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Desorption-induced structural changes of metal/Si(111) surfaces: Kinetic Monte Carlo simulations
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We used a configuration-based kinetic Monte Carlo model to explain important features related to formation of
the (

√
3×√

3)R30◦ mosaic of metal and semiconductor atoms on the Si(111) surface. Using first-order desorption
processes, we simulate the surprising zero-order desorption spectra, reported in some cases of metal desorption
from the Si(111) surface. We show that the mechanism responsible for the zerolike order of desorption is the
enhanced desorption from disordered areas. Formation of the

√
3×√

3 mosaic with properties of a strongly
frustrated antiferromagnetic Ising model is simulated by a configuration-sensitive desorption. For substitution
of desorbed metal atoms by Si adatoms, fast diffusion of the adatoms on top of a 1×1 layer is proposed as the
most probable. Simulations of desorption-induced structural transitions provide us a link between underlying
atomistic processes and the observed evolving morphologies with resultant macroscopic desorption fluxes.
An effect of the desorption sensitivity on a configuration of neighboring atoms is emphasized.
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I. INTRODUCTION

Deposition of metals on the Si(111) surface together with
an appropriate thermal activation results in re-organizing of
surface atoms to a variety of ordered structures, often with
interesting properties. Special attention has been paid
to mosaic phases of two-dimensional (2D) alloys with
(
√

3×√
3)R30◦ symmetry (hereafter denoted as

√
3×√

3 for
simplicity). These structures are usually induced by desorption
of metal atoms (Pb [1–3], Sn [4,5], Tl [6,7]) together with their
substitution by Si atoms.

A significant amount of experimental work published on
the topic can be divided into two categories. First, studies
concerning flux of desorbing atoms, represented mostly by the
thermal desorption spectroscopy (TDS), and second, studies
focused on the morphology of resultant structures mostly by
means of the scanning tunneling microscopy (STM) and the
low energy electron diffraction (LEED).

A surprising feature observed repeatedly when monitoring
a flux of some metal atoms desorbing from semiconductor sur-
faces was a zero-order desorption (ZOD) [1,8–12], meaning in
general that the desorption flux is not dependent on the surface
coverage of desorbing particles. Usually the ZOD indicates
the existence of a 2D gaseous phase (in equilibrium with the
solid phase) from which the desorption is activated [13], or
desorption from defect sites with constant concentration and
accessed via fast diffusion. However, in the case of metal
desorption from the Si(111) surface, none of the explanations
seems to be valid.

Structural properties of mosaic phases and their formation
have been studied both theoretically by ab initio and Monte
Carlo methods and experimentally using STM and LEED.
The experimentally obtained locally ordered mosaic phases
have been explained as a result of a repulsive interaction
of the same-element nearest neighbors [2,5]. Such situation
is an analog of a two-dimensional antiferromagnetic Ising
model in a hexagonal lattice, which is strongly influenced by a
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geometrical frustration of the system. Even though the mosaic
phases are usually prepared by a desorption from phases with
higher coverages of metal atoms, the relation of the mosaic
phase formation to the desorption processes has not been
addressed so far.

In this paper, we study a desorption-induced evolution
of Pb and Tl structures on Si(111) surface, representing
model examples sufficient to study general phenomena of
the transition from the (1×1) to the (

√
3×√

3) phase which
further evolves to the mosaic phase. Kinetic Monte Carlo
(KMC) simulations allowed us to provide an explanation
of experimentally obtained features using a straightforward
atomistic model.

II. KMC MODEL OF DESORPTION

A solid-on-solid KMC implementation of the standard
activation dynamics [14] was used for the simulations. In
the model, the (111) surface is represented by a hexagonal
network of adsorption sites. Atoms of two species (metal
and silicon) are allowed to diffuse within this network. Only
hops to unoccupied nearest positions are allowed. In addition,
the metal atoms are allowed to desorb. Both diffusion and
desorption processes are thermally activated. Desorption of
silicon atoms is prohibited, because of much higher desorption
energy, compared to the metal atoms.

For simulations we developed a code in which all possible
combinations of occupations of nearest and next-nearest
positions are divided into groups of configurations. Each group
is associated with “configurational” energy Ec (metal and Si
atoms) and with desorption energy Edes (metal atoms only).
While Ec represents a local minimum of the surface potential,
Edes represents directly a configuration-specific activation
energy of desorption. The configurations and the correspond-
ing energies must be defined with respect to the simulated
problem while the number of configurations (ruling the number
of model parameters) must be kept as low as possible. For
the studied problem we defined the following configurations,
examples of which can be found in Fig. 1: (1) 1×1—at least
three atoms of the same and no atom of the opposite chemical

022403-11539-3755/2013/88(2)/022403(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.022403
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FIG. 1. (Color online) (a) Examples of configurations (with
respect to the central adatom) belonging to groups named 1×1,√

3×√
3, and “disordered” in text. The black and gray circles

denote positions occupied by a metal and Si adatom. (b) Selected
configurations of metal (M) and silicon (Si) atoms considered in
the model are distinguished by colors (grayscale) in a simulated
morphology.

species are in the nearest-neighboring positions in the 1×1
grid (NN1×1), forming a compact group; (2)

√
3×√

3—no
atoms in NN1×1 and at least two atoms in nearest-neighboring
positions in the

√
3×√

3 grid (NN√
3×√

3) positions; and (3)
“disordered”—plain configurations not belonging to the above
groups, representing atoms in transitional positions without a
favorable arrangement. The group of

√
3×√

3 configurations
is further divided into subgroups with respect to the number
of atoms of the same chemical species in NN√

3×√
3 positions

in order to allow simulation of effective repulsion in the Ising
model.

The activation energy Eact for hopping takes into account
the diffusion energy Edif (corresponding to diffusion of an iso-
lated atom) and both the initial and the final configuration en-
ergies Ec

i and Ec
f , respectively, with parabolic potentials [15],

Eact = Edif + �E

2
+ �E2

16Edif
, �E = (

Ec
i − Ec

f

)
. (1)

Rates of the hopping processes are obtained as R =
ν exp(−Eact

kT
), where ν is the frequency prefactor, k is the

Boltzmann constant, and T is the temperature.
An important process during mosaic phase formation is

the incorporation of a substrate (Si) atom into the
√

3×√
3

structure, called substitution. As the interface between adatoms
and substrate remains in plane according to STM experiments,
the substituting atoms are likely to originate from step edges.
The atom from the step edge may diffuse to the substituting
position either through the adlayer by an exchange diffusion
mechanism, or on top of the adlayer. Our simulations revealed
(not shown here) that barriers allowing diffusion through the
layer result in poorly ordered domains of (1×1) and (

√
3×√

3)
structures, in contrast to experimental observations. On the
other hand, fast diffusion on top of the adlayer results in rapid
occupation of the site in the

√
3×√

3 grid after desorption of
a metal atom. The fast diffusion on top of the adlayer can be
awaited because the potential energy surface is smoothed by
saturation of Si dangling bonds.

In order to minimize the number of model parameters, we
have tested a limit case of infinite diffusion on top of the

adlayer—an artificial substitution, in which an atom desorbed
from the

√
3×√

3 grid is immediately (with probability of
unity) replaced by a Si adatom. Both mechanisms—diffusion
on top of the adlayer and the artificial substitution—give
statistically the same results. Therefore, the latter is used in
the simulations presented in this work.

III. RESULTS AND DISCUSSION

A. Simulations of desorption

Applicability of the model to reproduce experimentally
obtained data was tested on two examples—desorption of
lead and thallium from the Si(111) surface. In both cases,
transition from the (1×1) to the mosaic (

√
3×√

3) phase
during desorption has been observed [1,6,7,10,11].

The initial point for simulations discussed here was a
complete 1×1 monolayer of the fully occupied network in the
case of Pb (which is possibly a minor simplification compared
to real Pb structures; see Ref. [16], and references therein). In
the case of Tl we introduced experimentally obtained defects
[17] within the monolayer, lowering the initial coverage to
0.97 ML.

First we will discuss the case of Pb/Si(111). The desorption
spectra at constant temperatures have been published [1,9–11]
using different experimental techniques: the low-energy ion-
scattering spectroscopy [9], the photoemission spectroscopy
[10], and the Rutherford backscattering [1,11]. Even though
the data are difficult to compare quantitatively (e.g., Pb
desorption rate is higher at 460 ◦C in Ref. [1] than at 480 ◦C in
Ref. [10]), characteristic features are reproduced. At coverages
corresponding to phase transitions, a fast change of desorption
rate is observed. The desorption rate is almost constant before
the transition, suggesting the ZOD. In the following, we will
show that the zerolike order of desorption can be obtained
as a result of the configuration-specific desorption from the
surface.

In Fig. 2 we plot the simulated decrease of coverage
during desorption at constant temperatures (solid lines). The
desorption-related parameters used in the simulation are listed
in Table I. A value of the prefactor was set to 1010 s−1, and
values of desorption energies were adjusted to correspond to

FIG. 2. Simulated isothermal desorption spectra of Pb at several
temperatures. Zero-order desorption in the range 1–0.3 ML is
reproduced. The dashed line is a simulated spectrum at 440 ◦C without
enhanced desorption from disordered positions.

022403-2



DESORPTION-INDUCED STRUCTURAL CHANGES OF . . . PHYSICAL REVIEW E 88, 022403 (2013)

TABLE I. Model parameters used in simulation of Pb desorption.
n denotes the number of atoms of the same chemical species in
NN√

3×√
3 positions.

ν (s−1) Edes
1×1 (eV) Edes√

3×√
3

(eV) Edes
dis (eV)

1010 1.82 2.05 − n × 0.025 1.57

isothermal desorption reported in Ref. [8].1 The overall shape
is in very good agreement with experimental data [1,9–11],
reproducing the fast change of the desorption rate at 0.3
ML related to

√
3×√

3 formation and an almost constant
desorption rate for the coverages from 1 to 0.3 ML. The
constant desorption rate at the constant temperature is an
indication of an apparent ZOD. We proceed by discussing
the driving force of the zerolike order of desorption. In the
simulation, desorption of atoms in the disordered configuration
has been enhanced by decreasing the desorption barrier from
these positions by 0.25 eV compared to the 1×1 configuration
(see Table I). The dashed line in Fig. 2 shows a simulated
decrease of coverage at 440 ◦C without enhanced desorption
from the disordered configurations, Edes

dis = Edes
1×1. In such case,

the knee at 0.3 ML disappears and almost exponential decay
is obtained as in the case of the first-order desorption.

Another indication of the apparent ZOD is the characteristic
sharp peak in TDS, caused by an exponential increase of the
desorption rate (with temperature growing linearly) followed
by a rapid drop off when all material has desorbed. The
simulated TDS spectrum using the same model parameters
as in Fig. 2 is shown in Fig. 3 by the black solid line, clearly
showing the ZOD features. The exponential part is fitted by
the theoretical dependence (red dashed line) with parameter
Eeff = 1.78 eV. The desorption rate of atoms in the disordered
configurations is plotted by the blue dash-dotted line in Fig. 3.
It is evident that the desorption rate of these atoms increases
during the structural transition and vanishes when the surface
reaches coverage allowing incorporation of all atoms in a
stable structure (in our case the

√
3×√

3). In other words,
an enhanced desorption of atoms in disordered configuration
is responsible for the ZOD behavior in our model.

Snapshots of the morphologies obtained by the simulation
of the desorption at 460 ◦C are shown in Fig. 4. Two phases
can be found on the snapshots corresponding to ∼2/3 of
ML [Fig. 4(a)]: the “smooth” 1×1 coexisting with islands
of the

√
3×√

3 phase. Several Pb atoms (light balls) in the√
3×√

3 structure are substituted by Si atoms (dark balls).
Figure 4(b) shows the surface with ∼1/3 of Pb ML, completely
reconstructed to the

√
3×√

3 phase. A small fraction of
substituted atoms can be found. After further desorption, this
fraction increases, resulting in the

√
3×√

3 mosaic phase at
∼1/6 ML coverage.

1Please note that exact fitting of experimental data was not the aim,
since desorption characteristics [1,9–11] do not coincide together
due to different techniques used. Because of the rather small range
of temperatures allowing reasonable observation of desorption, an
impact of the prefactor value is rather small, in other words, after
adjusting desorption energies different values of prefactors could be
used as well.

°

FIG. 3. (Color online) Simulated thermal desorption spectrum of
Pb, temperature increasing with rate 1 K s−1. Black solid line, total
desorption flux; red dashed line, exponential fit; blue dash-dotted
line, desorption flux corresponding to desorption from disordered
positions.

In the case of desorption of thallium from the Si(111)
surface, a different kind of experimental data is available [7].
In Fig. 5, Tl coverages obtained from STM morphologies after
2 min of desorption at various temperatures are plotted by
squares. Contrary to Pb desorption case, the

√
3×√

3 structure
without substitutional Si atoms has not been observed. Instead,
the mosaic phase is formed immediately from the 1×1 phase
by desorption. Previously we have demonstrated that the
observed desorption characteristics can be explained using
a single desorption energy in all adsorption positions, and
the values Edes = (2.1 ± 0.3) eV, ν = 5 × 1014±2 s−1 were
obtained by fitting [7]. Results of the simulation using the
same parameters are plotted in Fig. 5 by the solid line. Not
surprisingly, good agreement is obtained, since KMC and
rate equations (Ref. [7]) are solutions of the same problem.
The advantage of KMC simulations is that morphologies of
simulated and experimental data can be directly compared. The
simulated morphologies of layers after 120 s of desorption at
300 ◦C, 330 ◦C, and 350 ◦C are shown in Fig. 6. Compared
to the STM data [7] a nice agreement is obtained. At a
temperature of 300 ◦C corresponding to the desorption onset,
only small islands of the originating

√
3×√

3 structure are
formed [Fig. 6(a)]. By the desorption at 330 ◦C [Fig. 6(b)],
islands of

√
3×√

3 structure are formed. A significant amount

FIG. 4. Snapshots of simulated Pb morphologies during desorp-
tion from the initial 1×1 structure at 460 ◦C. light (dark) gray balls
represent Pb (Si) atoms. (a) ∼2/3 ML, coexisting 1×1 and

√
3×√

3
structures. (b) ∼1/3 ML,

√
3×√

3 with several substituted atoms.
(c) ∼1/6 ML, mosaic

√
3×√

3 phase.
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°

FIG. 5. Residual Tl coverage after 120 s of desorption as a
function of temperature. Experimental data (squares) are taken from
Ref. [7]; the simulated curve was obtained using the desorption rate
independent on atomic configurations.

of Si substitutional atoms in the
√

3×√
3 structure is caused

by the same probability of desorption from all structures, in
agreement with experiments. The desorption at 350 ◦C results
in the surface being completely covered by the

√
3×√

3 mosaic
phase, as shown in Fig. 6(c).

A TDS curve calculated for Tl desorption (plotted in Fig. 7
by the black solid line) has clearly a first-order character. The
green dashed, red dotted, and blue dash-dotted lines show
desorption from 1×1,

√
3×√

3, and disordered configurations,
respectively. The contribution of the disordered configuration
reaches maximum when amounts of atoms in dense and sparse
structures are comparable.

B. Simulations of the mosaic phase ordering

Ordering of the
√

3×√
3 mosaic phases has been studied

in several works as an example of a 2D antiferromagnetic
Ising system with the hexagonal symmetry [2,5,18]. In the
case of the 1 : 1 ratio of metal and substitutional atoms, the
highly degenerated ground state of the system is represented
by an infinite number of configurations with two same-element
nearest neighbors (SENNs) on average [5]. A geometric
frustration, caused by impossibility to reach zero SENNs on
average, results in only local ordering. Previously, the ordering
has been studied by means of Monte Carlo simulations using
a nonrealistic dynamics based on an exchange of atoms in
neighboring

√
3×√

3 positions [5].

FIG. 6. Snapshots of simulated Tl morphologies obtained after
120 s of desorption at (a) 300 ◦C, (b) 330 ◦C, and (c) 350 ◦C. Light
(dark) gray balls represent Tl (Si) atoms.

°

FIG. 7. (Color online) Simulated thermal desorption spectrum of
Tl (black solid line), temperature increasing with rate 1 K s−1. Green
dashed, red dotted, and blue dash-dotted lines show desorption from
1×1,

√
3×√

3, and disordered configurations.

Since our model is based on hopping within the 1×1
network, an exchange of neighboring atoms can be realized
in a close-to-realistic way and probability of the exchange
can be tested. Considering in-plane hopping limited to the
1×1 network, the process itself consists of several steps, as
depicted in Fig. 8: (1) hopping of an adatom out of a stable√

3×√
3 position “A” to a first transitional position “B,” (2) a

neighboring atom leaving its position, resulting in the second
transitional configuration “C,” and (3) hops of atoms to final
positions “D.” The schematic energy potential profile of the
exchange is shown on the right-hand side in Fig. 8. Since
the activation energies of hops are calculated using Eq. (1),
the barrier of hopping from the stable

√
3×√

3 position
to the transitional position (A to B) is high. Moreover, to realize
an exchange, two such events must appear concertedly before
the atom collapses to the initial position. The energy barrier
for such collapse (B to A) is small. Therefore, in the frame
of our model, a direct exchange can be supposed to be very
rare. Our simulations of the surface covered by 1/6 of Pb ML
and 1/6 of Si ML with the prohibited desorption revealed that
if Edif in Eq. (1) is sufficiently low (otherwise no changes
are observed), rather whole domains of surface rearrange
instead of a pairwise exchange of atoms. Introducing diffusing
vacancies [19] facilitates and speeds up kinetics of the system.
However, the obtained morphologies are less ordered (average
number of nearest neighbors of the same species is higher) than
those observed experimentally [2,5]. The reason is probably
related to a high level of system frustration [20].

In order to provide a mechanism of the observed local
mosaic ordering, we have tested a model utilizing a selective

A B C D

FIG. 8. Step-by-step exchange of two atoms (white and gray
circle) in the

√
3×√

3 network via the 1×1 grid. Right-hand side: A
schematic potential profile along the kinetic pathway of the exchange.
A–D mark local potential minima and corresponding configurations.
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FIG. 9. (a) Simulated morphology of the mosaic phase (1 : 1
ratio Pb : Si) formed by desorption from the

√
3×√

3 phase with
1/3 ML of Pb atoms, with prohibited diffusion. (b) A histogram of
the same-species nearest-neighbors occupancy.

desorption. In this model, the desorption energy depends
linearly on the number of same-species nearest neighbors. In
the simulations further discussed, we started from the

√
3×√

3
lattice fully occupied by metal atoms. During the simulations,
events of desorption with the artificial substitution by Si atoms
were generated. Hopping of atoms was suppressed in the sim-
ulations in order to separate diffusion and desorption effects.
Figure 9(a) shows the simulated morphology corresponding to
the 1 : 1 ratio of metal and Si atoms. The desorption energy
was calculated as Edes√

3×√
3

= (2.05 eV −NNSE√
3×√

3
× �Edes),

where NNSE√
3×√

3
denotes a number of same-species nearest

neighbors in the
√

3×√
3 grid. Since we select the structure

corresponding to the 1 : 1 ratio of metal and Si atoms, the only
important parameter is �Edes/kT . At the given temperature
of 530 ◦C [21], the best agreement with the morphology
published in Ref. [2] was obtained for a value �Edes =
(0.09 ± 0.03) eV. A histogram of the same-species nearest
neighbors calculated from the morphology obtained under

such conditions is shown in Fig. 9(b) and a nice agreement is
obtained with the morphologies observed experimentally [2].

A rough estimate of the value of �Edes can be obtained
from Ref. [2], where the total energies Etot of selected mosaic
configurations of Pb and Si atoms with the 1 : 1 ratio are
calculated using the density functional theory. Assuming Etot

can be separated to the bonding energy to the substrate (the
same in all studied cases) and to the energy of adatom-adatom
interactions, the repulsive term �Etot can be estimated from the
slope of the dependence of Etot on the number of same-element
neighbors in the structure [21]. By this procedure, a value
�Etot = (0.12 ± 0.02) eV per pair is obtained, which is close
to the value used in our simulations.

The above result demonstrates that local ordering can be
achieved without exchange or diffusion processes, solely as
a consequence of the selective desorption and substitution.
However, we note that under experimental conditions the
diffusion cannot be ruled out at elevated temperatures, at
which the mosaic structures are formed. In such case, both
the desorption and the diffusion are likely to influence the
level of ordering.

IV. CONCLUSIONS

A configuration-based KMC model of desorption-induced
structural transitions was used to reproduce experimentally
observed morphologies. We have demonstrated that the se-
lective desorption can explain two important features. First,
the zero-order-like desorption observed in several cases can
be obtained as a result of lower desorption energy of atoms
in disordered configurations. Concentration of these atoms
increases during the transition from the 1×1 to the

√
3×√

3
phase. Second, a local ordering of the mosaic

√
3×√

3
phase can be achieved by setting the activation energy of
the substitution linearly dependent on the number of the
same-element nearest neighbors.
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