of the
same ternary system yielded a large deviation between the splay and twist diffusivities. The effect was then
interpreted in terms of the anisotropy between their associated viscosities due to induced flows, or backflow. In
the present work we observe a strong increase of the backflow as an effect of the added salt. In addition, we
make auxiliary measurements of shear viscosity and magnetic instabilities, which help to characterize the effect
of the salt in the orientational diffusivities as they are mixed quantities involving elastic constants and viscosity
coefficients.
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I. INTRODUCTION

Depending on the nature of its basic units, liquid crystals
(LCs) are divided into two main classes, namely, thermotropic
and lyotropic LCs [1,2]. Classical thermotropic LCs are
made of elongated molecules, widely known from industrial
applications such as LC displays. In contrast, lyotropic LCs [3]
are mixtures of amphiphilic molecules and a solvent, usually
water. In moderate concentrations, aqueous solutions of
amphiphilic molecules tend to form micelles, which may
give rise to nematic phases. All three theoretically predicted
types of nematic phases [4] have been found in lyotropic
systems. The two uniaxial nematic phases are the discotic
ND and the calamitic NC [5] phases and the third one is the
biaxial NB phase. The NB phase has been found in the ternary
system consisting of K-laurate, 1-decanol, and water [6] as an
intermediate phase between the uniaxial ones. Incidentally,
further structural studies [3] seem to favor the so-called
intrinsic biaxial micelle (IBM) model, which proposes that
the three kinds of lyotropic nematic phases would be different
long-range orientational arrangements of micelles of basically
the same orthorhombic symmetry.

It is known that some of the main physical properties of
lyotropic and thermotropic nematic liquid crystals are quite
similar. In particular, the orders of magnitude of the elastic
constants for lyotropic and thermotropic nematics are the
same [1,3]. Besides, for most nematic LCs, elastic constants
show a relatively weak anisotropy, regardless of the class they
belong to.
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Thermal fluctuations of the orientational director are at the
origin of the strong scattering of light observed in nematic
liquid crystals. Assuming a uniaxial nematic phase, let us
denote its optical axis by the unit vector no, which specifies
the average direction of alignment. Following de Gennes, the
fluctuations of the local director n may be decomposed into
two normal modes [7], defined in terms of the plane (no,q),
where q is a wave vector associated with a Fourier component
of the fluctuations. Thus the normal modes δn1 and δn2 are
respectively parallel and perpendicular to the plane (no,q), that
is (see Fig. 1 of [8]),

n = no + δn1e1 + δn2e2. (1)

Here δn1 and δn2 are modes made of a combination of splay
and bend deformations and twist and bend deformations,
respectively. The relaxation rates � of the director fluctuations
were initially measured [9] by light beating or photon correla-
tion techniques, yielding information about elastic and viscous
properties of LC systems. For a nematic phase, �i is given by

�i = 1

ηi(q)
(Kiq

2
⊥ + K3q

2
‖ ), (2)

where i = 1,2 refer to the above-defined fluctuation modes,
q‖ and q⊥ are respectively the components of the scattering
wave vector q parallel and normal to the optical axis no.
Finally, K1, K2, and K3 are the Frank elastic constants for
splay, twist, and bend deformations, respectively.

Symmetric scattering geometries may lead to simpler
formulas. As an example, for q ⊥ no (see Fig. 1), depolarized
scattering provides information about pure deformations of
twist, giving

�twist = K2

ηtwist
q2 ≡ Dtwistq

2, (3)
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FIG. 1. Symmetric-scattering geometry around the nematic di-
rector. In homeotropic alignment, ordinary-extraordinary polarization
yields detection of the pure twist fluctuations. Schematic view of the
ND phase, according to the intrinsically biaxial micelle model [3].

where ηtwist ≡ γ1 is the rotational viscosity coefficient [10] and
q is related to the (internal) scattering angle θ according to
q = 2kLn sin(θ/2), where kL = 2π/λ is the laser wave vector
and n is the mean refractive index of the medium. Indeed,
by a certain choice of geometries and polarizations, photon
correlation measurements allow determination of the so-called
diffusivities Dsplay, Dtwist, and Dbend given by relationships
analogous to Eq. (3), that is, an elastic constant divided by a
viscosity coefficient.

Rayleigh scattering, or more specifically dynamic light
scattering (DLS), experiments have been performed on both
thermotropic [9] and lyotropic [11,12] uniaxial nematics,
yielding measurements of orientational diffusivities. By prob-
ing two different geometries, a large deviation between the
corresponding diffusivities may be found. Whenever it occurs,
such a large anisotropy could hardly be attributed to elastic
constants. Therefore, we can focus our attention on the viscos-
ity coefficients only. For classical thermotropic nematics, it is
well known that one usually has ηbend � γ1. This result can
be explained in terms of the nematodynamic equations thanks
to a backflow effect [1,13], which means that induced flows
assist the bend fluctuations of the elongated rods, reducing
the internal dissipation. In principle, the splay fluctuations
would also benefit from a reduction on its associated friction
coefficient, but the weak coupling with the flow parallel to no

actually makes such a reduction negligible.
The latter appearance of lyotropic nematics brought new

elements to the matter. As seen above, they present not a single
but two types of uniaxial nematic phases. Light scattering
measurements in the ND phase yielded [11] Dsplay ∼ 7Dtwist.
Such a large deviation cannot be explained by the usually
modest anisotropy between the elastic constants K1 and K2.
(If K3 were involved, a larger deviation, of a factor of 2 or
3, could be expected, but it is still not enough to explain
the quoted anisotropy on the diffusivities.) Thus this clearly
indicates that ηsplay � γ1. Therefore, regarding the backflow

effect, the lyotropic discotic nematic shows a reversed behavior
compared to the classical thermotropic nematic made of rod-
like molecules as well as to the lyotropic calamitic nematic [8].

This reversal between splay and bend was explained by the
authors of Ref. [11] in terms of the interchange of the role
played by the basic units of the phases (assumed to be disks
and cylinders) in each of the two uniaxial nematic phases. That
is, splay in ND looks like bend in NC (see Fig. 3 of Ref. [8]).
For further discussion see also Ref. [14].

Though being a rather old subject, Rayleigh scattering of
liquid crystals remains a potentially vast field but still lacks
basic knowledge in its scarce literature. For instance, very
few papers present data allowing us to separate the effect of
viscosities and elastic constants in the measured diffusivities.
As a step in this direction, in the present paper we report
combined DLS and (shear) viscosity measurements of the
ND phase of two kinds of lyotropic mixtures, namely, ternary
and quaternary ones. The latter was recently prepared in our
laboratory [15,16] and features the addition of a salt on the
classical ternary system mentioned above. Although the strong
effect of adding salt to lyotropic mixtures has been known for
a long time regarding structural properties [3], much less is
known about the influence of salt on the dynamic behavior
of these materials. Our results show that salt influences both
DLS and viscosity measurements, which opens possibilities of
controlling the properties of lyotropic liquid crystals.

The paper is organized in as follows. Section II is devoted
to the experimental aspects of the samples and techniques
employed. Section III discusses the background of DLS
theory. The results and a discussion are presented in Sec. IV.
Section V provides a summary.

II. EXPERIMENT

A. Sample preparation for light scattering experiments

Regarding light scattering and viscosity measurements,
four lyotropic liquid crystal samples were prepared, all of
them presenting the ND phase through a temperature interval
of several ◦C to approximately 20 ◦C. One sample is of the
classical ternary mixture already mentioned [6,17] of potas-
sium laurate (KL), 1-decanol, and H2O, with a composition of
27.0, 7.4, and 65.6 wt.%, respectively (or 2.98, 1.23, and 95.79
mol%), hereafter called Nd3. This mixture exhibits a phase
sequence, as a function of the temperature: ND ↔ NB ↔ NC

at 22 ◦C and 27 ◦C, respectively. The ND phase was observed
until (decreasing) temperatures of about 15 ◦C. The phases and
phase transitions were determined by use of convergent laser
light (conoscopy) [5] and optical microscopy observations.
The remaining samples are different quaternary mixtures [16],
namely, the KL–K2SO4–1-decanol–H2O mixture. Notice here
two features: first the presence of salt (potassium sulfate) and
second that we have kept the same cosurfactant 1-decanol
of the classical mixture in the particular quaternary system
chosen. The three quaternary samples, hereafter called Nd4a,
Nd4b, and Nd4c, have increasing salt concentrations of 1.6,
2.4, and 3.2 wt.% or, equivalently, 0.25, 0.38, and 0.51 mol%.
The full compositions of the four samples are displayed in
Table I. Next we discuss additional auxiliary samples that we
have prepared for elastic constant determinations.
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TABLE I. Composition (in mol%) of the different nematic
mixtures investigated.

Composition (mol%)

Sample K-laurate K2SO4 1-decanol water

Nd3 2.98 1.23 95.79
Nd4a 3.23 0.25 1.22 95.30
Nd4b 3.23 0.38 1.21 95.18
Nd4c 3.22 0.51 1.22 95.05

B. Determination of the ratio K3/χa

In this section the experimental details of the K3/χa

determination are described. We employed the method pro-
posed by Kroin and Figueiredo Neto [18] to measure this
ratio in nematic calamitic NC phases. In spite of our main
concern in this paper with the ND phase, we expect that these
auxiliary measurements allow us to gain some knowledge
of how the elastic constant (in the spirit of the one-constant
approximation [1]) behaves as salt is added into the lyotropic
mixture.

Three lyotropic mixtures were prepared for this investi-
gation, one ternary and two quaternary. The ternary mixture
(Nc3) is composed of K-laurate, 1-decanol, and water (28.7,
7.2, and 64.1 wt.%, or 3.23, 1.22, and 95.55 mol%), with
the phase sequence as a function of the temperature starting
from the isotropic I phase, I ↔ NC ↔ I at 15 ◦C and 47 ◦C,
respectively. The two quaternary mixtures Nc4a and Nc4b are
composed of K-laurate, K2SO4, 1-decanol, and water, 28.6,
0.5, 7.2, and 63.7 wt.% (or 3.24, 0.077, 1.23, and 95.46 mol%)
and 28.5, 1.0, 7.1, and 63.4 wt.% (or 3.24, 0.16, 1.22, and
95.39 mol%), respectively. These stoichiometries were chosen
so that the mixtures presented the NC phase at 20 ◦C. Flat glass
microslide cells (20 mm long, 2.5 mm wide, and 200 μm thick)
were used in these experiments. The ends of the microslides
were sealed with a photoreactive epoxy resin. After this
process the samples were subjected to a magnetic field (H ≈
6.5 kG) positioned along the length of the cell for 6 h. In this
condition the nematic director orients parallel to H. A polarized
light microscope was used to check the sample alignment.
After complete sample alignment is achieved, the microslides
were positioned so that an angle of 90◦ was formed between
the previous aligned director and the external magnetic field. In
this condition the nematic director is normal to H and tends to
reorient to the parallel alignment. This experimental procedure
leads to the formation of a texture with periodic inversion
walls, which depends on the field strength. The periodicity of
the walls P was measured in a cross-polarized microscope.
Several amplitudes of H were used, from 4.0 to 6.4 kG.
From the data of the periodicity lengths as a function of the
magnetic field strength we were able to calculate the ratio
K3/χa for each sample. Finally, as the literature lacks data
about the effect of salt on the diamagnetic anisotropy of the
micelles, we assume such an effect as negligible, at the expense
of an additional error introduced in our semiquantitative
estimates. Adopting χa ∼ 3 × 10−9 cgs (a typical value for
lyotropic LCs [18]), this allows us to determine K3 for each
sample.

C. Light scattering cell and sample alignment

For light scattering experiments, samples were placed into
a rectangular Hellma cuvette, with a 1-mm-thick optical
path. The cuvette was cleaned in an ultrasonic bath, using
successively acetone, ethyl alcohol, and distilled water. The
cuvette stayed in each bath for 30 min. A final bath used
warm distilled water (at 70 ◦C), which allowed efficient drying
by simple evaporation. Before the scattering experiments,
the LC cell was placed in a magnetic field (7 kG) for 8 h.
The homeotropic alignment was achieved by positioning the
largest wall planes of the cuvette parallel to the magnetic field.
Due to the negative magnetic susceptibility anisotropy of the
ND phase, the nematic director orients perpendicular to the
field. In order to break the degeneracy we used a device that
periodically rotates the sample holder of an angle of 90◦, back
and forth, around an axis perpendicular to the magnetic field.
With this procedure, the nematic director orients parallel to
this rotation axis, perpendicular to the magnetic field. The
perfect orientation of the sample was checked by optical
microscopy and conoscopic fringe inspection. Only when the
sample presented a perfect homeotropic alignment was it used
in the DLS measurements.

D. Light scattering setup

Once the alignment process was finished, the sample was
positioned on the goniometer in the DLS setup. Figure 2 shows
a sketch of the setup. The light source was a low-noise diode-
pumped continuous laser from Coherent, model Verdi V6,
with a 532-nm wavelength. The range of output power used in
the DLS experiments was from 1 to 2 W. The maximum and
minimal values of the scattering-vector modulus |q| achieved
in our measurements were, in units of 106 m−1, |qmax| = 13.3
and |qmin| = 2.0. In the measurement with the higher q it was
necessary to increase the output laser power in order to improve
the photon-count statistics.

The laser beam passed through a spatial filter (SF), yielding
a clean output beam of Gaussian profile, with a diameter of
around 1 mm. The SF device blocked much of the light; only
about 15% crossed through the SF.

At the sample position the incident beam had a power of
about 1–3 mW, depending on the incident angle. There was
no relevant thermal effect in this condition. The filtered beam
was then linearly polarized by polarizer P1 (Newport, model
No. 10LP-VIS-B) and focused into the sample.

The light scattered by the sample (at a chosen angle θext)
passes through a pinhole with a diameter smaller than the
typical ones of the light spots on the region where light

FIG. 2. Dynamic light scattering setup: LS, laser; SF, spatial filter;
P1 and P2, polarizers; I1 and I2, irises; S, sample; FP, fiber positioner;
D, detector; and C, correlator.
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is collected. This coherent area condition is important to
ensure a good optical beating signal [19]. Then the scattered
light passed through an analyzer (P2) to define the final
polarization f and was collected by a monomode optical fiber
placed in the fiber positioner (FP). The fiber was coupled to
the photomultipliers (D), which transmit the signals to the
correlator (C), from Correlator Inc. The correlator calculates
in real time the normalized autocorrelation function g2(
q,τ ),
where τ is the delay correlation time (discussed further in the
following). The lowest value of τ reached by our correlator was
1.56 ns. The acquisition time of the correlation experiments
was about 10 min with a typical sample time of about 250 ms.

All measurements were done at room temperature, 20.0 ◦C
(±0.3 ◦C). This temperature is far enough from phase tran-
sitions to avoid significant contribution from pretransitional
fluctuations [20] to the scattering signal.

In order to implement the scattering geometry of Fig. 1,
suppose that the incident laser beam, along ki , traverses the
sample cell making an (internal) angle of θ/2 with respect
to the glass windows normal (z axis). The selection of the
scattered wave vector kf direction follows an optical alignment
procedure that uses the reflected beam from the cell, yielding
the symmetrical geometry of Fig. 1 as well as enabling a
precise definition of the (horizontal) scattering plane (ê2,ê3).
As |ki | ≈ |kf | (≡|k|), due to the low birefringence of lyotropic
nematics (�n ∼ 10−3), this results in q perpendicular to the
z axis. In order to calculate |k| inside the LC medium we use a
(mean) refractive index of n = 1.38, which is determined for
a lyotropic mixture of neighboring concentrations [11].

Finally, for depolarized DLS measurements we used the in-
cident laser beam vertically polarized, yielding an ordinary in-
coming polarization, as indicated in Fig. 1. For polarized scat-
tering, in contrast, we used the incident laser beam horizontally
polarized, yielding an extraordinary incoming polarization.

E. Viscosity

The shear viscosity of the mixtures was measured by using
a viscometer Anton Paar, model SVM 3000. Samples were
injected in a tube that rotates at a constant angular velocity. In
the tube there was a hollow lightweight rotor, located in the
center of the tube, that rotates during the measurement. The
rotor reaches a constant angular velocity, which is monitored
by a Hall-effect sensor.

The sample temperature was controlled by a Peltier ther-
mostat, with a stability of 0.005 ◦C. All the measurements
were performed at 20 ◦C. A cleaning protocol was followed
before each experiment. First, the cylindrical sample holder
was heated up to 60 ◦C. Then the tube was filled with ethyl
alcohol and the viscometer was turned on. An air pump was
used to remove the alcohol from the tube. This procedure was
repeated five times. After the evaporation of the alcohol, the
temperature was set to 20 ◦C and, after thermal stabilization,
the tube was filled with the lyotropic mixture.

III. DYNAMIC LIGHT SCATTERING THEORY

A. Autocorrelation functions

Beyond the structure S(
q) and form factors F (
q), which
bear static information, the autocorrelation functions provide

dynamic information about the sample, as they are sensitive
to thermal fluctuations of the dielectric tensor of the scattering
medium [19]. Such fluctuations in turn can originate from
fluctuations in local properties such as density and concen-
tration. In the case of a nematic LC, fluctuations of the
nematic director are a major source of light scattering [1].
Theoretically, the simplest quantity that provides information
about temporal fluctuations of a linearly polarized optical field
E(
q,t) · f [≡E(t), for short] is the (normalized) first-order
autocorrelation function g1(
q,t), which we write for simplicity
as [19]

g1(
q,τ ) = 〈E∗(
q,t)E(
q,t + τ )〉
〈|E|2〉 , (4)

where the angular brackets stand primarily for time average,
but are equivalent to the thermal average in the case of ergodic
systems, and |E|2 is to be identified with the instantaneous
light intensity I (
q,t).

However, by the nature of the detection process, one
does not have direct access to this amplitude correlation
function. Instead, one can measure the intensity (second-order)
correlation function, which is defined by the normalized
function [19]

g2(
q,τ ) = 〈I (
q,t)I (
q,t + τ )〉
〈I (
q,t)〉2

, (5)

where I (
q,t) and I (
q,t + τ ) are the light intensities scattered
by the sample at a time t and t + τ , respectively, for a
given wave vector 
q. Here an important simplification arises
whenever the optical field is a superposition of contributions
from different subregions of the scattering volume that are
independent of each other. In such a condition (a so-called
Gaussian random process), the random variable has a Gaussian
distribution and it can be shown [19] that g1 and g2 are linked
by the Siegert relationship g2(τ ) = 1 + |g1(τ )|2.

B. Detection regimes

In a homodyne regime, that is, a physical situation in
which a pure dynamic optical field signal ES(t) (which carries
information about the hydrodynamic behavior of the sample)
beats with itself, one has direct access to g2(
q,τ ). In contrast,
in a heterodyne regime, there is a coherent beating between
static and dynamic electric fields at the detector level. This
static component, the so-called local oscillator [19] ELO(t),
may result from a variety of sources such as stray light, dust,
or, in the case of LC, microdefects.

Concerning the temporal dependence of our correlation
functions, notice that in an overdamped scenario, as in the
case of nematic LCs [1], one expects that any fluctuating
variable X of interest is governed by a diffusion equation,
that is, ∂δX/∂t = D∇2δX, where δX is a deviation of X from
its average value 〈X〉. For a given Fourier component q, the
solution for this equation is δX(t) = δX(0)e−t/τc , where τc =
1/Dq2 is the characteristic relaxation time. Thus it follows
that g1 is proportional to 〈δX(0)δX(t)〉 and so g1 = Ahete

−t/τc ,
where Ahet is the signal amplitude coefficient for heterodyne
detection, as it will become clear below [Eq. (7)]. Finally,
by using the Siegert relation seen above, one finds that in
the pure homodyne case the correlation function g2(τ ) has an
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exponential decay behavior as well, but with a characteristic
time τc/2:

g2(q,τ ) = 1 + Ahome−2t/τc . (6)

Now turning again to the homodyne-heterodyne duality,
assume that a portion of static laser light ELO(t) (the local
oscillator) interferes with the dynamic signal ES(t). The
resulting optical beating means that one must insert the sum
ELO(t) + ES(t) into the intensity correlation 〈I (t)I (t + τ )〉.
The result contains 16 terms [19,21], but only the slow time
varying terms (and the dc terms) contribute to the time average.
One arrives at

〈I (t)I (t + τ )〉 = (ILO + IS)2 + 2ILOISg1(τ ) + I 2
S |g1(τ )|2,

(7)

where ILO = 〈|ELO|2〉, IS = 〈|ES |2〉, and we have used the
Siegert relation.

Notice that when the local oscillator is much stronger that
the signal, i.e., |ELO| � |ES |, the homodyne contribution I 2

S g2

[=I 2
S + I 2

S g2
1(τ )] can be neglected. Thus, in this case we have

a pure heterodyne regime and the autocorrelation function
measures directly τc.

Of course, the question remains of how to deal with mixed
homodyne and heterodyne situations. In the context of an
experiment such as ours (that is, Rayleigh scattering in LCs),
one might suppose that, at low angles (θ < 10◦), the signal
tends to be a pure heterodyne one. For higher angles, in
contrast, one can expect that some mixture with a homodyne
signal may occur, mainly in the case of depolarized light
signals, which normally contains much less stray light.

Assuming a single-exponential process, the main difference
is that the homodyne contribution has one-half of the charac-
teristic time of the heterodyne one. A two-exponential fit is
unable to resolve two components of characteristic times that
differ by a factor of 2 between them.

Actually, the criterion to quantify heterodyne and homo-
dyne contributions makes use of the baselines. First, notice
that the Siegert relationship suggests a baseline B = 1 for
a pure homodyne signal, which is essentially due to a dc
contribution [19]. (Actually, a shot-noise term has to be
added, as it can be seen in the full treatment of the problem,
considering the photoelectron statistics [21]. Nevertheless, the
shot-noise contribution is easily overlooked, as it affects only
the accumulation channels on a very short time scale.) Next, the
baseline B for a heterodyne signal can of course be normalized
to one, but then one must have B � Ahet because of additional
dc contributions from Eq. (7).

Now we discuss how to treat the case of a small homodyne
contribution. In order to correct these data (typically within
∼10%) we use an approximate method [22] that can be
summarized as follows. Let us define the ratio R between
the amplitude A of our mixed signal and the baseline B, i.e.,
R = A/B. For a single-exponential process we may set

Ahome−2t/τc + Ahete
−t/τc = A(t)e−t/τA , (8)

where

A(t) = e−(1/τc−1/τA)t (Ahet + Ahome−t/τc ). (9)

The approximation consists of replacing A(t) by A(0), which
can only be valid if Ahom � Ahet. Hence A(0) = Ahet +

Ahom = 2ILOIS + I 2
S , where we used Eq. (7) in the considered

approximation. Thus one can deduce the ratio R = A/B as
being

R = 2ILOIS + I 2
S

(ILO + IS)2
= 1 − 1

(1 + α)2
, (10)

where α ≡ IS/ILO. The inverse relationship allows us to
know α for a given R. Regarding the characteristic times,
we know that R = 0 (the pure heterodyne case) corresponds
to τA/τc = 1, while for R = 1 (pure homodyne) one has
τA/τc = 0.5. For the intermediate cases the final step of the
method consists of a numerical procedure [22] of simulating
the sum of Eq. (8) for different τc values and then extracting
τA through a single-exponential fit. A practical graphic device
(Abacus, reproduced in Fig. 4 of Ref. [8]) can be generated,
giving directly the correction factor τA/τc as a function of R.

C. Selection rules

Let us recall the main results of the hydrodynamic theory
of light scattering by orientational fluctuations [1,9]. In the
so-called polarized geometry (i.e., with both the electric
field of the incident beam Ei and the one of the detected
scattered beam Ef in the scattering plane), we expect to
detect fluctuations of mode 1, namely, a superposition of
splay and (in-plane) bend deformations. Now consider the
symmetric scattering geometry that we have implemented
according to Fig. 1. As seen above, in this arrangement the
nematic director lies in the scattering plane defined by ê1 and
ê3. Moreover, in this geometry the wave vector q is normal
to the nematic director and parallel to ê1. There is no parallel
(to the director) component of the wave vector (q|| ≈ 0). In
these conditions, mode 1 is reduced to pure splay fluctuations.
However, rigorously speaking, the scattering cross section for
mode 1 in this symmetric geometry is zero, according to a
selection rule that can be easily deduced from the cross section
formula given in Ref. [23], namely,

dσ

d�
= A

2∑
α=1

〈|nα(q)|2〉(iαf‖ + i‖fα)2, (11)

where iα = i · êα , fα = f · êα , and the angular brackets denote
thermal average. Nonetheless, as will be seen in Sec. IV,
a weak (noisy) but useful polarized signal can be detected,
presumably leaky by residual misalignments in our scattering
geometry and polarization adjustments.

Now turning to the depolarized configuration, that is (in
the ordinary-extraordinary case that we use), the one in which
the electric field of the incident beam is perpendicular to the
scattering plane and that of the detected scattered beam is
in the scattering plane, we obtain mode 2, reduced to pure
twist fluctuations because of our symmetric scheme. Now the
selection rule is favorable and we obtain a strong twist signal.

D. Relaxation rates

As seen in the Introduction, by particularizing Eq. (2) to
our symmetric scattering geometry of Fig. 1 one can expect,
for mode 2, pure twist fluctuations detected in the (ordinary-
extraordinary) depolarized configuration, with relaxation rates
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FIG. 3. Sketch of the backflow mechanism.

�twist, given by Eq. (3). Similarly, for the (extraordinary-
extraordinary) polarized configuration Eq. (2) predicts, for
mode 1 in the symmetric geometry, pure splay fluctuations
with relaxation rates given by

�splay = K1

ηsplay
q2 ≡ Dsplayq

2. (12)

E. Backflow

The backflow mechanism has been known for a long
time for classical nematics made of rodlike molecules [1,2].
Some particularities applying to disklike objects (eventually,
micelles) are discussed in Refs. [11,14]. Here we only
summarize the main facts.

Figure 3 illustrates how the flow vortex of a disk rotating
with angular velocity ω (=|dn/dt |) can be decomposed into
two pure shear flows, one parallel and the other perpendicular
to the disk plane. This is important in order to analyze how
individual vortices interfere for each of the pure deformations
we are dealing with. For instance, in the case of splay (q ⊥ no)
the shear flows parallel to the disks cancel by interference. In
contrast, the shear flows perpendicular to the disks interfere
constructively to give a macroscopic backflow. (For a better
visualization the reader may find it helpful to consider equal
phase planes, as in Fig. 3 of Ref. [8].) The backflow tends
to suppress relative motions of the micelles. The residual
dissipation comes from the local shear parallel to the disk
(or plate) plane. The resulting splay viscosity is ηsplay ∼ η.

In the case of twist, in contrast, there is no backflow, as the
interference is totally destructive. (Notice that here too q ⊥ no,
but full vortices belong to any equal phase plane that one wants
to consider.) Therefore, twist fluctuations are subject to the full
dissipation of a single micelle rotating in the bulk fluid, that is,
ηtwist ∼ γ1. Moreover, an estimate of γ1 is made in Ref. [11]
(by extending an argument due to Helfrich [24]), namely, γ1 ∼
ηD3/a3, where a and D are the micelle thickness and diameter,
respectively. For our ternary sample (Nd3) available x-ray data
[3] give D ≈ 6 nm and a ≈ 2 nm, yielding γ1 ∼ 10η.

Finally, in the case of bend, only the friction from shear
flows parallel to the plate faces is suppressed by the backflow.
The viscosity reduction must be of the order of η compared to
γ1. In other words, we expect that the bend and twist viscosities
are comparable.

In terms of the nematodynamic equations, one may summa-
rize this discussion of the compared viscosities of pure twist,
splay, and bend deformations in a discotic nematic phase by
the relationships

ηtwist = γ1, ηsplay = γ1 − (α3)2

ηb

, ηbend = γ1 − (α2)2

ηc

,

(13)

where the Leslie α and Miesowicz viscosity coefficients follow
the same notations as in Ref. [1]. In the last two expressions
the backflow effect is accounted for by the negative terms. An
evaluation of these backflow terms in the cases of splay and
bend is given in Ref. [11], yielding γ1 − η and η, respectively.

IV. RESULTS AND DISCUSSION

A. Determination of the ratio K3/χa

Figure 4 shows the experimental results of bend distortion
experiments. Each value of the periodicity length P represents
a mean value of ten independent measurements. The error bars
are the standard deviations. Our results are consistent with the
predicted [18] linear behavior of P −2 as a function of H 2:

P −2 =
(

1

4π2

χa

K3

)
H 2. (14)

Linear fits to these data allow us to determine the K3/χa

ratio for the different mixtures at the NC phase. In the case
of the Nc3 sample, we find K3/χa = 279 ± 29 dyn, which
is consistent with the value previously obtained in a similar
mixture [18]. The quaternary mixtures (Nc4a and Nc4b) show
a slight decrease in the K3/χa values: 247 ± 30 and 240 ±
22 dyn, respectively. The experiment shows that there is a slight
tendency to decrease the K3/χa values with the addition of
salt in the mixture, with respect to the original ternary mixture
value. However, with the higher salt concentrations used in
the ND samples the effect (not measured here) could be more
pronounced. The anisotropy of diamagnetic susceptibility of
the lyotropic mesophase is mainly due to the amphiphilic
molecules present in the micelles (i.e., the KL and the
alcohol).

The sign of χa changes, depending on the particular uniaxial
nematic phase NC or ND; however, its absolute value lies in the
range from about 2 × 10−9 to about 10−8 cgs units in different
lyotropic mixtures (with main amphiphile KL, phase NC

[25]; sodium decylsulfate, phase NC [25]; or decylammonium
chloride, phase ND [26,27]). Moreover, assuming that in
lyotropic mixtures with two amphiphiles, which present the
nematic phases, the IBM model [3] applies and orientational
fluctuations of intrinsically orthorhombic micelles give rise to
the different nematic phases, it is reasonable to assume that χa

is approximately constant in all the samples investigated. In
this framework, since the value of the ratio K3/χa obtained in

FIG. 4. Plots of the inverse squared field-induced periodicity
length as a function of the magnetic field, enabling the determination
of K3/χa .
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TABLE II. The DLS measurements of the orientational diffu-
sivities Dsplay (=K1/ηsplay) and Dtwist (=K2/γ1) at 20 ◦C of the
discotic nematic samples and the ratio between these diffusivities.
The last column shows the shear viscosity measurements η of the
same samples at the same temperature. The DLS data quoted from
the literature for comparison (row 2) were taken at 19 ◦C.

Dsplay Dtwist η

Sample (10−12 m2/s) (10−12 m2/s)
Dsplay

Dtwist
(mPa s)

Nd3 9.6 ± 0.2 1.40 ± 0.04 6.9 90.5 ± 0.5
Nd3 [11] 11.5 1.6 7.2
Nd4a 19.0 ± 0.5 1.25 ± 0.05 15 204 ± 2
Nd4b 55 ± 3 0.18 ± 0.05 305 339 ± 4
Nd4c 44 ± 3 0.11 ± 0.05 400 465 ± 1

our experiment is also approximately constant as a function of
the salt concentration, it is reasonable to assume that the value
of the elastic constant K3 ∼ 2 × 10−11 N also does not depend
on the salt concentration and the particular phase (NC or ND).
These considerations will be important in the discussion of the
DLS experimental results.

B. Viscosity data

As explained in Sec. II, we have measured the shear
viscosity of the ternary sample Nd3 and the quaternary ones
Nd4a, Nd4b, and Nd4c, at 20 ◦C. The results are presented in
the last column of Table II, as well as in Fig. 8(a). Notice that
the shear viscosity increases monotonically as the salt content
of the lyotropic mixture increases.

C. Dynamic light scattering

1. Ternary mixture

Figure 5(a) shows the polarized and depolarized autocor-
relation signals from the Nd3 mixture. From the respective
single-exponential fit [Eq. (6), taking the pure homodyne
approximation] we extract the characteristic times τc of the
twist (≈254 ms) and the splay relaxations (≈35 ms) for
q = 6.03 × 106m−1ê3. Such results, with splay fluctuations
much faster than twist ones, are consistent with the backflow
effect. Figure 5(b) shows the relaxation rates of splay �splay =
Dsplayq

2 (high frequencies) and twist �twist = Dtwistq
2 (low

frequencies) as a function of q2. For all graphs like these we
have plotted the mean values of the relaxation rates over five
measurements taken for each scattering angle, as well as the
corresponding standard deviations.

FIG. 5. (a) Splay (polarized) and twist (depolarized) autocor-
relation signals measured in the ternary Nd3 sample. The solid
lines correspond to single-exponential fits to Eq. (6), with q =
6.03 × 106m−1ê3. (b) Relaxation rates of pure splay (high-frequency)
and twist (low-frequency) fluctuations as a function of q2. Solid lines
are linear fits whose slopes determine the orientational diffusivities.

From the linear fits one can extract the diffusivities Dsplay

and Dtwist, which are shown in Table II. From them one can
derive the corresponding splay and twist viscosities, provided
the respective elastic constants are known. As this knowledge
is scarce in the literature, we assume the one-elastic-constant
approximation, i.e., K1 ∼ K2 ∼ K3 ∼ 2 × 10−11 N [25]. The
viscosity coefficients resulting from this initial procedure
appear in Table III as η̃splay and η̃twist (=γ̃1). Our values
agree with those previously published for a similar lyotropic
mixture [11].

2. Quaternary mixtures

Figure 6 shows typical depolarized [Fig. 6(a)] and polarized
[Fig. 6(b)] autocorrelation signals from the three quaternary
mixtures. Figure 6(a) refers to the twist fluctuations at q =
7.94 × 106m−1ê1 and Fig. 6(b) to the splay fluctuations at q =
4.04 × 106m−1ê1. The solid lines are fits performed according
to Sec. III B using a Levenberg-Marquardt algorithm. From the
fits the values of the relaxation rates �splay and �twist and the
respective standard deviations were determined. In order to
obtain Dsplay and Dtwist we plotted the relaxation rates as a

TABLE III. Viscosities γ̃1, η̃splay, and ˜|�η| (backflow) estimated from diffusivity data (at 20 ◦C) according to the first step of the hypothesis
(single K value) and viscosities γ1, ηsplay, and |�η| (backflow) estimated from diffusivity data (at 20 ◦C) according to the second step of the
hypothesis [K(φ); see the text].

Sample K (10−11 N) γ̃1 (Pa s) η̃splay (Pa s) ˜|�η| (Pa s) K(φ) (10−11 N) γ1 (Pa s) ηsplay ≡ η (Pa s) |�η| (Pa s)

Nd3 2 14.3 2.1 12 0.0869 0.621 0.0905 0.531
Nd4a 2 16.0 1.1 15 0.388 3.10 0.204 2.90
Nd4b 2 110 0.4 110 1.86 103 0.339 102.7
Nd4c 2 180 0.5 180 2.05 186 0.465 185.5
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FIG. 6. (a) Typical depolarized autocorrelation signals from the
quaternary mixtures leading to the relaxation time of the twist mode at
q = 7.94 × 106m−1ê1. (b) Typical polarized autocorrelation signals
from the quaternary mixtures with the characteristic signal for the
pure splay mode at q = 4.04 × 106m−1ê1. Solid lines are fits from
using g2(q,τ ) = 1 + Ahete

−t/τc .

function of q2 (Fig. 7) and performed the corresponding linear
fits, as described for the ternary mixture.

Autocorrelation data of Fig. 6(a), all taken at a moderately
high angle value θ = 28.2◦, have some homodyne character
that can be quantified by the parameter R defined in Sec. III B.
Thus the curve for the Nd4c sample is the most homodyne
among all shown in Fig. 6, with R ≈ 0.6. By using the graphic
device Abacus we obtain a correction factor τA/τc ≈ 0.9.

FIG. 7. Relaxation rates of pure splay (high-frequency) and twist
(low-frequency) fluctuations as a function of q2 for the quaternary
mixtures (a) Nd4a, (b) Nd4b, and (c) Nd4c. Solid lines are linear fits.

In contrast, the two lowest curves of Fig. 6(b), with R ≈ 0.1,
can be considered as pure heterodyne, within an error of ∼1%.
The higher curve (sample Nd4b), in contrast, with R ≈ 0.38,
has a surprisingly high homodyne level for a rather low angle
value θ = 14.2◦. This indeed is to be indebted to a certain trick,
which consists of a slight adjustment of the detector optical
fiber positioner in order to minimize the local oscillator.

Finally, we mention the presence of a nondiffusive (i.e.,
q-independent) weak fast signal (∼3 ms), which can arise in
either polarized or depolarized light. This signal is not always
seen; depending on the wave vector, it may be not detected.
A possible interpretation for that signal, in terms of micellar
fluctuations, is discussed in Ref. [28]. In this paper we shall
not be concerned with it.

However, this fast signal may disturb the measurement
of the characteristic time τc for slow fluctuations. In such
situations we have performed two fits, namely, one with a
single exponential, considering the slow signal only, and the
other with two exponentials, covering both fast and slow
signals. By comparing the two fits we could establish an
uncertainty of 12–15 % on the τc value under analysis.

Now we analyze the results from the addition of the salt
in the originally ternary lyotropic mixture, i.e., sample Nd4a:
Our results (Table II) indicate that Dsplay in the salty mixture is
about twice the value of that in the ternary mixture; however,
Dtwist slightly decreases with respect to the value measured in
the ternary mixture. Both tendencies are (coarsely) confirmed
by analyzing the values of these parameters as a function of
the salt concentration, i.e., increasing the salt concentration
in the quaternary mixtures, Dtwist tend to decrease and Dsplay

tend to increase. With respect to Dsplay, the value obtained
with the mixture with the higher salt concentration (Nd4c)
showed a small decrease with respect to the former mixture
(Nd4b), indicating a possible saturation behavior. The ratio
Dsplay/Dtwist increases with the salt concentration in the
sample, a behavior similar to the one of the shear viscosity
η (see Table II).

Given the lack of detailed data on elastic constants, we have
to adopt hypotheses. We shall do this in two steps. In the first
one we assume that the same elastic constant approximation
taken for the ternary system applies everywhere, yielding the
first-step estimates for η̃splay and γ̃1 (see Table III). We can
see that γ̃1 rises strongly for increasing amounts of salt in
the sample [see Fig. 8(c)], a behavior also seen in the shear
viscosity measurements.

In contrast, notice that the viscosity η̃splay decreases as
the salt concentration increases [see Fig. 8(a)] until reaching
a value practically equal to the shear viscosity at φ =
0.38 mol %. In this approximation, Dsplay/Dtwist ∼ γ1/ ηsplay,
increasing with the salt concentration in the sample. The
backflow term �η = −α2

3/ηb may be calculated from our data
as a function of salt concentration, in the one-elastic-constant
approximation. The absolute value |�η| increases as a function
of the salt concentration [see Table III; we omit the graphics
of |�η| as it looks very nearly like the one of γ1; see Fig. 8(c)],
reaching values about one order of magnitude bigger than that
of the ternary mixture (salt-free).

Next, in the second step of the procedure we use the shear
viscosity η measurements to improve upon the first step of
the approach. As we have seen above, η̃splay shows a strong
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FIG. 8. (a) Squares denote the initial estimates of the splay
viscosity η̃splay versus the molar fraction φ of salt (K2SO4) obtained
from Dsplay diffusivities according to the first step of the procedure
(see the text). Triangles denote the shear viscosity η measured in this
work, as a function of the molar fraction of salt. (b) Two versions
of the one elastic constant approximation. Squares denote fixed
value for all φ (step 1) and triangles denote K(φ) obtained after
identifying ηsplay ≡ η (step 2). (c) Rotational viscosity coefficient
versus φ. Squares denote γ̃1 of step 1 and triangles γ1 of step 2.

initial decrease with increasing φ before reaching practically
the same values as η. As that initial decrease is a quite odd
behavior, we now point out that a much more reasonable hy-
pothesis is to assume that the true ηsplay is to be identified with
the shear viscosity η at each φ value. Therefore, according to
this view, we should attribute the initial decrease of η̃splay rather
to an initial increase of the elastic constant K(φ). That is, in this
second step we are going to adopt a φ-dependent one-elastic-
constant approximation. For instance, for the Nd4a sample
we identify ηsplay ≡ η = 0.204 Pa s, which implies K(φ =
0.25 mol%) = Dsplayηsplay = 19 × 10−12 m2/s 0.204 Pa s =
3.88 × 10−12 N. The same procedure applied to all samples
yielded the K(φ) values listed in Table III [see Fig. 8(b)].

Both hypotheses (steps 1 and 2) comprise some distortions,
e.g., the K(0) value for Nd3 is too low. Nevertheless, the
step-2 procedure seems to give more consistent results for three
reasons. First, it avoids that behavior of ηsplay that decreases for
increasing φ, which is physically difficult to explain. Second,
K(φ) first increases with the salt concentration before reaching
a saturation plateau [see Fig. 8(b)]. There are theoretical
reasons to support such a behavior, as we shall briefly discuss
below. Third, the step-2 value of the rotational viscosity γ1

for the ternary sample (much less than the γ̃1 of the step-1
hypothesis) agrees quite well with a direct measurement by
Kim [29] (∼0.7 Pa s) in the same lyotropic system.

Now turning to the second reason, by considering the IBM
model it is possible to qualitatively discuss the role of the
salt in the nematic micellar arrangement. In the lyotropic

nematic mixtures investigated, micelles present locally an
orthorhombic symmetry and are piled up in a pseudolamel-
lar structure [3,30]. Orientational fluctuations of correlation
volumes degenerate the symmetry axis perpendicular to the
biggest micellar surface and the macroscopic-uniaxial discotic
symmetry arises. The salt added to the original ternary mixture
dissociates into ions, which are located in the aqueous region
of the sample, between the micelles. The increase of the shear
viscosity η and rotational (or twist) viscosity γ1 of the mixtures
for increasing salt content may indicate an increase of the
dimensions of the micelles [31] and/or an augmentation of
the steric micelle-to-micelle interaction (this is due to the
decrease of the Debye length and the consequent decrease of
the intermicellar distance [32]). The ions from the salt may act
like a bridge between neighboring micelles, increasing their
electrostatic interaction and hydrogen bonds.

Further studies are necessary to clarify the hypothetical
connection between an increase of the salt concentration and
an increase of the micellar size. Perhaps a useful hint here
results from noticing that the behavior of K(φ) of Fig. 8(b)
bears a resemblance to a theoretical prediction [33] (see the
inset of Fig. 1 therein) based on the special case of a pure
Nehring-Saupe interaction [33] (see references therein).

V. CONCLUSION

We have investigated the behavior resulting from the
addition of salt in a ternary lyotropic mixture presenting the
discotic nematic phase, combining DLS and (shear) viscosity
measurements. The splay diffusivity initially increases with
the increase of the salt concentration and seems to reach an
asymptotic behavior. In contrast, the twist diffusivity decreases
as the salt concentration increases. In order to estimate the
behavior of the corresponding viscosities, we have introduced
hypotheses in a two-step approach, regarding the elastic
constants. The resulting viscosity estimates yielded a ηsplay

strongly dependent on each hypothesis made. In contrast,
the rotational (twist) viscosity coefficient γ1 showed to be
much less sensitive to such hypothetical considerations [see
Fig. 8(c)]. Similarly, the backflow term increases as the salt
concentration increases, until reaching values about one order
of magnitude bigger than that of the ternary mixture (salt-free
sample). A possible origin for these behaviors of the viscosity
and backflow terms could be attributed to the electrostatic
and hydrogen bond interaction between neighboring micelles
due to the presence of dissociated ions. Our results show that
salt influences both DLS and viscosity measurements, which
opens possibilities of controlling the properties of lyotropic
liquid crystals.
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