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Transitions through critical temperatures in nematic liquid crystals
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We obtain estimates for critical nematic liquid crystal (LC) temperatures under the action of a slowly varying
temperature-dependent control variable. We show that biaxiality has a negligible effect within our model
and that these delay estimates are well described by a purely uniaxial model. The static theory predicts two
critical temperatures: the supercooling temperature below which the isotropic phase loses stability and the
superheating temperature above which the ordered nematic states do not exist. In contrast to the static problem,
the isotropic phase exhibits a memory effect below the supercooling temperature in the dynamic framework. This
delayed loss of stability is independent of the rate of change of temperature and depends purely on the initial value
of the temperature. We also show how our results can be used to improve estimates for LC material constants.
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I. INTRODUCTION

Nematic liquid crystals (LCs) are complex anisotropic
liquids with a degree of long-range orientational ordering [1,2].
Of key importance is the concept of a “scalar order parameter”
that can distinguish between a disordered isotropic phase
and an ordered nematic phase [3,4]. Order parameters are
of prime importance in various branches of condensed matter
physics, e.g., superconductivity [5] and active systems [6], and
are used to describe transitions between different admissible
equilibria. We focus on thermotropic LCs wherein the degree
of orientational ordering is dictated by the temperature [1]. The
isotropic-nematic phase transition has been extensively studied
for thermotropic LCs [2,3,7], without paying attention to the
effects of spatial and temporal variations in the temperature
profile. In this paper, we study the nonequilibrium dynamics
of the scalar order parameter when the temperature is not a
constant but rather a time-dependent control variable.

We work within the Landau-de Gennes (LdG) theory for
thermotropic nematic phases [2,3,7]. A thermotropic phase
is classified as being biaxial or uniaxial according to the
symmetry of the nematic phase and the degree of orientational
ordering. A biaxial phase typically has a primary direction
and a secondary direction of preferred molecular alignment,
say n and m, and we need at least two scalar order parameters
to quantify the degree of ordering about both directions. A
uniaxial sample has greater symmetry and is characterized by
two macroscopic variables: (i) the director, n, which represents
the unique preferred direction of molecular alignment, and
(ii) an order parameter, S, which is a measure of how well
the molecules align with n. In particular, the isotropic phase
has an identically vanishing order parameter whereas nonzero
order parameters correspond to an ordered nematic phase.

The LdG theory is a variational theory and equilibrium
states correspond to minimizers of an appropriately defined
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LdG energy functional [1,2,8]. The isotropic-nematic phase
transition is driven by the LdG thermotropic energy that
contains a temperature-dependent parameter, denoted by A

throughout this paper; more details are given in Sec. II. The
equilibrium order parameters at a given temperature, or equiv-
alently for a given value of A, are given by the thermotropic
energy minimizers [8]. We work with a simple quartic form
of the thermotropic energy such that all thermotropic energy
minimizers are necessarily either uniaxial or isotropic, for all
temperatures. These thermotropic energy minimizers are fully
characterized by the uniaxial scalar order parameter, S, and
roughly speaking, the minimizer is an ordered nematic phase,
with S > 0, for “low” temperatures, and is isotropic, with
S = 0, for “high” temperatures [1,8].

There are two static critical values of A, associated with
a bifurcation in the (A,S)-phase plane, or an exchange of
stability between ordered nematic and isotropic states, in the
LdG framework. The first critical temperature is the super-
cooling temperature below which the isotropic phase loses
stability. The second critical temperature is the superheating
temperature above which the nematic phases do not exist
and the isotropic phase is the unique thermotropic energy
minimizer. The supercooling and superheating temperatures
are associated with a transcritical and a saddle-node bifurcation
in the (A,S)-response diagram, respectively (see, e.g., [9] for
definitions of bifurcation points). The static critical temper-
atures are computed by treating the temperature-dependent
variable, A, to be a constant. However, in many practical
applications, A is a function of a time and we study the
evolution of the scalar order parameter, S, as A slowly passes
through the static critical values. In what follows, static refers
to a constant value of A and dynamic refers to a time-dependent
A variable.

We assume a simple gradient-flow model for the evolution
of the order parameters [3,7] and mathematically describe
how the (A,S)-response diagram in Fig. 1 is modified by
the slow time modulations of A. In particular, we show that
biaxiality is negligible for physically realistic initial conditions
and that a purely uniaxial model suffices for the dynamic
estimates, at least within our relatively simple framework. Our
most striking result concerns the critical supercooling value.
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FIG. 1. (Color online) The static equilibria plotted in the (Ã,S̃)
plane. Unstable branches are marked with dashed curves and the
arrows indicate the sign of dS̃/dτ . The tildes have been removed
from the dimensionless variables for brevity.

There is a marked difference between a monotonic increase
and a monotonic decrease through this critical value which
implies that experimental measurements can be sensitive to
the direction of temperature change. More precisely, the
static theory predicts that the isotropic state is unstable for
all temperatures below the critical supercooling temperature
but the dynamic approach shows that the unstable isotropic
branch exhibits a memory effect in the low-temperature
regime, far below the predicted static supercooling value, and
this delayed loss of stability is also observed in boundary-value
LC problems for confined systems. This is indeed our central
result: critical LC temperatures can be strongly dependent
on spatial and temporal variations in the temperature profile.
We also show how our dynamic delay estimates can be used
to measure material-dependent LC constants and this could
potentially lead to new experimental investigations.

The study of bifurcations with a time-dependent bifurcation
parameter has a long history; the reader is referred to [9–14].
In general, the phenomenon of dynamic stability exchange de-
pends on multiple factors such as the nature of the bifurcation
point, the initial value of the control variable, the presence of
imperfections, etc. Of particular importance is the rate at which
the control variable crosses its critical value, which we assume
to be slow compared to the response time of the sample.

In Sec. II, we review the LdG theory for thermotropic
nematics and present the governing equations. In Sec. III,
we study the dynamic exchange of stability between distinct
static equilibria when the control variable, A, slowly crosses
the static critical values. Our study is presented in stages.
In Sec. III A, we examine the effect of biaxiality and show
that it suffices (for our purposes in this paper) to consider
a purely uniaxial model. In Sec. III B, we present analytic

solutions for an isothermal model with constant A, and in
Secs. III C and III D, we state our main dynamic estimates and
present numerical results. The technical details are deferred
to the appendices to avoid distraction from the main text. In
Sec. III E, we suggest applications for the measurements of
material-dependent LC constants, and in Sec. IV, we discuss
delay estimates for confined LC systems and outline directions
for future work.

II. THE MODEL

The LdG theory describes the state of a nematic LC by a
physical state variable: the LdG Q tensor defined in terms of
anisotropic macroscopic quantities [1,7,8]. The LdG Q tensor
is a macroscopic measure of orientational anisotropy in the
nematic sample and can be written as

Q = S cos α

(
n ⊗ n − I

3

)
+ S sin α√

3
(m ⊗ m − p ⊗ p), (1)

where S =
√

3
2 Qij Qij � 0, α ∈ [0,2π ) is a measure of the de-

gree of biaxiality and n,m,p ∈ S2 constitutes an orthonormal
triad of eigenvectors. The eigenvectors represent the preferred
directions of molecular alignment and the pair (S,α) contains
quantitative information about the degree of orientational
ordering. In (1), S is proportional to the norm or magnitude of
Q and the eigenvalues of Q can be expressed in terms of the pair
(S,α). For the biaxial case, Q has three distinct eigenvalues,
and for the uniaxial case, Q has a pair of degenerate nonzero
eigenvalues. In the uniaxial case, the Q tensor reduces to

Q = S

(
n ⊗ n − I

3

)
, (2)

where S is the uniaxial order parameter and n has been defined
above.

We work with a simple form of the LdG energy functional
on a three-dimensional (3D) domain, � ⊂ R3, given by

I [Q] :=
∫

�

L

2
|∇Q|2 + fB(Q)dV, (3)

where L > 0 is an elastic constant, |∇Q|2 = ∑3
i,j,k=1

∂Qij

∂xk

∂Qij

∂xk
,

and fB(Q) is the thermotropic energy density [3,8]. We work
with the simplest, physically reasonable form of fB proposed
in [1,7], namely,

fB(Q) := A(T )

2
tr Q2 − B

3
tr Q3 + C

4
(tr Q2)2. (4)

In fact, (4) is the minimal polynomial that can reproduce a
first-order isotropic-nematic phase transition [1]. In (4), A(T )
is a linear function of the absolute temperature, T , given
by A(T ) = β(T − T ∗); β,B,C > 0 are positive material-
dependent constants and T ∗ is a characteristic temperature
below which the isotropic phase loses stability. In what
follows, we refer to A as temperature even though it is the
rescaled temperature.

One can explicitly show that all stationary points of the
quartic fB in (4) are either uniaxial or isotropic [1,2,7,8]. In
particular, there are no biaxial stationary points and one can,
thus, intuitively argue that biaxiality may not be significant for
the dynamics of Q, for this choice of fB in (4). We demonstrate
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the negligible role of biaxiality in the Q-tensor dynamics in the
next section. We note that there are higher-order polynomial
forms of fB , e.g., sixth-order polynomials, that do admit
biaxial equilibria [1,2], but (4) is a popular choice in the LC
literature and suffices for our purposes in this paper.

For A < 0, the stable thermotropic equilibria are uniaxial
nematic states given by

Q =
{
S+(A)

(
n ⊗ n − I

3

)
; S+(A) = B + √

B2 − 24AC

4C

}
,

(5)

where n ∈ S2 is an arbitrary constant unit vector. For 0 <

A < B2

24C
, fB(Q) has two distinct families of stable equilibria:

(i) the isotropic phase with Q = 0 and (ii) the uniaxial nematic
branch in (5). For A > B2

24C
, the ordered nematic states do not

exist and the isotropic branch is the unique thermotropic energy
minimizer. We point out that there is a third uniaxial stationary
branch given by

Q=
{

S− (A)

(
n ⊗ n − I

3

)
; S− (A) = B − √

B2 − 24AC

4C

}
,

but this branch is always unstable with respect to biaxial
perturbations and, hence, is not a competing stable equilibrium
[1,7,8]. We do not refer to this unstable uniaxial stationary
branch in this paper.

As stated in the Introduction, there are two static critical
values in the theory of thermotropic nematics. The super-
cooling temperature is simply A = 0 and is associated with
a transcritical bifurcation in the (A,S)-response diagram, i.e.,
the isotropic branch S = 0 is stable for A > 0 and unstable for
A < 0. The superheating temperature is denoted by AJ = B2

24C
;

A = AJ is associated with a saddle-node bifurcation such that
the nematic equilibrium, S+(A), ceases to exist for A > AJ

and the isotropic state is the unique equilibrium for A > AJ .
As in [3,7], we assume a simple gradient-flow model

to describe the evolution of the Q-tensor order parameter.
Gradient-flow models are effectively reaction-diffusion equa-
tions describing the evolution of a macroscopic quantity
(Q tensor in this case) along a path of decreasing free energy
[15]. Our main dynamic equation is given below:

μ
∂Qij

∂t
= L∇2Qij − AQij + B

(
QipQpj − (tr Q2)

δij

3

)
−C(tr Q2)Qij , (6)

where μ > 0 is a rate constant, i,j,p = 1 . . . 3, and the
remaining coefficients have been defined in (3). In most of
what follows, we assume that Q does not depend on the spatial
variables; the eigenvectors in (1) are constant unit-vectors; and
the pair, (S,α), only depends on time. We refer to such systems
as being spatially homogeneous systems and our assumptions
are justified for samples with untreated boundaries, wherein we
are interested in the temporal response of (S,α) to temperature
variations. We further assume that A varies linearly with time.
In the spatially homogeneous case, the model (6) reduces to
two ordinary differential equations (ODEs) for (S,α) with a
slowly varying time-dependent bifurcation parameter, A(t), as

given below in (7)–(9):

μ
dS

dt
= −S

3
[2CS2 − BS cos 3α + 3A (t)], (7)

μ
dα

dt
= −BS

3
sin 3α, (8)

dA

dt
= ±q, (9)

where q > 0 is a positive constant and the initial conditions
are S(0) = S0, α(0) = α0, and A(0) = A0.

III. SLOW PASSAGE THROUGH CRITICAL VALUES

A. Effect of biaxiality

We make some basic assumptions throughout the paper,
namely, (i) the initial temperature A0 �= 0 and A0 �= AJ ,
i.e., A0 is bounded away from the static critical values, and
(ii) we only consider initial conditions that are almost in
thermal equilibrium at A = A0. In other words, the initial
condition (S0,α0) is “close” to a locally stable equilibrium of
the thermotropic energy at A = A0. In particular, if A0 < 0,
then the initial condition must be close to the nematic branch
(5), and if 0 < A0 < AJ , then the initial condition can be either
close to S+(A0) in (5) or close to the isotropic branch.

It is straightforward to check that solutions of the dynamical
system (7)–(9) cannot cross the lines α = 0, π

3 , 2π
3 and we

can, without loss of generality, assume that α ∈ (0, π
3 ). This

corresponds to assuming that n is the principal axis with the
largest positive eigenvalue. Recalling that S � 0 from (1), it is
then immediate from (8) that α decreases monotonically with
time. For a physically realistic initial condition as described
above, α0 is small and, therefore, α(t) � α0 for all times. This
justifies a detailed study of the purely uniaxial case with α = 0,
as is presented in the subsequent sections.

We introduce the following rescalings:

S = B

4C
S̃, A = B2

24C
Ã, t = B2

24Cq
τ,

so that (7) and (9) become

ε
dS̃

dτ
= −S̃[S̃2 − 2S̃ + Ã(τ )], (10)

dÃ

dτ
= ±1, (11)

where S̃(0) = S̃0, Ã(0) = Ã0, and

ε = 576C2

B4
μq =

(
μ

AJ

)(
q

AJ

)
	 1 (12)

is a dimensionless parameter which measures the ratio of the
viscous relaxation time, μ/AJ , which from the data in [16] is of
O(10−7 s), to the time scale, AJ /q, over which the temperature
is changed. We require ε to be small in this paper. The static
critical values are Ã = 0 (the supercooling value) and Ã = +1
(the superheating value), and the nematic equilibrium is given
by S̃+ = 1 +

√
1 − Ã, for Ã � 1.
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FIG. 2. (Color online) Numerical solutions of the differential
Equation (10) plotted in the (Ã,S̃) plane with Ã(τ ) = 1.5 − τ ,
S̃(0) = 0.5, and ε = 0.5 (yellow, solid), 0.25 (green, dashed), 0.125
(red, dotted), and 0.0625 (pink, dot-dashed). The equilibrium solution
is plotted as a thick blue curve.

B. The isothermal model

The isothermal model corresponds to a constant A = A0,
in which case the ODE (10) has a unique monotonic solution
S̃(τ,S̃0,Ã0), provided that S̃0 �= 0 and S̃0 �= S̃+(Ã0), where
S̃+ has been defined above. One can check that for Ã0 < 1,
S̃(τ,S̃0,Ã0) is given by

exp

[
− τ

ε

]
=

(
S̃

S̃0

)1/Ã0 (
S̃ − S̃+(Ã0)

S̃0 − S̃+(Ã0)

) 1

2S̃+
√

1−Ã0

×
(

S̃0 − S̃−(Ã0)

S̃ − S̃−(Ã0)

) 1

2S̃−
√

1−Ã0

. (13)

We cannot write down explicit analytic solutions for
the fully time-dependent problem (10)–(12). Hence, in the
next sections, we use asymptotic methods and differential
inequalities to describe the evolution of S̃(τ,S̃0,Ã0) as Ã slowly
crosses the critical values, Ã = 0 and Ã = 1. We state our main
results below and defer the technical details to the appendices.

C. Backward transition through Ã = 0

Let the temperature decrease slowly through the critical
value Ã = 0, i.e., Ã = Ã0 − τ for some Ã0 > 0. Let S̃0 be
within the basin of attraction of the isotropic branch at Ã = Ã0.
Our main result is that the solution descends towards the
isotropic branch over a temperature range of width O(ε) and
remains within an exponentially small neighborhood of S̃ = 0
for Ã ∈ (−Ã0,Ã0), followed by a rapid ascent towards the
nematic branch, S̃+(Ã) for Ã < −Ã0. Therefore, the isotropic
phase does not lose stability immediately after crossing Ã = 0
as suggested by the static theory. The isotropic phase persists
over the interval Ã ∈ (−Ã0,0) and the delay in stability
exchange is independent of ε and proportional to the initial
temperature. In particular, we do not recover the predictions
of the static theory in the ε → 0 limit.

In Fig. 2, we numerically solve (10) with S̃0 = 0.5 and Ã0 =
1.5, with different values of ε. The delayed loss of stability of
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FIG. 3. (Color online) Numerical solutions of the differential
Equation (10) plotted in the (Ã,S̃) plane with Ã(τ ) = −3 + τ ,
S̃(0) = 3, and ε = 0.5 (yellow, solid), 0.25 (green, dashed), 0.125
(red, dotted), and 0.0625 (pink, dot-dashed). The equilibrium solution
is plotted as a thick blue curve.

the isotropic phase is evident in the plots, as stated above, and
the mathematical proofs are given in Appendix A.

D. Forward transition through Ã = 1

We want to capture the solution dynamics as Ã slowly
increases through the critical value Ã = 1. Let Ã = Ã0 + τ for
some Ã0 < 1. Then all physically realistic initial conditions
must be within the basin of attraction of the nematic branch,
S̃+(Ã). It can be rigorously demonstrated that the solution
will closely follow S̃+(Ã) until we approach the critical value
Ã = 1 [9,10,17], followed by a descent towards the isotropic
branch for Ã > 1. Our main result here is that the transition
from the ordered nematic branch, S̃+(Ã), to S̃ = 0 takes place
within a layer of width O(ε2/3) around Ã = 1; i.e., the dynamic
transition overshoots the static value Ã = 1 but this overshoot
smoothly vanishes as ε → 0, so that we recover the static
solutions in the ε → 0 limit. In Appendix B, we derive this
delay estimate using asymptotic methods.

In Fig. 3, we plot numerical solutions of (10) with Ã0 = −3,
S̃0 = 3, and different values of ε. It is clear that the solution
rapidly approaches the isotropic branch for Ã > 1 and the
width of the transition layer shrinks as ε → 0. We analyze the
scaling of the transition layer width versus ε by numerically
computing the value of τ for which S̃(τ ) = ε. We then measure
the width of the transition layer by the following quantity:

δÃ = Ã0 + S̃−1(ε) − 1. (14)

In Fig. 4, we plot δA versus ε using the same parameter values
as in Fig. 3. We find that δA is well approximated by the
following relation:

δÃ ∼ C1ε
2/3 + 4

3
ε log

(
1

ε

)
− (1 + C2)ε, (15)

where C1 ≈ 2.338 and C2 ≈ 0.509, in agreement with the
asymptotic estimates in Appendix B.
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FIG. 4. (Color online) The interval δA over which S(τ ) transitions
to an ε neighborhood of S = 0. The dashed curve shows the
asymptotic prediction (15).

E. Measurements of LC constants

We present some preliminary ideas on how these delay
estimates can be used to measure characteristic temperatures
and material-dependent LC constants in experiments. Our
methods assume some a priori knowledge of the critical
temperature T ∗ and the magnitudes of B and C in (4). In
particular, we require the variable ε defined in (12) to be small
in magnitude, which in turn requires the rate of change of
temperature, q, to be much smaller than the material-dependent
constant, B4

C2μ
, in (12). Our methods can then be used to refine

previous estimates or they can provide a check on parallel
experimental work.

In Proposition IV, we show that the isotropic phase
persists over the range Ã ∈ [−Ã0,Ã0] for Ã0 > 0, when Ã

is monotonically decreased through Ã = 0; see Fig. 2. Let TI

be the initial temperature (with Ã = Ã0) and we assume that
we can accurately measure TD (with Ã = −Ã0). Recalling that

Ã(T ) = 24β(T − T ∗)C/B2,

where B, C, and β have been defined in (4), we obtain

TI + TD = 2T ∗. (16)

Equation (16) requires some a priori knowledge of T ∗, so
that we do not initiate the experiment “too close” to T ∗ in the
first place. However, this knowledge need not be accurate and
rough estimates of T ∗ can be refined using (16), since TI and
TD are both experimentally controlled quantities.

Similarly, in Sec. III D, we show that the transition from the
ordered nematic branch to the isotropic branch overshoots the
critical value Ã = 1 by the amount δÃ = 2.338ε2/3, where ε

is directly proportional to the rate of temperature change; also
see Fig. 3. We assume that we can measure the temperature
TD corresponding to Ã∗ = 1 + δÃ. Recalling the definition of
Ã above, we obtain

TD − T ∗ ∼ B2

24βC
(1 + 2.338ε2/3). (17)

Thus, having computed T ∗ from (16), it is possible to compute
the characteristic constant, B2

24βC
, from measurements of TD

versus ε.

IV. CONCLUSION AND DISCUSSION

This paper focuses on delay estimates for the exchange of
stability across bifurcation points in thermotropic nematics,
with a slowly varying control variable. We have adopted a
simple gradient-flow model to describe the evolution of the
nematic scalar order parameters in space and time, and in
the simple case of a spatially homogeneous system, our model
falls within the well-studied framework of first-order algebraic
bifurcation problems [9,10]. With reference to Fig. 1, we are
primarily interested in two critical values: (i) the supercooling
value, A = 0, and (ii) the superheating value, AJ = B2

24C
. The

superheating value corresponds to a saddle-node bifurcation
and A(εt) regularizes the exchange of stability between the
ordered nematic equilibria and the isotropic branch over a
region of width, O(ε2/3), centered around A = AJ . In this
case, we do not expect any marked changes in macroscopic
measurements of AJ .

Our most striking observation concerns the supercooling
value, A = 0. As the temperature is slowly decreased through
A = 0, the exchange of stability between S = 0 and the
nematic branch, S+(A), takes place within a region of width,
O(2A0), around A = 0, where A0 is the initial temperature.
In particular, we do not recover the static value in the ε → 0
limit.

The results in Sec. III are restricted to spatially homoge-
neous systems. Some of our results can be easily generalized
to confined LC systems where the order parameters vary
on spatial and temporal scales. As an illustrative example,
consider the partial differential Equation (6) for the uniaxial
order parameter, S, on a one-dimensional interval, 0 � x � D,
as shown below

μ
∂S

∂t
= 2L

3

∂2S

∂x2
− 2S

9
[2CS2 − BS + 3A(x,t)],

0 � x � D,t � 0. (18)

For simplicity, we impose homogeneous boundary conditions,
S(0,t) = S(D,t) = 0, and the initial condition can be any arbi-
trary function “sufficiently close” to the isotropic equilibrium.
The temperature profile, A(x,t), depends on both the spatial
coordinate and the time coordinate. One can rigorously prove
that if

min
x∈[0,D];t�0

A(x,t) > AT = −π2 2L

3D2
, (19)

then the isotropic branch is stable in the sense that initial
conditions within a small neighborhood of the isotropic
equilibrium generate dynamic solutions of (18) that remain
within a small neighborhood of the isotropic equilibrium for
all times [18,19]. In particular AT is strictly less than the static
critical value A = 0, implying that the isotropic phase does not
lose stability immediately for A < 0 but persists at least over
the range A ∈ (AT ,0). This delayed loss of stability, compared
to the supercooling value A = 0, is purely a consequence of the
boundary effects. The technical details of this stability result
are given in Appendix C.

The preceding discussion shows that measurements of
the supercooling temperature can be sensitive to spatial and
temporal variations in the temperature profile. In Sec. III E, we
indicate how these delay estimates can be potentially used to
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measure material-dependent constants. The “inhomogeneous”
estimate (19) may yet be another crude method of computing
the elastic constant in prototype LC experiments. Of course,
the evolution of the LC phase with temperature depends on a
combination of factors, not all of which are included in our
simplistic model. For example, we assume a constant director
field n in (2) and, in practice, n, surface anchoring, and elastic
anisotropy effects couple to the LC scalar order parameter.
Also, preliminary investigations suggest that noise can play
a crucial role in stability exchange phenomena and there is a
delicate balance between the relative magnitudes of noise and
ε in our model. Nevertheless, although our model represents
an idealized situation, it draws attention to a hitherto neglected
effect, namely, the sensitivity of critical LC temperatures to the
temperature distribution itself.
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APPENDIX A: BACKWARD TRANSITION THROUGH Ã = 0

Proposition 1. Let S̃(τ,S̃0,Ã0) denote a solution of the
initial-value problem (10), with Ã(τ ) = Ã0 − τ for some
0 < Ã0 < 1 and 0 < S̃0 = δ 	 1. For ε > 0 sufficiently small
and for Ã0 > 0 independent of ε, we have

0 < S̃(τ,S̃0,Ã0) � δ (A1)

for Ã ∈ [−Ã0 + 2δ,Ã0].
Proof. From qualitative solution properties (see Fig. 1), the

solution S̃(τ,S̃0,Ã0) descends towards the isotropic branch for
Ã ∈ (0,Ã0], followed by a monotonic increase for Ã < 0.

One can verify that, for S̃ ∈ (0,δ), we have the following
inequalities:

(−Ã − 2δ)S̃ � ε
dS̃

dτ
� (−Ã + 2δ)S̃. (A2)

The ordinary differential equation

ε
dS̃

dτ
= (−Ã ± 2δ)S̃ (A3)

can be solved explicitly with Ã(τ ) = Ã0 − τ and the
initial condition S̃0 = δ. The corresponding solutions are
S̃±(τ,Ã0,ε), where

ln

(
S̃±

δ

)
= 1

2ε

[
Ã2 − Ã2

0 ± 2δ(Ã0 − Ã)
]
. (A4)

The upper curve, S̃+, reintersects the line, S̃ = δ, again at

A+ = 2δ − Ã0,

and the lower curve, S−, reintersects the line, S = δ, again at

A− = −2δ − Ã0.

Let A∗(Ã0,ε) denote the first point of reintersection
between the solution, S̃(τ,S̃0,Ã0), and the line, S̃ = δ. From
the inequalities (A2) and the values A± above, we deduce
that −2δ − Ã0 � A∗(Ã0,ε) � 2δ − Ã0. In the limit δ → 0,
we obtain

A∗(Ã0,ε) = −Ã0 < 0. (A5)

The conclusion of Proposition IV now follows. �
Proposition IV gives a coarse picture of the delay phe-

nomenon. We can get more detailed information by an
asymptotic analysis as shown below. The asymptotic analysis
not only captures the delay but also the final approach from
the isotropic to the nematic equilibrium as the temperature is
decreased. The delay only depends on Ã0 but the final approach
depends on both Ã0 and S̃0, as illustrated in (A11).

We take Ã(τ ) = Ã0 − τ for some 0 < Ã0 < 1 and the
initial condition S̃0 to be within the basin of attraction of
the isotropic equilibrium at Ã = Ã0. This is in contrast to
Proposition IV where we only consider initial conditions
within a small δ-neighborhood of the isotropic branch.

From the (Ã,S̃)-phase plane, the solution descends towards
the isotropic branch, in a layer of width O(ε), for Ã > 0, and
the leading-order equation in this region is

dS̃

dτ
′ = −S̃[S̃2 − 2S̃ + Ã0], (A6)

where τ
′ = τ

ε
. The leading-order solution is implicitly

given by

τ
′ =

log
( S̃2

0 (Ã0+S̃2−2S̃)

S̃2(Ã0+S̃2
0 −2S̃0)

)
2Ã0

+
tanh−1

( √
1−Ã0(S̃0−S̃)

Ã0−S̃+(S̃−1)S̃0

)
Ã0

√
1 − Ã0

. (A7)

As τ
′ → +∞, we have S̃ ∼ B0 exp[−Ã0τ

′
], where

log(B0) = 1

2
log

(
Ã0S̃

2
0

S̃2
0 − 2S̃0 + Ã0

)

+
tanh−1

(√
1−Ã0S̃0

Ã0−S̃0

)
√

1 − Ã0

. (A8)

Thereafter, S̃ becomes small for Ã < Ã0 and the subsequent
behavior may be found by linearizing (10) about S̃ = 0,

ε
dS̃

dτ
+ (Ã0 − τ )S̃ = 0,

with the matching condition S̃ ∼ B0 exp[−Ã0
τ
ε
], as τ → 0+.

The leading-order solution for τ > 0 is given by

S̃(τ ) ∼ B0 exp

[−Ã0τ + τ 2

2

ε

]
, (A9)

which is exponentially small for 0 < τ < 2Ã0, or for Ã ∈
(−Ã0,Ã0), and is consistent with the lower and upper solutions
computed in (A4).
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Near Ã = −Ã0, we set τ = 2Ã0 + ετ
′

to get the leading-
order equation

dS̃

dτ
′ = −S̃(S̃2 − 2S̃ − Ã0) (A10)

with the matching condition S̃(τ
′
) → B0 exp[+Ã0τ

′
] as τ

′ →
−∞. As in (A7), we obtain

τ
′ = −

log
(B2

0 (Ã0−S̃2+2S̃)
Ã0S̃2

)
2Ã0

−
tanh−1

(√
1+Ã0S̃)

Ã0+S̃

)
Ã0

√
1 + Ã0

, (A11)

where B0 has been defined in (A8) and this describes the
isotropic-nematic ascent, in a layer of width O(ε), for Ã < 0.

APPENDIX B: FORWARD TRANSITION THROUGH Ã = 1

Let Ã(τ ) = Ã0 + τ for some Ã0 < 1 and let the initial
condition, S̃0, be within an ε neighborhood of the nematic
branch, S̃+(Ã0). It can be rigorously proven that the solution
remains within an ε neighborhood of S̃+(Ã) provided that Ã is
bounded away from Ã = 1 [10,14]. Indeed, the solution may
be expanded asymptotically in the form

S̃ ∼ 1 +
√

1 − Ã + ε

4(1 − Ã)(1 +
√

1 − Ã)
+ O(ε2),

and we infer that there is a nonuniformity when 1 − Ã =
O(ε2/3) and S̃ − 1 = O(ε1/3).

We, therefore, define τ̄ = ε−2/3(1 − Ã0 − τ ) and seek an
asymptotic expansion for S̃(τ̄ ) from (10) as follows:

S̃(τ̄ ) = 1 + ε1/3S1(τ̄ ) + ε2/3S2(τ̄ ) + · · · . (B1)

The first-order term is a solution of the Riccati equation

dS1

dτ̄
= −(

S2
1 + τ̄ 2

)
, (B2)

and therefore,

S1(τ̄ ) = −Ai
′
(−τ̄ )

Ai(−τ̄ )
,

S2(τ̄ ) =
∫ ∞
−τ̄

Ai
′
(z)3/Ai(z)dz

Ai(−τ̄ )2
+ Ai

′
(−τ̄ )2

2Ai(−τ̄ )2
, (B3)

where Ai denotes the Airy function [9].
This expansion becomes nonuniform as τ̄ → τ ∗, where

−τ ∗ denotes the first zero of the Airy function, i.e., τ ∗ =
+2.338. In this limit,

S̃(τ̄ ) ∼ 1 − ε1/3

τ ∗ − τ̄
− ε2/3 C1 + log (τ ∗ − τ̄ )

(τ ∗ − τ̄ )2 + · · · , (B4)

where C1 ≈ 0.5085 is an explicitly computable pos-
itive constant. This motivates the scaling, Ã = 1 −
τ ∗ε2/3 + 1

3ε log( 1
ε
) + ετ̃ , which results in the leading-order

Equation (B5) below,

dS̃

dτ̃
∼ −S̃(S̃ − 1)2, (B5)

with the matching condition

S̃ ∼ 1 + 1

τ̃
− C1 + log(−τ̃ )

τ̃ 2
+ · · · (B6)

as τ̃ → −∞. The leading-order inner solution is then implic-
itly given by

τ̃ = −C1 − 1

1 − S̃
+ log

(
1 − S̃

S̃

)
. (B7)

Thus, the temperature overshoots the critical value Ã = 1
by a distance of


Ã ∼ τ ∗ε2/3 + 1

3
ε log

(
1

ε

)
(B8)

before transitioning down to the isotropic branch over a
temperature range of order ε.

APPENDIX C: DELAY ESTIMATES FOR
BOUNDARY-VALUE PROBLEMS

Consider the partial differential Equation (18) with ho-
mogeneous boundary conditions and initial conditions close
to the isotropic equilibrium, i.e., maxx∈[0,1] S(x,0) 	 1. To
demonstrate dynamic stability of the isotropic equilibrium, we
need to show that the following integral,

‖S‖2(t) =
∫ D

0

(
∂S

∂x

)2

+ S2dx, (C1)

remains small for all times, given that ‖S‖(0) � σ 	 1 [18].
The integral (C1) can be viewed as a measure of the deviation
from the isotropic equilibrium, S(x,t) = 0.

Following the methods in [18], the key step is to compute
the second variation of the one-dimensional LdG energy below,

I [S] :=
∫ D

0

L

3

(
∂S

∂x

)2

+ A

3
S2 − 2B

27
S3 + C

9
S4dx, (C2)

around the isotropic equilibrium, S(x,t) = 0. We consider
small variations around S = 0, given by Sη(x,t) = ηθ (x,t),
where θ is an arbitrary continuously differentiable function
vanishing at the end points (consistent with the homogeneous
boundary conditions). The second variation of the associated
LdG energy (C2), around S = 0, is given by

d2I [Sη]

dη2

∣∣∣∣
η=0

=
∫ D

0

2

3
L

(
∂θ

∂x

)2

+ Aθ2(x,t)dx. (C3)

Recalling Wirtinger’s inequality [19], i.e.,∫ D

0

(
∂θ

∂x

)2

dx � π2

D2

∫ D

0
θ2(x,t)dx,

we deduce that the second variation is necessarily positive if

min
x∈[0,D];t�0

A(x,t) > AT = −π2 2L

3D2
. (C4)

Having demonstrated the strict positivity of the second
variation of the LdG energy around S(x,t) = 0 for A > AT ,
one can straightforwardly demonstrate that the integral in (C1)
remains small for all times leading to dynamic stability for
A > AT , by an immediate application of Liapounov’s direct
method [18].

022501-7



MAJUMDAR, OCKENDON, HOWELL, AND SUROVYATKINA PHYSICAL REVIEW E 88, 022501 (2013)

[1] P. G. De Gennes, The Physics of Liquid Crystals (Clarendon
Press, Oxford, 1974).

[2] E. G. Virga, Variational Theories for Liquid Crystals (Chapman
& Hall, London, 1994).

[3] F. H. Lin and C. Liu, J. Partial Diff. Equ. 14, 289
(2001).

[4] N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979).
[5] S. J. Chapman, S. D. Howison, and J. R. Ockendon, SIAM Rev.

34, 529 (1992).
[6] L. Giomi, L. Mahadevan, B. Chakraborty, and M. F. Hagan,

Phys. Rev. Lett. 106, 218101 (2011).
[7] N. J. Mottram and C. Newton, Introduction to Q-Tensor

Theory, University of Strathclyde, Department of Mathematics,
Research Report No. 10, 2004.

[8] A. Majumdar, Eur. J. Appl. Math. 21, 181 (2010).
[9] R. Haberman, SIAM J. Appl. Math. 37, 69 (1979).

[10] C. Baesens, Physica D (Amsterdam, Neth.) 53, 319 (1991).
[11] I. R. Collinge and J. R. Ockendon, SIAM J. Appl. Math. 37, 350

(1979).
[12] T. Erneux and P. Mandel, SIAM J. Appl. Math. 46, 1 (1986).
[13] N. R. Lebovitz and R. J. Schaar, Stud. Appl. Math. 54, 229

(1975).
[14] A. I. Neishtadt, Diff. Eq. 23, 1385 (1987); 24, 171 (1988).
[15] http://www.win.tue.nl/∼mpeletie/Research/Papers/PeletierLectu

reNotesPisa2011.pdf.
[16] I. W. Stewart, The Static and Dynamic Continuum Theory of

Liquid Crystals (Taylor & Francis, London, 2004).
[17] A. Kapila, SIAM J. Appl. Math. 41, 29 (1981).
[18] R. E. Caflisch and J. H. Maddocks, Proc. R. Soc. Edinburgh,

Sect. A: Math. 99, 1 (1984).
[19] A. Majumdar, C. Prior, and A. Goriely, J. Elasticity 109, 75

(2012).

022501-8

http://dx.doi.org/10.1103/RevModPhys.51.591
http://dx.doi.org/10.1137/1034114
http://dx.doi.org/10.1137/1034114
http://dx.doi.org/10.1103/PhysRevLett.106.218101
http://dx.doi.org/10.1017/S0956792509990210
http://dx.doi.org/10.1137/0137006
http://dx.doi.org/10.1016/0167-2789(91)90068-K
http://dx.doi.org/10.1137/0137026
http://dx.doi.org/10.1137/0137026
http://dx.doi.org/10.1137/0146001
http://www.win.tue.nl/%7Empeletie/Research/Papers/PeletierLectureNotesPisa2011.pdf
http://www.win.tue.nl/%7Empeletie/Research/Papers/PeletierLectureNotesPisa2011.pdf
http://dx.doi.org/10.1137/0141004
http://dx.doi.org/10.1017/S0308210500025920
http://dx.doi.org/10.1017/S0308210500025920
http://dx.doi.org/10.1007/s10659-012-9371-8
http://dx.doi.org/10.1007/s10659-012-9371-8



