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Microbranching in mode-I fracture in a randomly perturbed lattice
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We study mode-I fracture in lattices using atomistic simulations with randomly distributed bond lengths. By
using a small parameter that measures the variation of the bond length between the atoms in perfect lattices and
using a three-body force law, simulations reproduce the qualitative behavior of the beyond-steady-state cracks
in the high-velocity regime, including reasonable microbranching. In particular, the effect of the lattice structure
on the crack appears minimal, even though in terms of the physical properties such as the structure factor g(r) and
the radial or angular distributions, these lattices share the physical properties of perfect lattices rather than those
of an amorphous material (e.g., the continuous random network model). A clear transition can be seen between
steady-state cracks, where a single crack propagates in the midline of the sample, and the regime of unstable
cracks, where microbranches start to appear near the main crack, in line with previous experimental results. This is
seen in both a honeycomb lattice and a fully hexagonal lattice. This model reproduces the main physical features
of propagating cracks in brittle materials, including the total length of microbranches as a function of driving
displacement and the increasing amplitude of oscillations of the electrical resistance. In addition, preliminary
indications of power-law behavior of the microbranch shapes can be seen, potentially reproducing one of the
most intriguing experimental results of brittle fracture. There was found to exist a critical degree of disorder, i.e.,
a sharp threshold between the cleaving behavior characterizing perfect lattices and the microbranching behavior
that characterizes amorphous materials.
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I. INTRODUCTION AND BRIEF REVIEW

Extensive experimental efforts devoted to the study of
mode-I (tensile) fracture in amorphous materials have been
undertaken in the past two decades [1–12] (for a review,
see [13]). In the high-crack-velocity regime, the simple picture
of a rapid steady-state crack generated via a given driving
displacement and exhibiting a given crack velocity (of the
order of the Rayleigh surface wave speed) breaks down
and small microbranches start to appear next to the main
crack [5–10,12]. Upon further increase of the loading, the
microscopic branches transform to large macrobranches.

The experimental observation of this instability has been
the subject of extensive theoretical effort as well. There have
been several attempts within the framework of continuum
models, based on the linear elasticity fracture mechanics
(LEFM) theory [14]. Yoffe predicted that steady-state cracks
will become unstable at a specific crack velocity vcr ≈− 0.73cR ,
based on maximal stress considerations [15]. Another ad hoc
attempt based on energy considerations predicted a critical
velocity of vcr ≈− 0.5cR [16]. However, the mode-I experiments
have shown material-dependent features, refuting those LEFM
predictions. For example, the terminal crack speed observed in
a number of brittle materials varies in the range 0.3 � v/cR �
0.9 (see Table 3 in [13]). In addition, there seems to be no
basis for a universal critical velocity for macroscopic crack
branching with reported values including: 0.18cR–0.3cR for
glass, 0.78cR for poly(methyl methacrylate) (PMMA), and
0.34cR–0.53cR for Homalite-100 [13]. Concerning the critical
velocity for the microbranching instability, Adda-Bedia has
argued for a material-dependent critical velocity, varying in
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the range 0.3 � v/cR � 0.42 (see Fig. 8 in [17]). In addition,
recent works in gels have shown an acceleration dependence
of the critical velocity, up to v � 0.75cR [18]. Earlier hints
for this phenomenon can be found also in [19,20]. Several
LEFM-based works predict a microbranching instability at a
material-dependent critical velocity [17]; however, the specific
parameter that determines the specific critical velocity �(vcr)
is an input parameter to the theory.

Additional efforts have been made to explore the micro-
branching phenomenon based on LEFM [21,22]. However,
as these works themselves argue, although they recover
some features of the microbranching instability, some main
predictions are unphysical. One notable example is the
immediate interruption of energy flow to a newly formed
microbranch, leading to its sudden arrest. These results raise
the possibility that the microbranching phenomenon is a
three-dimensional (3D) phenomenon, while in two dimensions
the high-velocity instability occurs only for extreme crack
velocities (vcr > 0.8cR), as the crack oscillates. This argument
is based on experiments, in both biaxial mode-I cracks in
rubber [23] and pure mode-I experiments in gels [24], and
associated theoretical works [25,26]. However, the mode-I
experiments in PMMA seem to indicate that beyond a certain
crack velocity (especially right before macrobranches appear),
the crack structure that emerges is essentially two dimensional,
at least near the point where microbranches tend to create large
macrobranches [7]. There has been some success in exploring
the instability using phenomenological mesoscale approaches
based on the phase field [27] or on cohesive zones [20,28–30];
these, however, are difficult to quantitatively relate to an
underlying microscopic picture.

The failure of the continuum theory (LEFM) has given
rise to an extensive theoretical effort using atomistic lattice
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models [31–41] and lattice simulations [33,34,38,40–47],
where the inherent divergence of the elastic fields near the
crack tip of the continuum theories is tamed, due to the finite
atomistic lattice scale. These models yield steady-state cracks
without any additional parameters, once the interatomic forces
are specified. Both lattice models and simulations have shown
and reproduced the sharp transition between steady-states
cracks, where only the bonds on the midline of the lattice
are broken, and the postinstability behavior, where beyond
some critical velocity, other bonds start to fail. This critical
velocity was found to have a strong dependence (with 0.3cR <

vcr � cR) on the parameters of the potential, i.e., it is material
dependent. Although the lattice models yield the desired
existence of a critical velocity, regarding the postinstability
point behavior, the success is much less impressive. While
mode-III (out-of-plane shear mode) simulations have shown
the existence of frustrated branching [33,38], similar mode-I
simulations (the mode for which most of the experiments
actually have been performed) have failed to reproduce the
qualitative patterns of microbranches emerging near the main
crack [40,42].

Accordingly, several attempts have been made to try to
simulate cracks in amorphous materials, in which the bulk of
experiments have been performed (e.g., glass, PMMA, and
Homalite-100). Early attempts using the classic binary-alloy
model (using two different kinds of particles) [48] to simulate
an amorphous material failed [49–51]; the crack always
arrested, due to the high mobility of dislocations, resulting
in ductile behavior. Recently, Dauchot et al. [52] succeeded in
generating propagating steady-state cracks using the binary-
alloy model by going to the extreme brittle limit, where the
force falls rapidly to zero for very small strains. However, no
information was reported regarding the high-velocity insta-
bility. Moreover, the radial distribution function (RDF) g(r)
generated from the amorphous model presented in [52] is qual-
itatively different from the g(r) of real amorphous materials.

A different direction was recently proposed [53], based on
a continuous random network (CRN) model for simulating
amorphous materials [54,55]. In this model the sample looks
like a distorted lattice, while each atom shares the same
number of nearest-neighbor atoms. The distortion is large
enough to destroy the lattice peaks of the perfect crystal
and the resulting RDF reproduces very well that of real
amorphous materials, e.g., amorphous silicon. The CRN model
yields both steady-state cracks and the main features of the
microbranching instability, including the increasing size of the
microbranches and the increasing oscillations in the electrical
resistance of a metallic strip deposited on the surface of the
sample (changes in resistance being correlated [7] to the crack
velocity) [53] with increasing external loading. (In [53], using
the CRN model, we noticed that there was no increase in the
amplitude of the oscillations in the main-crack velocity, but
there was a major increase in the amplitude of the oscillations
in the electrical resistance, due to the birth of microbranches.
Thus we prefer to use the terminology of electrical resistance
rather than crack velocity in referring to the results of [7],
etc.) Some works based on an elastic beam model [56,57]
and the Born-Maxwell model [58–60] have shown progress
in recovering some features of unstable mode-I fracture.
However, these are mesoscopic, not microscopic, models;

the relationship between our work and these works will be
analyzed in Sec. V.

In this work we focus on trying to reproduce the successful
results of the CRN model also in lattices (where previous
attempts have failed, as explained above). We hypothesize
that the basic phenomenology of the CRN is due in large
measure to the inherent randomness present in the model. Thus
we introduce a degree of randomness into a standard lattice
model, letting the force law between the atoms vary slightly
by changing randomly the lattice scale a between the atoms.
As a result, the equilibrium locations of the atoms are slightly
changed from their pure lattice locations, according to the
modified force law. By breaking the perfect symmetry of the
original lattice, we will see that it is possible to obtain a realistic
microbranching phenomenon in these simple structures.

This approach has a number of advantages over the CRN
method. First, it is computationally cheaper and it is not
necessary to first create and equilibrate a CRN sample. Second,
the system should be much less noisy, reducing the amount
of averaging (as well as the observation scale) required for
quantitative characterization. In addition, from a theoretical
viewpoint, it is interesting to determine to what extent the
structural disorder present in the CRN, but not in the current
noisy lattice model, is essential for realistic microbranching.

II. MODEL AND MAIN METHODOLOGY

In our model, each bond (between atoms i and j ) has a
specific characteristic equilibrium distance at which the force
is zero. This distance ai,j is taken to vary slightly from the
constant distance a0 by a factor of εi,j , which is drawn from a
uniform distribution:

ai,j = (1 + εi,j )a0, i = 1,2, . . . ,natoms, j ∈ N (i), (1)

where εij ∈ [−b,b] (b is a constant for a given lattice and in
this work is in the range 0 � b � 0.1), a0 = 4, and N (i) refers
to the nearest neighbors of site i.

Between each two atoms there is a piecewise-linear radial
force (two-body force law) of the form

�f R
i,j = kR(|�ri,j | − ai,j )θH (ε − |�ri,j |)r̂j,i , (2)

where the Heaviside step function θH guarantees that the force
drops immediately to zero when the distance between two
atoms |�ri,j | reaches a certain value ε > ai,j (the breaking of a

FIG. 1. (Color online) Typical steady-state perturbed-lattice grid
using b = 10%.
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FIG. 2. (Color online) (a) Radial and (b) angular distributions for a perturbed-lattice mesh with b = 2.5%. (c) Radial and (d) angular
distributions for a perturbed-lattice mesh for b = 10%. (e) Radial and (f) angular distributions for the CRN amorphous mesh.

bond). In this work we set ε = a0 + 1 and the units are chosen
so that the spring constant kR is unity. Potentially, in addition
there is a three-body force law that depends on the cosine of
each of the angles, defined of course by

cos θi,j,k = �ri,j · �ri,k

|�ri,j ||�ri,k| . (3)

In a honeycomb lattice there are three angles associated with
each atom and in the hexagonal lattice there are six of them
(we note that in the hexagonal lattice this choice is a little bit
arbitrary since there are in general additional optional angles
for each atom). There is a certain preferred angle θC for which

the three-body force law vanishes (in the honeycomb lattice we
set θC = 2π/3 and in the hexagonal lattice we set θC = π/3).
The three-body force law that acts on the central atom (atom
i) of each angle may be expressed as

�f θ
i,(j,k) = kθ (cos θi,j,k − cos θC)

∂ cos θi,j,k

∂�ri

θH (ε − |�ri,j |)r̂i

= kθ (cos θi,j,k − cos θC)

[ �ri,j + �ri,k

|�ri,j ||�ri,k| + �rj,i(�ri,j · �ri,k)

|�ri,j |3|�ri,k|

+ �rk,i(�ri,j · �ri,k)

|�ri,j ||�ri,k|3
]

θH (ε − |�ri,j |), (4)
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FIG. 3. (Color online) Radial distribution function g(r) as a func-
tion of r (in lattice scale units) in the perturbed-lattice systems with
different magnitude and in the continuous random network system. A
major qualitative difference can be seen between the two networks.

while the force that is applied on the other two atoms (atoms
j and k) may be expressed as

�f θ
j,(i,k) = kθ (cos θi,j,k − cos θC)

∂ cos θi,j,k

∂�rj

θH (ε − |�ri,j |)r̂j

= kθ (cos θi,j,k − cos θC)

[ �rk,i

|�ri,j ||�ri,k| + �ri,j (�ri,j · �ri,k)

|�ri,j |3|�ri,k|
]

× θH (ε − |�ri,j |). (5)

Of course, the forces satisfy the relation �f θ
i,(j,k) = −( �f θ

j,(i,k) +
�f θ
k,(i,j )).

In addition, it is convenient to use a Kelvin-type viscoelastic
force [35] proportional to the relative velocity between the two
atoms of the bond �vi,j :

�gR
i,j = η(�vi,j · r̂i,j )θH (ε − |�ri,j |)r̂i,j , (6)

with η the viscosity parameter. The viscous force vanishes
after the bond is broken. The imposition of a small amount of
such a viscosity acts to stabilize the system and is especially
useful in the relatively narrow systems simulated herein.

The equation of motion of each atom is then

mi
�̈ai =

∑
j∈N (i)

( �f R
i,j + �gR

i,j

) +
∑

j,k∈N (i)

�f θ
i,(j,k) +

∑
j∈N (i),
k∈N (j )

�f θ
j,(i,k), (7)

where there are 3 terms in the second sum and 6 terms in
the last sum for the honeycomb lattice and 6 and 12 terms

FIG. 4. (Color online) Propagating crack snapshot using a pure
honeycomb lattice using η = 0.25 and 	/	G = 2.7. The crack
bifurcates into two branches that then travel to the end of the sample.

respectively for the hexagonal lattice. The masses mi can also
be set to unity without loss of generality.

The main methodology is as follows: After choosing the
random value ai,j for each bond, we allow the network to
relax through a simple molecular-dynamics Euler scheme, in
accord with Eq. (7), with a nonzero η, until the total energy
is minimized. In Fig. 1 we can see an example of a perturbed
honeycomb lattice with b = 10%, while in Fig. 2 we can
see the distribution of the radial distances of the bonds for a
perturbed lattice with b = 2.5% and 10% along with the CRN,
taken from [53], along with the distribution of bond angles.

We can see the qualitative difference between the perturbed-
lattice mesh and the CRN. While the radial distributions for
the perturbed-lattice mesh are flat in the range of 1 ± b and
then drop immediately to zero (since the random distribution
was taken to be flat in the range of 1 ± b), that for the CRN
has a long tail extending over larger distances. In addition,
the angular distributions are much narrower than the CRN’s
angular distribution.

A powerful tool to check the character of the grid is the RDF.
In Fig. 3 we can see the RDFs of the perturbed lattices and the
CRN. We can see again the qualitative difference between the
meshes. While the CRN looks very much like a real amorphous
material (see [53]), the RDFs of the perturbed lattices look
exactly like a pure lattice RDF (set of δ functions), only slightly
perturbed due to the random noise, even for large r . Thus the
structure of the perturbed lattices is more like a lattice material
rather than an amorphous material.

After relaxing the initial lattice, we strain the lattice under
a mode-I tensile loading with a given constant strain using
a given driving displacement 	 and seed the system with
an initial crack. We let the crack propagate via the same
molecular-dynamics Euler scheme using Eqs. (2)–(7). The
lattice mesh we use contains 162 × 272 ≈ 45 000 (N = 80 in
the Slepyan model notation) atoms for the honeycomb lattice
and 162 × 408 ≈ 65 000 atoms for the hexagonal lattice.

We note that because of the relatively small size of
the lattice we use a large value of η in our honeycomb-lattice
simulation to keep the propagating crack in the middle of the
sample. As a result, we need huge values of 	/	G for the
crack to propagate. This is a numerical artifact, while in larger
(physical) samples, η can be taken much smaller and the value
of 	/	G is more physical. However, the main features are
nevertheless quite similar. In addition, in the hexagonal lattice
(see Sec. IV), we indeed use small values of η and the values
of 	/	G are more realistic.

III. HONEYCOMB LATTICE

Using b = 0, i.e., an unperturbed honeycomb lattice,
we obtain the well-known cleaving behavior (characterizing
crystalline materials) of the crack above threshold. For small
strains we get a perfect steady-state crack, while upon
increasing the driving displacement, the crack bifurcates to two
macrobranches that propagate to the edges of the sample [40].
The same happens in the honeycomb lattice including the
three-body force law, both with a large viscosity and with
a negligible viscosity (Fig. 4).

Using a finite value of b to perturb the lattice, we obtain nice
snapshots of microbranches, very much like those obtained
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FIG. 5. (Color online) (a) Snapshot of a propagating crack using a perturbed-honeycomb-lattice model using b = 10%, η = 2, and
	/	G = 3.8. (b) Snapshot of the overlapping problem. After cracking, the two pieces of the cracked-lattice overlap because bond breakage is
an irreversible process in this model. We note that the length of the largest microbranches is approximately 50 broken bonds, i.e., we checked
that the branches do not correlate with the end of the sample.

using the CRN [53]. In Fig. 5(a) we can see that when the
driving displacement exceeds some value, a large microbranch
starts to appear. In Fig. 6 we can see the final pattern of broken
bonds for two cases, one for η = 2 [Fig. 6(a)] and one for η =
2.5 [Fig. 6(b)]. The patterns looks very much like the fracture
pattern seen using the CRN. Moreover, the microbranches also
look similar to the experimental images of microbranches in
PMMA [5–10]. This is an important result because in this
model such a microbranch pattern appears in a lattice material
using fully 2D atomistic simulations (previously shown by us
using an amorphous material model [53]). For further analysis
on the difference between this current work and previous works
(for example, [29,56–60]), see Sec. V. We note that when the
main crack continues and the microbranch arrests, one piece of
the lattice overlaps with another piece [see Fig. 5(b)]. This is a
nonphysical effect and is caused by the fact that bond breakage
in this model is irreversible. This effect is not large using the
honeycomb lattice, but will be much more pronounced for the
hexagonal lattice.

Beyond obtaining the qualitative features of the micro-
branches, the perturbed-lattice model reproduces the main
semiquantitative results of mode-I fracture beyond the onset of
instability. Because of the chaotic nature of the problem (small
changes in the simulation parameters yield different crack
patterns, but with similar quantitative properties, such as the
crack velocity), we changed the time step by a little bit (±15%)

for each driving displacement 	 to have sufficiently good
statistics on the resulting measurements [about 20 runs for
each point, therefore, each point in Figs. 7(a)–7(c) represents
an average over ≈20 runs]. In Fig. 7 we can see (a) the v(	)
curve, (b) the total length of the microbranches, and (c) the
amplitude of the oscillations of the electrical resistance, which
is correlated [7] to the crack velocity.

The v(	) curve looks very much like the typical v(	) curve
for mode-I fracture (for example, see [40,41,53]). The error
bars represent the statistical error of the crack’s velocity using
several simulations for each 	. The graph of the total length
of the microbranches as a function of the crack’s velocity
is one of the most important results of this work. We can
easily see that the total length of microbranches goes to zero
at small velocities, with a clear growth (near v ≈ 0.57cR)
with increasing velocity (or 	). This is in direct accord with
the experimental results (but instead of a sharp transition
between the steady-state cracks’ area and microbranches’ area,
we get a smooth transition due to the noisy character of
discrete atomistic simulation at smaller scales). Actually, the
experimental results refer to the length of an average single
microbranch, but because the lack of statistics (we have only
a few microbranches in each single simulation, so it is hard
to define the length of an average single microbranch), we
use the total sum of broken bonds instead (besides, of course,
the main crack). This should be a sufficiently close substitute

FIG. 6. (Color online) (a) Pattern of the final cracked lattice using a perturbed-honeycomb-lattice model using b = 10%, η = 2, and
	/	G = 3.8. (b) Same as (a) but with η = 2.5 and 	/	G = 4.
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FIG. 7. (Color online) (a) The v(	) curves measured from simulations of the perturbed honeycomb lattice model using b = 10% with
different η. The error bars were calculated using several simulations, each with a small change in dt , exploiting the chaotic nature of the
problem. (b) Size of the total number of microbranches as a function of the crack velocity v. For small velocities the total size of microbranches
tends to zero (a steady-state crack). (c) Amplitude of the oscillations in the electrical resistance as a function of the crack velocity. Even in
steady-state cracks, the amplitude of the oscillations tends to a certain finite (nonzero) value.

(we see that we do not have just more short microbranches at
large drivings; the size of each microbranch indeed grows).
Compared to the corresponding result using the CRN for
amorphous material [53] [see also the triangles in Fig. 8(b)],
where this transition was not very pronounced, here it is
much clearer. We note that in defining the total size of the
microbranches we subtracted all the microbranches of the size
of one or two broken bonds, which we neglect and treat as
numerical noise.

From Fig. 7(b) we can see that using η = 1.5 yields a
very noisy system and we get either arrested cracks at small
driving or significant microbranching (at larger 	). There is no
intermediate zone of steady-state cracks. Only after increasing
the dissipation to η = 2 do we obtain clear steady-state cracks.
Increasing η further to η = 2.5 does not change the results
appreciably. In addition, the amplitude of the oscillations of
the electrical resistance shows qualitative agreement with the
experimental results, as well as the CRN results [53]. (For
an in-depth discussion of the different terminology between
the crack’s velocity oscillation and the electrical resistance
oscillations and the appropriateness of the latter as a diagnostic,
see [53].) Beyond the critical velocity for steady-state cracks,
the amplitude of the oscillations increases rapidly, while
for smaller velocities the amplitude of the oscillations is
constant.

The sensitivity to the value of b, characterizing the width of
the bond length distribution, was also investigated, exploring
how much we can reduce b and still get a similar micro-
branching pattern, recalling that b = 0 (pure lattice) creates
a cleaving pattern characteristic of crystalline materials. For
b � 1%, the system exhibits pure cleaving behavior, i.e., the
perfect lattice behavior is not a singular case, and the cleaving
pattern is stable to infinitesimal changes in the lattice and
does not produce microbranches. A significant perturbation
is needed to yield microbranching behavior. In fact, even for
b = 2.5%, the microbranches seems to propagate almost along
straight lines, along the preferred lattice directions, and thus
are still strongly influenced by the lattice. In Fig. 8 we show
the quantitative results using different values of b, along with
the CRN results (taken from [53]).

From the v(	) curve [Fig. 8(a)] and the amplitude of
the oscillations [Fig. 8(c)] we can see that the CRN is
closest to the b = 10% results. In Fig. 8(b), for the length
of the microbranches, we see the CRN results most resemble
the low-b results. This fact encourages us to conclude that the
transition seen in the CRN between low velocities and high,
although rounded, is nevertheless real since in the current
model increasing b yields qualitatively similar results, but
with a more distinct transition. It is important to note that the
point of instability is b dependent, i.e., material dependent. For
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FIG. 8. (Color online) (a) Resulting v(	) curve for a perturbed-honeycomb-lattice model with different values of b (including b = 0, a
perfect lattice), along with the CRN results (taken from [53]) using η = 2. The CRN curve is closer to the b = 10% curve. (b) Size of the
total number of microbranches as a function of the crack velocity v. The somewhat questionable transition between steady-state cracks and
microbranch behavior using the CRN looks much more clear using perturbed-lattice models. (c) Amplitude of the oscillations in the electrical
resistance as a function of the crack velocity. Again, the CRN curve is closer to the b = 10% curve.

b = 2.5% the critical velocity is approximately 0.45cR (which
is by chance consistent with the experiments), while for larger
b it approaches 0.57cR . However, plotting Fig. 8(b) as a func-
tion of 	 yields an approximately constant 	cr ≈ 2.75	G.
The pure lattice shows a very different behavior. The slope of
the v(	) curve is much sharper and the point of instability is
around 	cr ≈ 3.6	G (nonmicrobranching behavior).

IV. HEXAGONAL LATTICE

The classic lattice dynamical fracture simulations in perfect
lattices used a hexagonal lattice [33,34,39–42,44,46,47]. As
mentioned in the Introduction, those models exhibited frus-
trated branching in the mode-III fracture simulations [33,38],
but failed to recreate the experimentally observed [40,42]
pattern of microbranches in mode-I fracture simulations. The
idea of trying to induce microbranching via introducing noise
into the interatomic potential was an obvious possibility to try.
However, the initial round of attempts in this direction did not
succeed [61]. The findings from the preceding section, that a
relatively small perturbation in the potential between the atoms
can create a more realistic pattern of mode-I fracture, raises
the question of why these previous models failed while our

current model succeeded. The key, it turns out, lies in the use
of the three-body force. Such a force is in any case essential
in the honeycomb lattice in order to stabilize the lattice. In
the hexagonal lattice, however, such a force is not required
in general and, given its computation expense, was typically
not included in the model. While not required for the stability
of the lattice, it appears, as we shall see, that it is in general
necessary to achieve realistic microbranching.

We first present the results for a perturbed hexagonal
lattice without a three-body force (i.e., kθ = 0). The radial
and angular distributions are shown in Fig. 9. Using the
same magnitude of perturbation as in the honeycomb lattice,
b = 10% yields an extremely noisy simulation and eventually,
in most cases, the crack arrests. Using a smaller value
of b (b = 2.5%) yields microbranching patterns for large
driving displacement, but as can be seen in Fig. 10(a), the
microbranches tend to propagate straight ahead and to exhibit
intermittent bond breaking, neither of which is desirable.
Occasionally, however, more realistic branching does occur,
as exemplified in Fig. 10(b). At low drivings, as expected,
there is a single steady-state crack propagating in the midline
of the sample with no broken bonds besides the main crack.
Using b smaller than 2.5% reproduces the cleaving behavior
of crystalline materials.

022401-7



HEIZLER, KESSLER, AND ELBAZ PHYSICAL REVIEW E 88, 022401 (2013)

0.9 0.95 1 1.05 1.1

a/r

0

10000

20000

30000

40000

50000

60000
D

is
tri

bu
tio

n

kθ/kr=0, b=2.5%
kθ/kr=10, b=10%
kθ/kr=1, b=10%

kθkk /kkr=0, b=2.5%
kθkk /kr=10, b=10%
kθkk /kr=1, b=10%

(a)

50 55 60 65 70
θ  (degrees)

0

50000

1×105

1.5×105

D
is

tri
bu

tio
n

kθ/kr=0, b=2.5%
kθ/kr=10, b=10%
kθ/kr=1, b=10%

kθk /kr=0, b=2.5%
kθk /kr=10, b=10%%
kθk /kr=1, b=10%

(b)

FIG. 9. (Color online) (a) Radial and (b) angular distributions for a perturbed-hexagonal-lattice mesh with and without three-body force
law using different values of b. Here kθ/kr = 1 and b = 10% yield almost the same distributions as kθ/kr = 0 and b = 10% do.

Despite the unphysical microbranching typically exhibited
by the model without the three-body force law, it is never-
theless a useful benchmark system since it can be compared
to Slepyan’s lattice steady-state models (like in [40], using
large α, which corresponds to a piecewise-linear model) in
which the origin of instability between steady-state cracks
and microbranches behavior is known exactly (although the
models use b = 0, the small perturbation does not change the
results significantly).

The quantitative results regarding the v(	) curve and the
total size of microbranches as a function of v are presented
in Fig. 11. We can see in Fig. 11(a) that the velocities below
v = cR reproduce Slepyan’s lattice model results from [40],
yielding perfect steady-state cracks, with no microbranches at
all [Fig. 11(b)]. Increasing the driving displacement 	 further
yields a non-steady-state behavior, as the steady-state lattice
model solution becomes unstable, yielding a microbranching
behavior (again, only above a threshold b). The crack velocities
are higher than cR for large 	. This is an artifact due to the
relatively small size of the sample (see, for example, Sec. VI
in [35]). The problem of overlapping zones is more extensive
in the hexagonal lattice (with and without the three-body force)
[see Fig. 12], yielding large areas of overlapping zones, which
is again unphysical. The main benefit so far of using this
model is that Fig. 11(b) yields qualitative results similar to
those in Fig. 7(b) or 8(b), emphasizing that the transition at
low velocities to a steady-state behavior is real since in a
hexagonal case we get absolutely zero microbranches at low
velocities, and agreement with Slepyan’s lattice models. In

addition, the hexagonal mesh allows us to work with small
values of η, which is more relevant experimentally [62,63]
than the large-η honeycomb lattice.

Adding a three-body force law in a hexagonal lattice, one
must use large values of kθ since the relatively large number
of nearest neighbors does not allow each group of three atoms
to generate an angle significantly larger than π/3 using kθ ≈
kr (as was the case in the honeycomb lattice) and thus the
three-body energy is negligible. When we increase kθ using
b = 2.5%, we have perfect lattice behavior because kθ is too
large. Increasing b further to b = 10% yields a good balance
where the three-body energy is not negligible and radial and
angular distributions similar to that of the hexagonal lattice
without the three-body force law using b = 2.5% (see Fig. 9).

We normalize the v(	) curve results and the total size
of microbranches as a function of v using this model to
the values of the non-three-body force law case (see the
caption to Fig. 11) and present them in Fig. 11. We can
see that these two models share the same qualitative behavior
(although including the three-body force law results in a small
number of microbranches at low velocities, very much like
the honeycomb case). In addition, this model still suffers from
a severe problem of overlapping of pieces of the mesh after
branching (in contrast to the honeycomb lattice, where this
problem is minor), as can be seen in Fig. 12.

However, two surprising results appear using this model (a
perturbed hexagonal lattice including three-body force law).
First, the main crack stays more confined to the middle of the
sample, even for large driving (within ≈10% from the total

FIG. 10. (Color online) Two examples of the final cracked lattice using a perturbed-hexagonal-lattice (without three-body forces) model
using b = 2.5%, η = 0.25, and 	/	G = 2.2, with slightly different values of dt .
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FIG. 11. (Color online) (a) Resulting v(	) curve for a perturbed-hexagonal-lattice model using different values of kθ with η = 0.25
(b = 2.5% for kθ/kr = 0 and b = 10% for kθ/kr = 10). The error bars were calculated using several simulations, each with a small change
in dt , due to the random nature of the problem. (b) Size of the total number of microbranches as a function of the crack’s velocity v. In small
velocities the total size of microbranches tends to zero (a steady-state crack). The results with the three-body force included are normalized to
the non-three-body results (because the three-body force law is dominant here, kθ/kr = 10, cR and 	G are harder to estimate, and since we
are interested in the qualitative shapes of the curves, we simply normalize both v and 	 to share values similar to those in the pure two-body
problem).

width of the sample for large 	), with large microbranches,
in contrast to all other models, including the honeycomb-
lattice model (within ≈25% from the total width of the
sample for large 	). Second, and most important, the larger
microbranches have a nonlinear power-law shape very much
like the experimental data. In Fig. 13 we can see several crack
patterns for different driving displacements (with different dt ,
with shifting in the y axis). We add a basic power-law fit
(with different x0 and y0 for each large microbranch). We
get a fairly clean power-law behavior (but with an exponent
of 0.5–0.65 instead of the ≈0.7 of [5,7]). This is of course
a very preliminary result and must be tested in larger-scale
systems.

We note that macroscopic cracks often propagate in straight
lines [2,10], so the physical behavior of Figs. 6 and 10 is
important too, especially given that the experiments are two
dimensional near the onset of macrocracks (see Sec. V for

FIG. 12. (Color online) Snapshot showing the extensive over-
lapping problem. This figure is a blowup of the branching event
in Fig. 10(b). Similar pictures are obtained in the presence of the
three-body force. After cracking, the two pieces of the cracked-lattice
overlap because fracture is irreversible process in this model.

further details). Power-law behavior (different from 1) is seen
in the atomistic model only in a perturbed hexagonal lattice
including three-body force law. These observations support the
conclusion that the macroscopic behavior of fracture depends
strongly on the interatomic microscopic potential.

V. DISCUSSION

We have shown that microbranching can be reproduced
in lattice materials in molecular-dynamic microscopic sim-
ulations, using a small perturbation parameter b (but larger
than a critical value of ∼1%) that perturbs the interatomic
potential. Among the parameters considered in this work, this
disorder is the key component that is responsible for producing
a semirealistic pattern of microbranches, in contrast to the
very different behavior of cleaving fracture of perfect lattices.
Such microbranching behavior is seen in both honeycomb
and hexagonal lattices with a three-body force and to a much
more limited extent also in the hexagonal lattice without a
three-body force law. In addition to the qualitative patterns
of microbranches, semiquantitative results are shown, partic-
ularly the total length of microbranches (which corresponds
to the average size of a microbranch in the experiments) as a
function of the velocity. A clear transition between steady-state
behavior and the postinstability region is seen, characterized
by an increased number of broken bonds off the midline of
the sample. This result is in line with the results of the CRN
model. The transition is clearest in the case of the hexagonal
lattice without the three-body force law, where for small
driving there is absolutely no microbranching at all, as in the
unperturbed-lattice models. The increased amplitude of the
rms of the electrical resistance is shown as well, in agreement
with the experiments. The viscosity (defined by the parameter
η) was used for numerical convenience only, because of the
finite size of the samples studied. The main results remain
the same when decreasing η, as the hexagonal-lattice results
indeed show. In addition, preliminary signs of power-law
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FIG. 13. (Color online) Crack pattern for a perturbed-hexagonal-lattice model using kθ/kr = 10, b = 10%, η = 0.25, and (a) 	/	G = 1.8
with different values of dt and (b) 	/	G = 1.9 with different values of dt for the top and middle patterns and 	/	G = 2 for the bottom pattern.

behavior for the shape of the side branches can be seen using
a hexagonal lattice including a three-body force law, in accord
with experiment.

As mentioned in the Introduction, several features of mode-
I fracture were found in various models before. The distinctive
aspect of our simulations is that they are pure 2D atomistic
simulations with specified forces between the atoms (with or
without three-body force law), while the atoms are free to travel
to any direction in the sample. In contrast, the works of Astrom
et al. [56,57] based on elastic beams and the works of Heino
and Kaski [58–60] based on the Born-Maxwell model (with
and without disorder) separate the force law between the atoms
into two parts, a central one and a bending term, which penalize
rotation of the springs away from lattice directions, yielding
a nonrotationally invariant behavior [64] (this bending term is
an alternative to using a three-body force term; see [64]). In ad-
dition, the microbranching of both [56,57] is affected dramati-
cally by the lattice shape and thus is nonphysical. In [58], again
the branching is symmetric in the y direction, in contrast to ex-
perimental results. The pattern of [59] looks more physical. All
of these works did not yield evidence of the increase in size of
the branches as seen in Fig. 8 or 12. Patterns of microbranches
using finite-element methods are common in the work of many

groups (for example, [20,29,30]), but they do not share the
discrete (nonsingular) nature of our microscopic model.

We found once again that the macroscopic features of
the dynamic fracture process, such as the critical velocity,
is dependent on the microscopic parameters of the interatomic
potential, i.e., material dependent. As mentioned in the Intro-
duction, the universality of the critical velocity for creating
microbranches is disputed. However, the critical velocity
for creating macrobranches is for sure material dependent.
Since the experiments show that the transition from 3D to
2D patterns is right before the microbranches tend to create
macro-branches, and this point is strongly material dependent,
it may not be surprising that in all out 2D simulations, we get
a strong dependence on the material parameters. Much more
extensive work is needed to extend this result to larger scales
as well as exploring the opening angle of the crack.
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