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Interface kinetics in phase-field models: Isothermal transformations in binary alloys
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We present a unified description of interface kinetic effects in phase-field models for isothermal transformations
in binary alloys and steps dynamics in molecular-beam-epitaxy. The phase-field equations of motion incorporate
a kinetic cross-coupling between the phase field and the concentration field. This cross-coupling generalizes
the phenomenology of kinetic effects and was omitted until recently in classical phase-field models. We derive
general expressions (independent of the details of the phase-field model) for the kinetic coefficients within the
corresponding macroscopic approach using a physically motivated reduction procedure. The latter is equivalent
to the so-called thin-interface limit but is technically simpler. It involves the calculation of the effective dissipation
that can be ascribed to the interface in the phase-field model. We discuss in detail the possibility of a nonpositive
definite matrix of kinetic coefficients, i.e., a negative effective interface dissipation, although being in the
range of stability of the underlying phase-field model. Numerically we study the step-bunching instability in
molecular-beam-epitaxy due to the Ehrlich-Schwoebel effect, present in our model due to the cross-coupling.
Using the reduction procedure we compare the results of the phase-field simulations with the analytical predictions
of the macroscopic approach.
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I. INTRODUCTION

Phase-field models have become a commonly used nu-
merical tool in a wide range of pattern formation processes
such as solidification [1], solid-solid transformations [2], or
fluid mechanics [3], and in other fields of materials science,
physics, biophysics, and engineering. Designed in the spirit of
the Ginzburg-Landau theory for phase transitions, they avoid
a direct tracking of the boundaries between different phases
by the introduction of continuous fields varying smoothly
across these boundaries or interfaces. One then refers to diffuse
interface models, and the interface width W is a key parameter
of these models that has to be handled with care. The equations
of motion in phase-field models are solved everywhere in the
simulation domain and replace the set of bulk equations and
interface boundary conditions of the macroscopic approach
where the interfaces are assumed to be infinitely sharp.

In crystal growth, linear interface kinetics describe small
deviations from local equilibrium boundary conditions at the
interfaces. While, in many cases, kinetic effects are subdomi-
nant in comparison with the large dissipation in the bulk, they
are crucial ingredients for the description of important physical
phenomena such as the solute trapping effect in binary alloys or
the Ehrlich-Schwoebel effect in molecular-beam-epitaxy. The
kinetic coefficients give the proportionality between driving
forces and fluxes in the frame of Onsager theory of linear
out-of-equilibrium thermodynamics. In the bulk the Onsager
theory links the diffusion flux and the gradient of chemical
potential. The situation is more complicated at a moving
interface. For example, in the case of a binary A-B alloy,
the growing phase may incorporate different amounts of
B atoms for a given growth velocity. In other words, the
concentration of B atoms on the two sides of the interface
are independent variables. Therefore there exist in this case
two independent fluxes of atoms through the interface, i.e.,

the total number of atoms and the number of B atoms. The
linear relations between the driving forces (in this case the
difference of chemical potentials between the two sides of
the interface) and these fluxes are provided by a 2 × 2 Onsager
matrix of kinetic coefficients. Due to Onsager symmetry this
matrix contains three independent elements. In the problem
of step dynamics in molecular-beam-epitaxy (MBE), there
exist also two independent fluxes through the steps, and thus
three independent kinetic coefficients should be considered.
Since the pioneering work by Burton, Frank, and Cabrera
[4], enormous theoretical efforts have been devoted to the
description of steps dynamics on vicinal surfaces on which the
presence of atomic steps is inherent. For a recent review of
the macroscopic approach in MBE see, for example, Ref. [5]
and references therein. One of the feature of step kinetics is
the unequal probabilities of attachment from lower and upper
terraces, i.e., the Ehrlich-Schwoebel (ES) effect [6,7], which
is responsible for instabilities [5] such as step bunching [7] or
meandering [8].

In classical phase-field models for growth processes cou-
pled with bulk diffusion (based on model C within the
classification of Hohenberg and Halperin [9]), only two inde-
pendent kinetic coefficients were introduced. The variational
formulation of these models, which links the time derivatives
of the fields to the functional derivatives of the free energy
G with respect to them, is diagonal. This means that the time
derivative of the phase field φ is τ φ̇ = −δG/δφ, and the time
derivative of the concentration field C is Ċ = D∇2δG/δC.
Two velocity scales describing the interface kinetics are then
built using the interface width W , i.e., W/τ and D/W .

Here we present phase-field models for isothermal trans-
formations in binary alloys and for steps dynamics in MBE
that incorporate the third kinetic coefficient due to cross-terms
introduced in the equations of motion. The magnitude of these
cross-effects is constrained by the positive definiteness of the
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dissipation in the system. These cross-effects were first de-
scribed in a phase-field model for isothermal transformations
in binary alloys recently published as a Rapid Communication
[10]. They were also introduced in Ref. [11] to recover the
thermodynamical consistency of the antitrapping model [12].

For a given phase-field model, a question arises concerning
its relation to the macroscopic description. Therefore in
addition to the presentation of the phase-field models, we
propose a procedure, involving the calculation of the interface
dissipation function, that links the parameters of the model to
the kinetic boundary conditions in the macroscopic approach.
It is done in a general way, i.e., independent of the details of
the phase-field model. This physically motivated procedure is
equivalent to the more formal asymptotic matching within the
thin-interface limit [13], but it is, in our opinion, technically
simpler. The well-known results of the thin-interface limit for
binary alloys are then derived in very concise terms. We stress
that the domain of stability of the phase-field model (positive
definiteness of the dissipation) is wider than the domain of
stability of the corresponding macroscopic approach (positive
definiteness of the matrix of macroscopic kinetic coefficients).
In other words, in some range of parameters of a stable phase-
field model, the interface dissipation of the corresponding
macroscopic description may be negative. While this fact is
known [13,14] (“negative growth kinetic coefficient”), we
discuss this nontrivial issue in detail. We also give the results of
the reduction procedure for the steps dynamics in MBE. It turns
out that the newly introduced cross-coupling in the phase-field
equations of motion is responsible for the ES effect. Note that
the latter was absent in classical diagonal phase-field models
for the dynamics of a localized train of steps [15] and for spiral
growth from a screw dislocation [16]. Note also that the ES
effect was described in a phase-field model for step dynamics
using a different philosophy where each terrace on the vicinal
surface possesses a separate concentration field [17].

In the first part of this article, we present the phase-field
model, the general reduction procedure, and explicit examples
of the latter for the case of phase transformations in binary
alloys. In the second part, we study steps dynamics in MBE,
presenting the phase-field model, the link with the macroscopic
description, and finally simulations results of step-bunching
instability. We compare these numerical results with analytics
within the macroscopic approach, stressing the case where
the matrix of macroscopic kinetic coefficients is nonpositive
definite.

II. PHASE-FIELD MODEL OF ISOTHERMAL PHASE
TRANSFORMATIONS IN BINARY ALLOYS

In phase-field models of phase transformations in binary
alloys, the motion of the boundary between two different
phases involves a scalar order parameter φ that discriminates
the phases and is a nonconserved field. To describe diffusion
processes, one additionally has a concentration field C which is
conserved. We introduce a free energy functional in a standard
dimensionless form:

G[C,φ] =
∫

dV

{
H

[
(W∇φ)2

2
+ f (φ)

]
+ g(C,φ)

}
. (1)

The phase field φ is constant in the bulk of each phase
corresponding to the values that are minimizing the double
well potential f (φ), and which are usually integer values,
for example, 0 and 1. The phase field then varies from
φ = 0 in phase 0 to φ = 1 in phase 1 across the interface
of width W , i.e., W |∇φ| ∼ 1. The energetic cost of the
interface is described by H , which is usually a large parameter.
g(C,φ) describes a thermodynamic coupling between the
phase field and the concentration field. The functions g(C,φ =
0) = g0(C) and g(C,φ = 1) = g1(C) should then describe
the free energy density g0 and g1 of phase 0 and phase 1,
respectively, as a function of C (we omit the temperature
variable since we discuss isothermal transformations). The
equilibrium one-dimensional distributions (coordinate x) are
φ = φeq(x), which verifies [Wφ′

eq(x)]2 = 2f [φeq(x)], and

C = Ceq(x), which verifies ∂g

∂C
[Ceq(x),φeq(x)] = g′

1(Ceq
1 ) =

g′
0(Ceq

0 ) = [g1(Ceq
1 ) − g0(Ceq

0 )]/(Ceq
1 − C

eq
0 ) where C

eq
1 (Ceq

0 )
is the equilibrium concentration in phase 1 (phase 0).

A. Equations of motion

On one hand, φ̇, which is nonvanishing only in the interface
region and is proportional to the normal velocity of the
interface, represents the amount of matter that undergoes
the phase transformation per unit time. It is therefore a
“flux” of atoms through the interface that is linearly related
to some driving forces, in the frame of Onsager theory of
out-of-equilibrium thermodynamics, and that accounts for
interfacial kinetic effects. On the other hand C is a conserved
field and obeys the continuity equation

Ċ = −∇ · J, (2)

where J is the diffusional flux. This equation holds in the bulk
and in the interface region. Therefore J plays a twofold role:
it describes the diffusion in the bulk, and it is the second flux
that accounts for kinetic effects at the interface.

The driving forces, to which φ̇ and J are linearly related
in the framework of Onsager theory, are derivatives of the
free energy functional G with respect to the fields φ and C

(variational formulation). The driving force conjugated to φ̇ is
−δG/δφ and the driving force conjugated to J is −∇δG/δC.
The phase-field equations of motion give the linear relations
between the driving forces and the fluxes with the mean of a
2 × 2 symmetric matrix, and we choose in the following to
express driving forces in terms of fluxes (in Appendix B we
present the equations of motion for a matrix giving fluxes
in terms of driving forces). The equation giving −δG/δφ

is scalar, and the equation giving −∇δG/δC is vectorial.
Thus, the diagonal elements of the Onsager matrix, giving the
proportionality between conjugate quantities, are scalar, and
the nondiagonal element or cross-term is vectorial. Moreover
the equation giving −δG/δφ has to vanish in the bulk even
though J does not. Therefore the cross-term is very naturally
written proportional to W∇φ, which is a vector perpendicular
to the interface that has a vanishing norm in the bulk and a norm
of order unity within the interface. The phase-field equations
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are thus written

−δG

δφ
= τ (φ) φ̇ + [M(φ)W∇φ] · J, (3)

−∇ δG

δC
= [M(φ)W∇φ] φ̇ + J

D(φ)
. (4)

The diagonal terms are parametrized by the time scale τ (φ)
and the diffusion coefficient D(φ) [18]. The cross-terms are
parametrized by the inverse velocity scale M(φ).

Note that the use of ∇φ to introduce a vectorial quantity out
of the scalar field φ was initiated in the antitrapping model [12].
However, this model does not obey Onsager symmetry since
it introduces the cross-term in Eq. (4) and not in Eq. (3). This
was noted only very recently [19], and cross-terms were then
introduced in a proper way in Refs. [10] and [11].

Note also that linear out-of-equilibrium thermodynamics
correspond to small deviations of the fluxes φ̇ and J from 0.
Therefore, the quantity [M(φ)W∇φ] may be introduced
in Eqs. (3) and (4) through its equilibrium distribution
[M(φeq)W∇φeq] where φeq verifies δG/δφ = 0. However, it
is more computationally convenient to calculate the gradient
of the existing field φ than having the equilibrium distribution
φeq as an input. Close to equilibrium the two possibilities are
equivalent.

Stability and dissipation. To ensure the thermodynamical
stability of the phase-field model, the diagonal terms have to
be positive:

τ (φ) > 0, and D(φ) > 0. (5)

In addition, the determinant

�PF = 1 − [M(φ)W∇φ]2D(φ)

τ (φ)
(6)

must also be positive, leading to some restriction on the
absolute value of M(φ). Close to equilibrium this restriction
reads

M2(φeq) <
τ (φeq)

D(φeq)(W∇φeq)2
. (7)

The inequalities (5) and (7) ensure that the dissipation

R = 1

2

∫
V

dV

[
− φ̇

δG

δφ
− J · ∇ δG

δC

]

= 1

2

∫
V

dV

[
τ (φ)(φ̇)2 + J2

D(φ)
+ 2M(φ)Wφ̇∇φ · J

]
(8)

is positive whatever φ and C.

B. Reduction to the kinetic boundary conditions
in the macroscopic approach

In the macroscopic description, the interface is a sharp
boundary (zero thickness) between domains where the bulk
equations hold. The free boundary problem then requires some
conditions at the interface. First, one has a mass conservation
equation. Second, one has to prescribe the concentration on
both sides of the interface. Without kinetic effects, the con-
centrations at the interface are the equilibrium ones (possibly
incorporating a Gibbs-Thomson correction). When kinetic
effects are present, the concentrations deviate from equilibrium

ones. Within the Onsager approach of out-of-equilibrium ther-
modynamics, these deviations are representing driving forces
that are linearly related to some fluxes through the interface.
Driving forces and fluxes should be chosen appropriately in
order to have couples of conjugated quantities.

In the case of binary alloys or in the case of steps dynamics
in MBE (that are closely related formally), two driving forces
and two fluxes are required to describe interface kinetics. We
therefore have three independent kinetic coefficients that are
elements of a 2 × 2 symmetric Onsager matrix. The choice
of the two couples of conjugate quantities (the basis) is
completely arbitrary, and each choice is valid. However, each
problem has its own commonly used basis. We will present in
the next section about steps dynamics in MBE the link between
the kinetic coefficients whether using the commonly used basis
in binary alloy problems or the commonly used basis in MBE.

1. Kinetic boundary conditions

In binary A-B alloy problems, one has, in dimensionless
form, the chemical potential of A atoms in phase i (i = 0,1),
μ

(i)
A (C) = gi(C) − Cg′

i(C), and the chemical potential of B
atoms in phase i, μ

(i)
B (C) = gi(C) + (1 − C)g′

i(C). C is the
concentration of B atoms and gi(C) is the dimensionless free
energy density as a function of C of phase i as mentioned
before. One usually uses instead the grand potential μ

(i)
A (C)

and the diffusion chemical potential μ(i)(C) = μ
(i)
B (C) −

μ
(i)
A (C) = g′

i(C). For an interface between phase 1 and phase
0, one then considers the driving forces

δμA(C1,C0) = μ
(0)
A (C0) − μ

(1)
A (C1),

δμ(C1,C0) = μ(0)(C0) − μ(1)(C1),

where Ci is the concentration in phase i at the interface. At
equilibrium, we have δμA(Ceq

1 ,C
eq
0 ) = δμ(Ceq

1 ,C
eq
0 ) = 0 with

C
eq
i the equilibrium concentration in phase i. Near equilibrium,

we have

δμA ≈ C
eq
1

(
C1 − C

eq
1

)
g′′

1

(
C

eq
1

) − C
eq
0

(
C0 − C

eq
0

)
g′′

0

(
C

eq
0

)
,

δμ ≈ (
C0 − C

eq
0

)
g′′

0

(
C

eq
0

) − (
C1 − C

eq
1

)
g′′

1

(
C

eq
1

)
, (9)

where g′′
i (C) is the second derivative of gi(C) with respect to

C. One then writes the linear relations

δμA = ĀV + B̄JB, (10)

δμ = B̄V + C̄JB, (11)

where V is the flux conjugated to δμA and JB the flux
conjugated to δμ. V represents the total flux of atoms through
the interface (atomic volume times the number of atoms A
and B that are undergoing the phase transformation per unit
time and per unit area) and is actually the normal velocity
of the interface. JB is the flux through the interface of B
atoms only. Ā, B̄, and C̄ are the three independent Onsager
kinetic coefficients. The Onsager matrix is definite positive
if the “growth kinetic coefficient” is positive Ā > 0, the
“diffusional resistance” of the interface (in analogy to the
Kapitza resistance in the thermal problem) is positive C̄ > 0
and the determinant is positive ĀC̄ − B̄2 > 0. The positive
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definiteness ensures that the interface dissipation

Rint = (δμAV + δμJB)/2 = ĀV 2/2 + C̄J 2
B/2 + B̄V JB

(12)

is positive whatever V and JB . The normal gradients of
concentration at the interface, i.e, the diffusion fluxes through
the interface, are related to V and JB using the following mass
conservation equations [20]:

−D1∇C|1 · n = V C1 − JB, (13)

−D0∇C|0 · n = V C0 − JB. (14)

D1 (D0) is the diffusion coefficient in phase 1 (phase 0), ∇C|1
(∇C|0) is the gradient of concentration at the interface on the
side of phase 1 (phase 0), and n is the normal to the interface.

2. Link between boundary conditions and phase-field parameters:
reduction procedure

We now present the procedure to determine the correspon-
dence between the coefficients Ā, B̄, and C̄ and the parameters
of the phase-field model. Let us consider the coordinate x of
a one-dimensional infinite system with an interface centered
at x = 0. The interface connects phase 1 (φ(−∞) = 1) and
phase 0 (φ(+∞) = 0). The total dissipation in this system
[see Eq. (8)] is

R = 1

2

∫ −δ

−∞
dx

J 2(x)

D1
+ 1

2

∫ ∞

δ

dx
J 2(x)

D0

+ 1

2

∫ δ

−δ

dx

[
τ (φ)(φ̇)2 + J 2(x)

D(φ)
+ 2M(φ)Wφ̇φ′(x)J (x)

]
,

where δ ∼ W is such that φ(x < −δ) ≈ 1 and φ(x > δ) ≈ 0,
and where D1 = D(φ = 1) and D0 = D(φ = 0). In the bulk
(|x| > δ) where φ̇ = 0 and φ′ = 0, only the diffusion flux
J (x) = J contributes to the dissipation, and the macroscopic
length scale that characterizes its variations is much larger than
δ ∼ W . Within the macroscopic approach with an infinitely
sharp interface, the dissipation in the same system is expressed
through the diffusional flux in phase 1 and in phase 0 [which
are corresponding to J (x) for x < −δ and x > δ, respectively]
as

1

2

∫ 0

−∞
dx

J 2(x)

D1
+ 1

2

∫ ∞

0
dx

J 2(x)

D0
+ Rint.

In order for the latter dissipation function to be equal to R,
and taking into account that J (−δ > x > 0) ≈ J (−δ) = J1

and J (0 < x < δ) ≈ J (δ) = J0 due to the small variations of
J (x) in the bulk, one may write the dissipation ascribed to the
interface within the phase-field model as

Rint = 1

2

∫ δ

−δ

dx

[
τ (φ)(φ̇)2 + J 2(x)

D(φ)
+ 2M(φ)Wφ̇φ′(x)J (x)

]

− 1

2

∫ 0

−δ

dx
J 2

1

D1
− 1

2

∫ δ

0
dx

J 2
0

D0
. (15)

In order to identify Eq. (15) with Eq. (12), one should express
the fluxes φ̇ and J (x) in terms of V and JB . This is done using
a quasisteady approximation that assumes large gradients of
φ and C across the interface compared with bulk ones. This

gives for φ̇:

φ̇ ≈ −V φ′(x). (16)

For the concentration field, the quasisteady approximation
Ċ ≈ −V C ′(x) allows us to integrate the continuity equation
Ċ = −J ′(x). Then choosing −JB as an integration constant
yields

J (x) ≈ V C(x) − JB, (17)

which corresponds to Eqs. (13) and (14) near the interface.
Close to equilibrium, i.e., for linear kinetic effects, we have
V φ′(x) ≈ V φ′

eq(x) and V C(x) ≈ V Ceq(x) where φeq(x) and
Ceq(x) are the equilibrium distributions of φ and C. Rint in
Eq. (15) may therefore be written

Rint = 1

2

∫ δ

−δ

dx{τ (φeq)[φ′
eq(x)]2V 2

− 2M(φeq)W [φ′
eq(x)]2V [V Ceq(x) − JB]}

+ 1

2

∫ δ

−δ

dx

{
[V Ceq(x) − JB]2

D(φeq)
− J 2

1

2D1
− J 2

0

2D0

}
,

(18)

where J1 ≈ V C
eq
1 − JB and J0 ≈ V C

eq
0 − JB with C

eq
1 and

C
eq
0 the equilibrium concentrations of phase 1 and phase

0, respectively. The range of integration δ is chosen such
that φ′

eq(|x| > δ) ≈ 0, Ceq(x < −δ) ≈ C
eq
1 , and Ceq(x > δ) ≈

C
eq
0 . On one hand, the integrand of the first integral thus

vanishes for |x| > δ. On the other hand, in the second integral,
the integrand for x < −δ is the opposite of the integrand
for x > δ. Therefore, the integrations in Eq. (18) may be
performed from −∞ to +∞ leaving Rint unchanged and
independent of δ. Identifying with Eq. (12) then yields

Ā =
∫ ∞

−∞
dx τ (φeq)[φ′

eq(x)]2

− 2
∫ ∞

−∞
dx M(φeq)W [φ′

eq(x)]2Ceq(x)

+
∫ ∞

−∞
dx

[
C2

eq(x)

D(φeq)
−

(
C

eq
1

)2

2D1
−

(
C

eq
0

)2

2D0

]
, (19)

B̄ =
∫ ∞

−∞
dx M(φeq)W [φ′

eq(x)]2

−
∫ ∞

−∞
dx

[
Ceq(x)

D(φeq)
− C

eq
1

2D1
− C

eq
0

2D0

]
, (20)

C̄ =
∫ ∞

−∞
dx

[
1

D(φeq)
− 1

2D1
− 1

2D0

]
. (21)

This physically motivated and rather technically simple reduc-
tion procedure for deriving Ā, B̄, and C̄ basically corresponds
to the idea underlying the asymptotic matching in the thin-
interface limit [13]. Although no doubt exists concerning
the ability of the latter to reproduce the results given by
Eqs. (19), (20), and (21), we did not find in the literature
such a presentation. This set of equations is one of the main
results in this article. Indeed, it provides the link in very general
terms between the parameters entering the equations of motion
Eqs. (3) and (4) and the kinetic boundary conditions (10)
and (11) at the interface. The specification of τ (φ), M(φ),
D(φ), φeq(x), and Ceq(x) through the details of the phase-field
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model then allows us to have explicit expressions for Ā, B̄,
and C̄. We give in the following the explicit results of this
reduction procedure for constant τ and M in two cases: for
a constant diffusion coefficient and for the one-sided model
(where the diffusion is neglected in the growing phase). The
general equations (19), (20), and (21) will also be used in order
to derive the kinetic boundary conditions corresponding to the
phase-field model for step dynamics in MBE presented in the
next section.

An alternative way to derive the coefficients Ā, B̄, and C̄,
which is followed in our previous article [10], consists in
integrating the equations of motion (3) and (4) across the
interface. The chemical potentials are then calculated at a
distance of order W away from the center of the interface.
This corresponds to the omission of the subtraction of the last
two terms in Eq. (15). The kinetic coefficients Ā, B̄, and C̄
then depend on the range of integration. Below we discuss
this issue with an explicit example. However, the present
description with the subtraction of the bulk dissipation in the
interface region corresponds to the asymptotic matching in the
thin-interface limit and is necessary in order to properly derive
the macroscopic kinetic boundary conditions.

Equation (15) or (18) for Rint involves integrals over a
range of order W . The reduction procedure presented here may
thus be used for a curved interface, x representing the normal
direction, as long as its curvature is much smaller than 1/W .
Then δμA is corrected by the Gibbs-Thomson effect, which
is proportional to the interface energy and may be obtained
by the integration of the Laplacian of φ in Eq. (3). We do
not discuss surface diffusion and stretching effects [12] at a
curved interface that are generically smaller than kinetic effects
in the macroscopic limit. The interface energy may depend
on the orientation of the interface and such a dependence
should then be introduced in the phase-field model through an
orientation dependence of W . Moreover, the kinetic properties
of the interface may also depend on its orientation, and the
phase-field parameters τ (φ), D(φ), and M(φ) may then exhibit
such a dependence. However, we do not discuss those issues
here.

3. Positiveness and nonpositiveness of the Onsager matrix

It is clear from the expressions for Ā, B̄, and C̄ given by
Eqs. (19), (20), and (21) that, even if the phase-field model is
perfectly stable, the subtraction in Eq. (15) or (18) does not
guarantee the positiveness of the Onsager matrix of kinetic
coefficients in the corresponding macroscopic description.
In other words, fulfilling the conditions τ (φ) > 0, D(φ) > 0
and the inequality (7) does not ensure Ā > 0, C̄ > 0, and
ĀC̄ − B̄2 > 0. If the matrix of kinetic coefficients is not
positive definite, the effective dissipation Rint that is ascribed
to the interface within the phase-field model may then be
negative. Two cases should thus be considered. When the
conditions Ā > 0, C̄ > 0, and ĀC̄ − B̄2 > 0 are fulfilled, i.e.,
when the matrix of kinetic coefficients is positive definite,
a direct comparison of the phase-field simulations with time-
dependent calculations within the macroscopic approach using
Ā, B̄, and C̄ can be done. In the opposite case, one cannot
make this comparison because the time dependent calculations
within the macroscopic approach exhibit strong “unphysical”

instabilities [19] (these instabilities do not exist in the underly-
ing phase-field model). Actually, the characteristic length scale
λ of the localized unstable mode is small, being of order W .
It therefore does not fall into the range of applicability of the
reduction procedure presented above, since the latter assumes
that W is much smaller than any macroscopic length scale of
the diffusion field in the bulk. Thus, this “unphysical” short
length instability formally exists in the derived macroscopic
description but does not appear in the underlying phase-
field model. It is easy to understand that indeed λ ∼ W

using the simple situation of a steady diffusion flux across
an immobile interface between two phases with the same
diffusion coefficient D. In this case, the boundary conditions
at the interface only involve the diffusional resistance C̄. It may
be shown using a linear stability analysis that, when C̄ < 0,
an unstable localized mode with a short length scale λ ∼ D|C̄|
exists. In the phase-field model, we have C̄ < 0 when D(φ)
exhibits a maximum in the interface region [see Eq. (21)].
Since D(φ) > 0, the maximum magnitude of |C̄| in this case
is of order W/D. We thus have λ ∼ W .

Although this strong short length scale instability prohibits
direct numerical simulations within the macroscopic approach,
one still may perform long wave length analytical calculations
formally ignoring this instability. Then these analytics may be
compared with phase-field simulations, and such a comparison
will be presented in our study of step-bunching instability in
the next section.

The fact that the phase-field model may be stable with the
corresponding matrix of kinetic coefficients being nonpositive
definite shows that, in its simplest form, the macroscopic
approach fails to fully describe the variety of situations allowed
by the phase-field model. This suggests that some interfaces in
“exotic” materials may exhibit a nonpositive definite effective
Onsager matrix of macroscopic kinetic coefficients.

C. Explicit results of the reduction procedure:
Constant diffusion coefficient and one-sided model

Now we give the results of the reduction procedure
presented in the previous paragraph for two models of binary
alloys phase transformations: a model where the diffusion
coefficient is constant and the one-sided model where the
diffusion is neglected in the growing phase. For simplicity
we assume that τ and M are constant, i.e.,

τ (φ) = τ and M(φ) = M. (22)

In order to have explicit formulas for the equilibrium profiles
φeq(x) and Ceq(x), one should then choose the phase-field
potential f (φ) and the chemical free energy density g(φ,C).
A usual choice for the phase-field potential is a double-well
potential of the form

f (φ) = φ2(1 − φ)2, (23)

for which we have

φeq(x) = {1 − tanh[x/(
√

2W )]}/2.

For the chemical free energy density, one may choose parabolic
variations with the concentration C [21]:

g(φ,C) = 1
2

[
C − C

eq
0 − q(φ)

(
C

eq
1 − C

eq
0

)]2
(24)
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with

q(φ) = φ3(10 − 15φ + 6φ2),

leading to

Ceq(x) = (
C

eq
0 + C

eq
1

)/
2 + v(x)

(
C

eq
1 − C

eq
0

)/
2,

where v(x) = −v(−x) = 2q[φeq(x)] − 1.

1. Constant diffusion coefficient

For a constant diffusion coefficient D(φ) = D we have,
according to Eqs. (19), (20), and (21) where D1 = D0 = D:

Ā = ατ

W
− βW

(
C

eq
1 − C

eq
0

)2

4D
− αM

(
C

eq
1 + C

eq
0

)
,

B̄ = αM,

C̄ = 0,

where

α = W

∫ ∞

−∞
dx[φ′

eq(x)]2 ≈ 0.23570,

(25)

β =
∫ ∞

−∞

dx

W
[1 − v2(x)] ≈ 1.40748.

The diffusional resistance of the interface C̄ vanishes in this
case. For M = 0, one recovers the well-known results of the
thin-interface limit [13] and its translation to the alloy problem
with a concentration field [14], where only Ā is nonvanishing.
For τ < β(Ceq

1 − C
eq
0 )2W 2/(4αD), one then has a negative

growth kinetic coefficient Ā < 0. When the cross-coupling
M �= 0 is introduced in the phase-field equations, the dif-
fusional resistance vanishes also but the cross-coefficient B̄
exists. One then has in all cases ĀC̄ − B̄2 < 0.

Note that the expressions for Ā, B̄, and C̄ given above are
equivalent to Eqs. (22), (23), and (24) in Ref. [10] with δ = 0.
This illustrates the difference of reduction procedure as here in
comparison with Ref. [10] as described in the last paragraph.
More precisely, the subtraction of the last two terms in Eq. (15),
which is not performed in Ref. [10], leads to δ-independent
kinetic coefficients here.

2. One-sided model for binary alloy solidification

In the one-sided model for solidification of binary alloys,
the phase 1 (the solid) corresponding to φ = 1 grows at the
expense of phase 0 (the liquid) corresponding to φ = 0. The
diffusion coefficient in phase 1 is much smaller than in phase
0, i.e., D1 � D0. In this case, the diffusional flux in phase 1
is small and can be neglected. According to Eq. (13), we thus
have, close to equilibrium:

JB = V C
eq
1 .

The differences of chemical potentials then read

δμA = (
Ā + B̄C

eq
1

)
V,

δμ = (
B̄ + C̄C

eq
1

)
V.

According to Eqs. (19), (20), and (21), the combinations
Ā + B̄C

eq
1 and B̄ + C̄C

eq
1 are independent of D1, and therefore

the differences of chemical potentials depend only on the

diffusion coefficient in the liquid D0. We write the phase-field
dependence of the diffusion coefficient as

D(φ) = D0(1 − φ), (26)

such that D(φ = 1) = 0 in phase 1 and D(φ = 0) = D0 in
phase 0. According to Eqs. (20) and (21) we have

B̄ + C̄C
eq
1 = αM −

(
C

eq
0 − C

eq
1

)
Wρ

2D0
, (27)

where α is given in Eq. (25) and

ρ =
∫ ∞

−∞

dx

W

φeq(x) − v(x)

1 − φeq(x)
≈ 2.12132.

According to Eqs. (19) and (20) we have

Ā + B̄C
eq
1 = ατ

W
−

(
C

eq
0 − C

eq
1

)2
Wζ

4D0

−C
eq
0

[
B̄ + C̄C

eq
1

]
, (28)

where

ζ =
∫ ∞

−∞

dx

W

1 − v2(x)

1 − φeq(x)
≈ 3.42778.

Antitrapping model. In the phase-field modeling of solidi-
fication, it is often assumed that there is no jump of diffusion
chemical potential at the interface, i.e., δμ = 0. Here this is
provided by

M = M∗ =
(
C

eq
0 − C

eq
1

)
Wρ

2αD0
,

so that the r.h.s. of Eq. (27) vanishes. The antitrapping current
Jat [11,12], such that [see Eq. (4)]

J = −D(φ)∇ δG

δC
+ Jat,

then reads

Jat = −D(φ)M∗Wφ̇∇φ

= −ρ
(
C

eq
0 − C

eq
1

)
2α

(1 − φ)W 2φ̇∇φ.

In this frame, δμA is obtained through Eq. (28) with M = M∗,
i.e., B̄ + C̄C

eq
1 = 0:

δμA =
[
ατ

W
−

(
C

eq
0 − C

eq
1

)2
Wζ

4D0

]
V.

In addition to δμ = 0, one may require also δμA = 0 in order
to fully eliminate kinetic effects at the solidification front. This
is provided by the choice

τ = τ ∗ = ζ
(
C

eq
0 − C

eq
1

)2
W 2

4αD0
,

which lies in the range of stability of the phase-field model
since the inequality (7) with M = M∗ and τ = τ ∗ holds.

Therefore the equations of motion (3) and (4) with a
diffusion coefficient given by Eq. (26) and where the free
energy functional in Eq. (1) is specified by Eqs. (23) and (24)
gives δμ = 0 at the solidification front when M = M∗ and in
addition gives δμA = 0 when τ = τ ∗.
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III. STEPS DYNAMICS IN MOLECULAR-BEAM-EPITAXY
(MBE)

We now present our study of steps dynamics in MBE. We
first give a brief overview of the macroscopic description of
steps dynamics, and especially the kinetic boundary conditions
at the steps (for more details, see Ref. [5]). Second, we
present the phase-field model and the corresponding kinetic
boundary conditions derived using the reduction procedure
presented in general terms in the previous section. We finally
perform simulations of the presented phase-field model for the
step-bunching instability and compare the numerical results to
analytical predictions within the macroscopic approach.

A. Macroscopic description of steps dynamics

In MBE, one usually assumes that the adatom concentration
c on a terrace obeys a two-dimensional diffusion equation:

ċ = D∇2c + F − c/τv, (29)

where F is the flux of adatom from the beam and τv is
a characteristic time for desorption of adatoms from the
terrace back to the vapor. The concentration c represents
the surface density of diffusing adatoms on a terrace and
c = 1 corresponds to the surface density of the crystal. At
equilibrium, the adatom concentration on the terraces is
constant and equal to ceq. When Fτv − ceq �= 0, the system
is driven out of equilibrium and gradients of concentration
appear on the terraces. At a step, the mass conservation is
written

V = D(∇c|+ − ∇c|−) · n, (30)

where n is the unit vector normal to the step, V is the normal
velocity of the step and ∇c|+ (∇c|−) is the concentration
gradient at the step on the side of the lower (upper) terrace.
Two macroscopic length scales are present in this problem,
i.e.,

√
Dτv and D/V . When Fτv − ceq � 1, one may use

the quasistatic approximation, ċ = 0. One then has D/V 
√
Dτv .
In absence of kinetic effects, the adatom concentration at

the step c+ (c−) on the lower (upper) terrace is equal to ceq.
When attachment kinetics are relevant, c+ and c− are related
to the diffusional fluxes by the kinetic boundary conditions:

D∇c|+ · n = ν+X+ + ν0(X+ − X−), (31)

−D∇c|− · n = ν−X− + ν0(X− − X+), (32)

where X± = c± − ceq. The kinetic coefficient ν+ (ν−) de-
scribes the attachment of adatoms from the lower (upper)
terrace to the step, while ν0, called step transparency [22],
describes atomic exchanges between terraces without attach-
ment to the step (see Fig. 1).

The possibility of having ν+ �= ν− is called the Ehrlich-
Schwoebel (ES) effect [6,7]. It accounts for the difference
of energy barrier for adatoms to attach to the step whether
coming from the lower or from the upper terrace. The ES
effect is responsible for instabilities such as step bunching [7]
or meandering [8].

Analogy with the binary alloy problem. By subtracting
Eq. (14) from Eq. (13) with D1 = D0 = D and C1 = C0 + 1,
one recovers Eq. (30). Hence the problem of steps dynamics

F

ν0

φ

1
0

−1
−2

c/τv
ν− ν+

x

FIG. 1. Schematic representation of the physical mechanisms at
play for steps dynamics in molecular-beam-epitaxy (MBE). The flux
F from the beam produces an out-of-equilibrium concentration c of
adatoms on the terraces. These adatoms diffuse on the terraces and
may desorb back to the vapor with a characteristic time τv . The dashed
line represents the advancement of the step due to the attachment of
adatoms from the lower terrace (described by the kinetic coefficient
ν+) and the attachment of adatoms from the upper terrace (described
by the kinetic coefficient ν−). The third kinetic coefficient ν0 describes
atomic exchanges between terraces, without attachment to the step.
Integer values of the phase field φ quantify the height of the crystal
in atomic units.

on a vicinal surface is mathematically equivalent to a problem
of phase transition in a “binary A-B alloy” with an unbounded
concentration C of atoms B. If one considers a distribution of
steps at the surface of a crystal and n denotes the height (in
units of the atomic distance) of the crystal perpendicularly
to its surface, each n represents a different phase of the
“binary alloy” with an equilibrium concentration C

eq
n such

that C
eq
n = C

eq
n−1 + 1. The thermodynamic equilibrium then

consists of a mixture of these phases, and out of equilibrium
the concentration C in the nth phase differs from C

eq
n . The link

between C and the adatom concentration c on the nth terrace
is provided by

c − ceq = C − Ceq
n ,

with C
eq
n = ceq + n.

B. Phase-field model

In this section we present the phase-field model for steps
dynamics in MBE. We give explicit choices for the phase-field
potential, the chemical free energy density, and the diffusion
coefficient. We then use the analogy with the binary alloy
problem presented just above to write the phase-field equations
of motion.

We use the phase field φ to quantify the height of the crystal,
with φ = n on the terraces (see Fig. 1). We use a periodic
potential

f (φ) = [1 − cos(2πφ)]/(2π )

with f (φ + 1) = f (φ). The equilibrium phase-field profile
φeq(x) has no explicit expression but obeys

[Wφ′
eq(x)]2 = 2f [φeq(x)]. (33)

We use a dimensionless chemical free energy density of
parabolic form

g(C,φ) = [C − ceq − p(φ)]2/2,

with

p(φ) = φ − sin(2πφ)/(2π )
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that has the property p(φ = n) = n and p′(φ = n) = p′′
(φ = n) = 0. The equilibrium profile of C is

Ceq(x) = ceq + p[φeq(x)]. (34)

One then defines an adatom concentration

c = C − p(φ)

that is continuous across a step and takes a constant value equal
to ceq at equilibrium.

For simplicity we assume that the time scale τ (φ) and the
inverse velocity scale M(φ) are constant:

τ (φ) = τ and M(φ) = M. (35)

Moreover, all terraces are thermodynamically equivalent, and
therefore the diffusion coefficient on the different terraces is
the same:

D(φ = n) = D. (36)

However, we introduce a variation of the diffusion coeffi-
cient within the interface characterized by the dimensionless
parameter g

D
:

D(φ) = D

1 + g
D

(W∇φ)2
. (37)

We will see later that the introduction of a finite g
D

is crucial
for the development of the step-bunching instability due to the
ES effect within our model. The constraint D(φ) > 0 implies
g

D
> −1/max[(W∇φ)2]. The maximum value of (W∇φ)2

at equilibrium is max[(Wφ′
eq)2] = 2/π . Therefore, close to

equilibrium, the conditions of stability of our phase-field
model read

τ > 0; D > 0; g
D

> −π/2; M2 < (π/2 + g
D

)τ/D. (38)

Finally, for the phase-field model of step dynamics in MBE
detailed above, Eqs. (3) and (4) read

−δG

δφ
= τ φ̇ + (MW∇φ) · J, (39)

−∇ δG

δC
= (MW∇φ) φ̇ + 1 + g

D
(W∇φ)2

D
J, (40)

with

G[C,φ] =
∫

dV

{
H

[
(W∇φ)2

2
+ 1 − cos(2πφ)

2π

]

+ [C − ceq − p(φ)]2/2

}
, (41)

and they are subjected to the inequalities (38). The continuity
equation that takes into account the flux from the beam, and
the desorption effect reads

Ċ = −∇ · J + F − C − p(φ)

τv

. (42)

In the bulk where φ̇ = 0, ∇φ = 0, and δG/δC =
∂g/∂C = C − ceq − p(φ) = c − ceq, we recover the diffusion
equation (29).

C. Relation between phase-field parameters and kinetic
boundary conditions (reduction procedure)

The couples of conjugated fluxes and driving forces that
are commonly used to describe kinetic boundary conditions
at a step in MBE are different than those that are commonly
used to describe phase transformations in binary alloys. In
MBE, the diffusional flux on the lower side (upper side) of
the step ∇c|+ · n (−∇c|− · n) is conjugated to the deviation
from equilibrium concentration on this side X+ = c+ − ceq

(X− = c− − ceq). These two couples of conjugated quantities
are linearly related through the Onsager matrix [17]:

D∇c|+ · n = L+X+ + L0X−,

−D∇c|− · n = L0X+ + L−X−.

According to Eqs. (31) and (32), one thus has

L± = ν± + ν0,

L0 = −ν0.

We now have to express the correspondence between the
difference of chemical potentials δμA and δμ presented in
the previous section and the driving forces X+ and X−. We
consider a step that connects phase 0 (φ = 0,C

eq
0 = ceq) to

phase 1 (φ = 1,C
eq
1 = ceq + 1). Then X+ = C0 − C

eq
0 and

X− = C1 − C
eq
1 . Since the terraces are thermodynamically

equivalent, the dimensionless free energy density g1(C) of
phase 1 and g0(C) of phase 0 are such that g1(C) = g0(C − 1).
Therefore their second derivative that enters the driving forces
δμA and δμ close to equilibrium [Eqs. (9)] are equal, i.e.,
g′′

1 (Ceq
1 ) = g′′

0 (Ceq
0 ), and are set to 1 for convenience. The

driving forces are thus

δμA = ĀV + B̄JB = −ceqX+ + (ceq + 1)X−,

δμ = B̄V + C̄JB = X+ − X−.

Using the macroscopic boundary conditions close to equilib-
rium [see Eqs. (13) and (14)]

D∇c|+ · n = −V ceq + JB,

−D∇c|− · n = V (ceq + 1) − JB,

we obtain

L+(ĀC̄ − B̄2) = Ā + ceq[2B̄ + C̄ceq],

−L0(ĀC̄ − B̄2) = Ā + B̄ + ceq[2B̄ + C̄(ceq + 1)], (43)

L−(ĀC̄ − B̄2) = Ā + (ceq + 1)[2B̄ + C̄(ceq + 1)].

The positive definiteness of this Onsager matrix requires
L+ > 0, L− > 0 and L+L− > L2

0. One may easily check that
(L+L− − L2

0)(ĀC̄ − B̄2) = 1.
At this point we have linked the representations

(δμA,δμ; V,JB ) and (X+,X−; D∇c|+ · n, − D∇c|− · n).
This formal link is actually allowed by the fact that the
contributions from the flux F and from the desorption term
in the integration across the step (of width W ) of the
continuity equation (42) are negligible with respect to the other
contributions. It is clear for example in the case of an isolated
straight step. Its steady-state velocity V , which is the order of
magnitude of the integral over W of Ċ or ∇ · J, is of order
V ∼ (F − ceq/τv)

√
Dτv 
 (F − ceq/τv)W .

One should note that in the above derivation, if one
considers an interface between phases n and n + 1 of the
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“binary alloy,” one just replaces ceq in the above equations
by ceq + n. However, we will see below, when we give the
kinetic coefficients ν+,ν−,ν0 in terms of the parameters of
the phase-field model, that the dependency on ceq and n is
removed. This is necessary since the choice of n is arbitrary.

When one inserts the characteristics of the equilibrium
distributions, which are obeying Eqs. (33) and (34), and the
diffusion coefficient [Eq. (37)] into Eqs. (19), (20), and (21),
we obtain

Ā = ατ

W
− βW

(
C

eq
1 − C

eq
0

)2

4D
− αM

(
C

eq
1 + C

eq
0

)

+
[(

C
eq
1 + C

eq
0

)2

4
+

(
C

eq
1 − C

eq
0

)2

4

χ

α

]
C̄,

B̄ = αM − C
eq
1 + C

eq
0

2
C̄,

C̄ = αWg
D

D
, (44)

where the numerical factors are

α = W

∫ ∞

−∞
dx[φ′

eq(x)]2 =
∫ 1

0
dφ

√
1 − cos(2πφ)

π

= (2/π )3/2,

β =
∫ ∞

−∞

dx

W
[1 − u2(x)] = 4

√
π

∫ 1

0
dφ

p(φ)[1 − p(φ)]√
1 − cos(2πφ)

≈ 0.60595,

χ = W

∫ ∞

−∞
dx [φ′

eq(x)]2u2(x)

=
∫ 1

0
dφ {1 − 4p(φ)[1 − p(φ)]}

√
1 − cos(2πφ)

π

≈ 0.21516,

with u(x) = −u(−x) = 1 − 2p[φeq(x)]. With C
eq
1 = ceq + 1

and C
eq
0 = ceq and the relations in Eqs. (43), the kinetic

coefficients for the steps dynamics in MBE are

ν± =
[

∓ αM + αWg
D

2D

]
�−1, (45)

ν0 =
[
ατ

W
− βW

4D
+ (χ − α)Wg

D

4D

]
�−1, (46)

where

� = ĀC̄ − B̄2 = [ν+ν− + ν0(ν+ + ν−)]−1

= −α2M2 + αWg
D

D

[
ατ

W
− βW

4D
+ χWg

D

4D

]
. (47)

We note that the expressions for ν± and ν0 are indeed
independent of ceq and therefore of n. We see moreover
that the ES effect is due to the cross-terms in the equations
of motion (39) and (40) that are parametrized by M , i.e.,
(ν+ − ν−)� = −2αM .

IV. SIMULATION OF THE STEP-BUNCHING INSTABILITY
DUE TO EHRLICH-SCHWOEBEL EFFECT

We have investigated numerically the step-bunching insta-
bility due to the ES effect in MBE [7]. We consider a vicinal
surface on which a train of parallel equidistant steps (step-flow

2L

X+
1 X−

1

X+
2

X−
2

L1

L2

V1 V2

FIG. 2. Pair of steps that is simulated numerically. The mean
distance L between steps is time independent, and L1 and L2 are time
dependent due to the time-dependent velocities V1 and V2 of the two
steps. X±

1 and X±
2 are the deviations from equilibrium concentrations

(see Appendix A).

regime) may be unstable, and we investigate the mode for
which parallel steps are forming pairs. For the simulations,
two steps are present in a one-dimensional simulation box
described by the coordinate x. The length of the simulation
box is 2L where L is the average distance between the steps.
The boundary conditions at the borders of the simulation
box are such that φ(x = 0) = φ(x = 2L) + 2 and C(x = 0) =
C(x = 2L) + 2. This corresponds to periodic boundary con-
ditions for the adatom concentration c(x = 0) = c(x = 2L).
We define the time-dependent quantity ε(t) such that the
distance L1(t) = [1 − ε(t)]L between two steps decreases
(ε̇ > 0) when V1(t) − V2(t) = Lε̇ > 0, where V1(t) and V2(t)
are the time-dependent step velocities (see Fig. 2). Initially,
ε is set to a small positive value, and we measure ε(t) in the
course of the simulation. The rate λ = ε̇(t)/ε(t) describes a
relaxation to the step-flow regime for λ < 0 and describes an
instability for λ > 0.

In the step-flow regime, the vicinal surface is stable with
ε = 0 and V1(t) = V2(t) = V . We refer to Appendix A for
a derivation of V . When ε �= 0, one has V1 �= V2 and the
system whether relaxes to the step-flow regime with ε̇/ε < 0
or exhibits the pairing instability with ε̇/ε > 0. If one assumes,
in addition to Fτv − ceq � 1, that kinetic effects are small, i.e.,
when the ν are much larger than the velocity scales

√
D/τv

and D/L, one may obtain analytically within the macroscopic
approach (see Appendix A):

λ = − 2D

τ 2
v sinh2 σ

(ν2
+ − ν2

−)�2(Fτv − ceq)

+ 4(cosh σ − 1)(sinh σ − σ cosh σ )

τv sinh3 σ
(Fτv − ceq)2, (48)

where σ = L/
√

Dτv . In terms of the phase-field parameters,
this gives, using Eqs. (45) and (46),

λ(M,g
D

) = 4α2MWg
D

τ 2
v sinh2 σ

(Fτv − ceq)

+ 4(cosh σ−1)(sinh σ−σ cosh σ )

τv sinh3 σ
(Fτv − ceq)2.

(49)

In the following, we compare the rate λ resulting from
the phase-field simulations to the one obtained within the
macroscopic approach. Unfortunately, the solution for λ

converges very slowly to Eq. (49) when τv → ∞ and L → ∞
and being in this limit implies a prohibitive computational cost

022406-9



G. BOUSSINOT AND EFIM A. BRENER PHYSICAL REVIEW E 88, 022406 (2013)

(especially due to the length 2L of the simulation box). We will
therefore compare the rate resulting from phase-field simula-
tions with a semianalytical one computed numerically using
the procedure described in the Appendix A. However, it is very
insightful to analyze the structure of Eq. (49) because it pro-
vides, as we will see below, the qualitative behavior of λ in the
regime that was investigated with phase-field simulations. The
first term on the r.h.s. of Eq. (49) describes the kinetic effects. It
is obtained in the static approximation where ċ is neglected in
Eq. (29). It is proportional to the driving force Fτv − ceq and to
Mg

D
. Therefore the ES effect (ν+ − ν−)�, proportional to M ,

is not the sole ingredient for the instability to occur. A diffu-
sional resistance [coefficient C̄ proportional to g

D
; see Eq. (44)]

of the step is also required. The second term on the r.h.s. of
Eq. (49) does not contain kinetic coefficients and is present in
the case of equilibrium boundary conditions. It accounts for the
convective correction to the concentration field on the terraces
due to ċ. See Appendix A for more details. It is proportional
to (Fτv − ceq)2, is negative and promotes the stability of the
step-flow regime. For the instability to occur, the magnitude of
Mg

D
should therefore be large enough in order for the kinetic

effects to overcome this stabilizing convective effect.
We made simulations with Fτv − ceq = 0.025, L = 20W ,

Dτ/W 2 = 20, and τv/τ = 20 leading to σ = 1. At t = 0, we
set ε(t = 0) = 0.2. As an illustration of the influence on the
stability of the vicinal surface of the ES effect (ν+ �= ν−),
we present, in Fig. 3, ε(t) for g

D
= 5 and MW/τ = ±0.4.

For MW/τ = 0.4, the vicinal surface is unstable and ε(t)
increases exponentially, leading eventually to a collision of
the paired steps for ε = 1. In opposition, for MW/τ = −0.4,
the vicinal surface is stable and ε(t) decreases exponentially
towards ε = 0 and the step-flow regime. Here Fτv − ceq > 0
corresponds to the growth of the crystal, and the vicinal surface
is unstable for ν+ < ν− (M > 0). The opposite case where
ν+ > ν− (M < 0) is often considered [17,23] to be more
realistic, the instability therefore occurring for sublimation,
i.e., Fτv − ceq < 0. We numerically checked, however, that
changing simultaneously the sign of Fτv − ceq and M leaves
all observables unchanged up to the presently desired accuracy
(it is not excluded that higher order calculations may exhibit
odd powers of M multiplied by the square of Fτv − ceq).

For the comparisons of phase-field simulations with the
macroscopic approach, our aim is to focus on kinetic effects

0.2

0.4

0

MW/τ = 0.4

MW/τ = −0.4

(t)

10−4 t/τv

0.1 0.2

FIG. 3. Time evolution of ε in the case g
D

= 5 and for
MW/τ = ±0.4. For MW/τ = 0.4, the vicinal surface is unstable,
i.e., ε increases exponentially. For MW/τ = −0.4, the vicinal surface
is stable, i.e., ε decreases exponentially towards 0.

and the related instability due to the ES effect. For that purpose,
we define

λ̃(M,g
D

) = λ(M,g
D

) − λ(−M,g
D

). (50)

According to Eq. (49), λ̃ represents the first term on the r.h.s.
in Eq. (49) that vanishes for M = 0 or g

D
= 0. We then

compare λ and λ̃ resulting from the phase-field simulations
to the semianalytical ones computed numerically using the
procedure presented in Appendix A as mentioned above.

We first present the investigation of the dependence on g
D

of
λ and λ̃ resulting from phase-field simulations together with
the corresponding result within the macroscopic approach.
We fix |MW/τ | = 0.1 and vary g

D
= −1, 0, 1, 3, 5. In

Fig. 4(a) we present λτv for MW/τ = ±0.1, and in Fig. 4(b)
we present λ̃τv only for MW/τ = 0.1 since by definition
λ̃(−M,g

D
) = −λ̃(M,g

D
). In both cases the simulation results

are in good quantitative agreement with the macroscopic
approach. Moreover, as expected qualitatively from Eq. (49),
the instability (λ > 0) occurs for sufficiently large g

D
when

M > 0, and λ̃ vanishes when g
D

= 0. For g
D

> 0.2, the
determinant � of the macroscopic Onsager matrix in Eq. (47)
is positive. In those cases, one may use the kinetic coefficients
given by Eqs. (45) and (46) to perform time-dependent
calculations within the macroscopic approach and compare
them to phase-field simulations or to the semianalytical

(a)

(b)

MW/τ = 0.1
MW/τ = −0.1

0.8

−0.8

−1.6

2 4 6
g

D−2 0

Δ > 0Δ < 0

104λτv

0.8

1.6

2.4

g
D2 4 60

Δ > 0Δ < 0

−2

104λ̃τv

−0.8

FIG. 4. (a) Dimensionless rate λτv resulting from phase-
field simulations for Mτ/W = 0.1 (crosses) and Mτ/W = −0.1
(circles) and corresponding dimensionless rate within the macro-
scopic approach (line) as a function of g

D
. (b) Dimensionless rate λ̃

resulting from phase-field simulations for Mτ/W = 0.1 (crosses) and
corresponding dimensionless rate within the macroscopic approach
(line) as a function of g

D
. In (a) and (b), the vertical dashed line

separates the regions where the matrix of kinetic coefficients within
the macroscopic approach is positive definite (� > 0) and where it is
not (� < 0).
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104λτv

MW/τ0 0.2 0.4−0.4 −0.2

2

−2

−4

4

MW/τ

103λ̃τv

0.4

0.8

0 0.2 0.4

(a)

(b)

FIG. 5. Comparison of phase-field simulations (crosses) with the
macroscopic approach (line) for g

D
= 5 for the dependence on M of

the dimensionless rate: (a) λτv , (b) λ̃τv . Here � > 0 for the presented
range of MW/τ (see text for details).

solution computed numerically (lines in Fig. 4). As mentioned
in Sec. II B3, this is not possible in the opposite case (� < 0).
This however does not prohibit semianalytical calculations
with � < 0 and their comparison with phase-field simulations,
as presented in the region to the left of the vertical dashed line in
Fig. 4. If g

D
< 0, the stability of the vicinal surface is reversed

and λ > 0 with Fτv − ceq > 0 and M < 0 (for sufficiently
small Fτv − ceq in order to avoid convective effects). The
vicinal surface is then unstable upon growth for a usual sign
of the ES effect (M < 0).

Finally, we present, for g
D

= 5, the dependence on M of
λ in Fig. 5(a) and λ̃ in Fig. 5(b). Again we present λ̃ only
for positive values of MW/τ since λ̃ is an odd function by
definition. Again, the phase-field simulation results are in good
quantitative agreement with the macroscopic approach. More-
over, as expected qualitatively from Eq. (49), the instability
occurs (λ > 0) for sufficiently large M > 0 and λ̃ vanishes
when M = 0. The maximum value of MW/τ , set by the
stability condition (38), is 0.57. Moreover, for MW/τ < 0.51,
the determinant � is positive, and therefore all our calculations
lie in this region.

V. SUMMARY

We have presented a unified description of interface kinetic
effects in phase-field models for isothermal phase transforma-
tions in binary alloys and for steps dynamics in molecular-
beam-epitaxy (MBE). The phase-field equations of motion are
written in a variational form and incorporate the kinetic cross
coupling between the phase field and the concentration field,
presented in a recent Rapid Communication [10]. This cross
coupling generalizes the phenomenology of kinetic effects and

was omitted in classical phase-field models based on the model
C within Hohenberg-Halperin classification [9]. It corresponds
to the terms parametrized by M in Eqs. (1)–(4) for binary
alloys and in Eqs. (39)–(42) for steps dynamics in MBE. The
stability of the phase-field models, i.e., the positiveness of the
dissipation function in Eq. (8), restricts the magnitude of |M|.

In addition, we present the link between the phase-field
model, where the interface (or the step) is smooth and
of finite width, and the macroscopic approach, where the
interface is a boundary and infinitely sharp. We give in
Eqs. (19)–(21) general expressions for the three independent
elements of the symmetric 2 × 2 matrix of kinetic coefficients
that are describing the kinetic boundary conditions within
the macroscopic approach. The derivation is done using
a physically motivated reduction procedure involving the
calculation of the effective dissipation that may be ascribed to
the interface. The positive definiteness of the matrix of kinetic
coefficients is not guaranteed. This means that the domain of
stability of the phase-field model is wider than the one of the
macroscopic approach. The reduction procedure is equivalent
to the thin-interface limit [13] but is technically simpler. We
thus recover the well-known results of the thin-interface limit
for binary alloys in concise terms. In addition we derive the
kinetic boundary conditions for steps dynamics (also described
by three kinetic coefficients) in MBE corresponding to our
phase-field model. The Ehrlich-Schwoebel (ES) effect turns
out to be provided by the cross coupling in the equations of
motion and disappears if M = 0.

We study numerically the step-bunching instability. The
ES effect (M �= 0) is actually not the sole ingredient for
the instability to occur and a “diffusional resistance” of the
step (analogous to the Kapitza resistance in the thermal
problem), parametrized by g

D
, is also required within our

model. We compare the results of the phase-field simulations
with analytical calculations within the macroscopic approach.
This comparison includes some range of phase-field param-
eters where the corresponding matrix of macroscopic kinetic
coefficients is not positive definite.
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APPENDIX A: SOLUTION FOR THE ONE-DIMENSIONAL
DYNAMICS OF PAIRED STEPS

In this appendix we present the one-dimensional macro-
scopic description (coordinate x) of paired steps on a vicinal
surface. We describe the perturbation of the step-flow regime
that leads to a difference of velocity of the two steps V1 − V2.

1. Step-flow regime

In the step-flow regime, the steps are equidistant and move
with the same velocity V1 = V2 = V . All terraces are thus
equivalent with a length L. When the driving force is small
Fτv − ceq � 1, the concentration field on a terrace obeys the
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diffusion equation in the static approximation:

Dc′′(x) + F − c(x)

τv

= 0,

whose general solution reads

c(x) = Fτv + A exp(−x/lv) + B exp(x/lv),

where lv = √
Dτv . At x = 0, the concentration is

c+ = c(x = 0) = Fτv + A + B.

At x = L, the concentration is

c− = c(x = L) = Fτv + A exp(−σ ) + B exp(σ )

with σ = L/lv . We find

A = (X+ − Xv) exp(σ ) − (X− − Xv)

2 sinh(σ )
,

B = (X− − Xv) − (X+ − Xv) exp(−σ )

2 sinh(σ )
,

where X+ = c+ − ceq, X− = c− − ceq, and Xv = Fτv − ceq.
One defines the fluxes

J+ = Dc′(x = 0) = (B − A)Jv

= (X− − Xv) − (X+ − Xv) cosh(σ )

sinh(σ )
Jv,

J− = −Dc′(x = L) = [A exp(−σ ) − B exp(σ )]Jv

= (X+ − Xv) − (X− − Xv) cosh(σ )

sinh(σ )
Jv,

where Jv = D/lv . The kinetic coefficients are defined such
that

J± = (ν± + ν0)X± − ν0X
∓.

The velocity is then

V = J+ + J− = ν+X+ + ν−X−,

and one finds

V = V,

1 + Jv�
ν++ν−

2
cosh(σ )+1

sinh(σ )

1 + 2Jv�ν0
cosh(σ )−1

sinh(σ ) + Jv�
ν++ν−
tanh(σ ) + J 2

v �
,

where

Veq = 2JvXv

cosh(σ ) − 1

sinh(σ )

is the steady-state velocity of the step-flow regime when
kinetic effects are absent (ν ′s → ∞), and where � =
[ν+ν− + ν0(ν+ + ν−)]−1.

2. Paired steps

We now discuss the perturbation of the step-flow regime.
The terraces are denoted by the integer k and the kth terrace
has a length Lk . In the limit of small driving force Xv � 1,
one has V � Jv , and the steady-state velocity V enters the
diffusion equation in the quasisteady approximation for the

concentration field ck(x) on the kth terrace in the form

Dc′′
k (x) + V c′

k(x) + F − ck(x)

τv

= 0.

The solution reads

ck(x) = Fτv + Ak exp
(−x/lD − x

√
1
/
l2
D + 1

/
l2
v

)

+Bk exp
(−x/lD + x

√
1
/
l2
D + 1

/
l2
v

)

 Fτv + exp(−x/lD)[Ak exp(−x/lv) + Bk exp(x/lv)]

with lD = 2D/V 
 lv .
At the kth steps, corresponding for the kth terrace to x = 0,

the concentration is

c+
k = ck(x = 0) = Fτv + Ak + Bk.

At the (k + 1)-th step, corresponding for the kth terrace to
x = Lk , the concentration is

c−
k = ck(x = Lk)

= Fτv + exp(−βσk)[Ak exp(−σk) + Bk exp(σk)]

with σk = Lk/lv and β = lv/ lD = V/(2Jv) � 1.
One finds

Ak = (X+
k − Xv) exp(σk) − (X−

k − Xv) exp(βσk)

2 sinh(σk)
,

Bk = − (X+
k − Xv) exp(−σk) − (X−

k − Xv) exp(βσk)

2 sinh(σk)
,

where X+
k = c+

k − ceq, X−
k = c−

k − ceq.
One defines the fluxes

J+
k = Dc′

k(x = 0) = (−Ak + Bk)Jv − (Ak + Bk)V/2

= (X−
k − Xv) exp(βσk) − (X+

k − Xv) cosh(σk)

sinh(σk)
Jv

− (X+
k − Xv)V/2,

J−
k = −Dc′

k(x = lk)

= [Ak exp(−σk) − Bk exp(σk)] exp(−βσk)Jv

+ [Ak exp(−σk) + Bk exp(σk)] exp(−βσk)V/2

= (X+
k − Xv) exp(−βσk) − (X−

k − Xv) cosh(σk)

sinh(σk)
Jv

+ (X−
k − Xv)V/2.

For βσk � 1, one therefore has

J+
k

Jv


 (X−
k − Xv) − (X+

k − Xv) cosh(σk)

sinh(σk)

−β[(X+
k − Xv) − σk(X−

k − Xv)/ sinh(σk)], (A1)

J−
k

Jv


 (X+
k − Xv) − (X−

k − Xv) cosh(σk)

sinh(σk)

+β[(X−
k − Xv) − σk(X+

k − Xv)/ sinh(σk)]. (A2)

Since the kinetic coefficients are defined by

J±
k = (ν± + ν0)X±

k − ν0X
∓
k∓1,
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we have the set of coupled equations

N±
k X±

k = I±
k X∓

k + ν0X
∓
k∓1 + M±

k Xv

with

N±
k = ν± + ν0 + Jv(1/ tanh(σk) ± β),

I±
k = Jv(1 ± βσk)/ sinh(σk),

M±
k = Jv

[
cosh(σk) − 1

sinh(σk)
± β(1 − σk/ sinh(σk))

]
.

The velocity of the kth step is then

Vk = ν+X+
k + ν−X−

k−1.

For paired steps one has Lk = L[1 + (−1)kε], and then
σk = Lk/lv = σ + (−1)kδσ where σ = L/lv and δσ = εσ ,
such that σ1 = σ − δσ and σ2 = σ + δσ . The system of
equations reads

N±
i X±

i = I±
i X∓

i + ν0X
∓
j + M±

i Xv,

where (i,j ) = (1,2) or (i,j ) = (2,1).
The solution is then given by

X±
i = χ±

i γ ±
j + ρ±

j γ ±
i

ρ±
i ρ±

j − χ±
i χ±

j

Xv

with

χ±
i = ν0(I±

i N∓
j + I∓

j N∓
i ),

ρ±
i = (N+

i N−
i − I+

i I−
i )N∓

j − ν2
0N∓

i ,

γ ±
i = N∓

i (ν0M∓
j + N∓

j M±
i ) + N∓

j I±
i M∓

i .

The difference of velocity is then

V1 − V2 = Lε̇ = ν+(X+
1 − X+

2 ) − ν−(X−
1 − X−

2 ).

The rate of growth or decay λ = ε̇/ε = (V1 − V2)/(Lε) of
the perturbation was computed numerically in order to be
compared with the phase-field simulation results.

However, some analytical progress may be made when, in
addition to the assumption Xv � 1, one assumes that kinetic
effects are small, i.e., that the ν are much larger than the two
velocity scales

√
D/τv and D/L. In this case, λ contains two

main contributions.
Kinetic effects in the static approximation. The first con-

tribution to λ is due to the Ehrlich-Schwoebel effect and is
present in the static approximation β = 0. It is proportional to
the driving force Xv and it may be shown by straightforward
but tedious algebra that it corresponds to the first term on the
r.h.s. in Eq. (48).

Relaxation to the step-flow regime with equilibrium bound-
ary conditions. The second contribution arises from the con-
vection effect β �= 0, is proportional to X2

v , and is present with-
out kinetic effects. Setting X±

k = 0 and V = Veq in Eqs. (A1)
and (A2), one obtains for paired steps with J±

k = J±
k+2:

V1 − V2 = VeqXv[σ2/ sinh(σ2) − σ1/ sinh(σ1)].

In the limit ε � 1, one obtains the rate

ε̇/ε = 2Xv

Veq

lv

sinh(σ ) − σ cosh(σ )

sinh2(σ )
(A3)

that corresponds to the second term on the r.h.s. in Eq. (48).
This term is negative and therefore promotes a relaxation to
the step-flow regime and the stability of the vicinal surface.

APPENDIX B: PHASE-FIELD EQUATIONS OF MOTION
USING AN ONSAGER MATRIX GIVING FLUXES

IN TERMS OF DRIVING FORCES

One may write the equations of motion for the phase field
φ and the concentration field C using an Onsager matrix that
gives fluxes in terms of driving forces, a representation that
may be more familiar to the reader. The equations of motion
then read

φ̇ = (−δG/δφ)/T (φ) + [J (φ)W∇φ] · (−∇δG/δC),

J = [J (φ)W∇φ](−δG/δφ) + D(φ)(−∇δG/δC),

Ċ = −∇ · J,

with the interface width W .
The positive definiteness of the Onsager matrix requires

T (φ) > 0, D(φ) > 0, and D(φ)/T (φ) > [J (φ)W∇φ]2. The
time derivative of the phase-field and the continuity equation
are then written in a simple variational form:

φ̇ = − 1

T (φ)

δG

δφ
− J (φ)W∇φ · ∇ δG

δC
, (B1)

Ċ = ∇ ·
[
D(φ)∇ δG

δC

]
+ ∇ ·

[
J (φ)W

δG

δφ
∇φ

]
. (B2)

When J = 0, one recovers the diagonal model, i.e., model
C [9]. For J �= 0, nondiagonal terms are present providing a
third kinetic velocity scale.

The link with the parameters τ (φ), D(φ), and M(φ) that
enter Eqs. (3) and (4) where the driving forces are given in
terms of the fluxes is provided by

T (φ) = τ (φ)�PF,

D(φ) = D(φ)

�PF
, (B3)

J (φ) = −M(φ)D(φ)

τ (φ)�PF
,

where the determinant given in Eq. (6)

�PF = 1 − M2(φ)D(φ)(W∇φ)2

τ (φ)
= 1 − T (φ)J 2(φ)(W∇φ)2

D(φ)
(B4)

is independent of the used representation. The kinetic coeffi-
cients Ā, B̄, and C̄ may then be obtained in terms of T , J ,
and D inserting the relations (B3) in Eqs. (19), (20), and (21).

In Secs. II C and III B, we assume for simplicity that M

and τ are constants. In this frame, the coefficients T and
J are thus φ-dependent. However, using the representation
where fluxes are given in terms of driving forces, one may
as well assume that T and J are constants, a choice that
simplifies the implementation of the equations of motion
Eqs. (B1) and (B2).
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