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Translational and rotational dynamics of colloidal particles in suspension: Effect of shear
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We report a generalization of a nonequilibrium thermodynamic theory for the mesoscopic dynamics of radially
symmetric interacting particles to anisotropic pairwise interactions and attain the one- and two-particle Fokker-
Planck kinetics equations at a low-density limit that provides the translational-rotational coupling of their
motion due to hydrodynamic interactions, from which we derived the balance equations of linear, angular
momentum, and energy dissipation due to particle interactions and energy interchange with heat bath. In this
low-density approximation, an already-known virial expression for the long-time translational collective diffusion
coefficient of an orientational isotropic suspension in terms of the fluid equilibrium microstructure is recovered.
An external shear flow induces, in the diffusive regime, vorticity effects into the rotational diffusion property of
the colloidal particles. They manifest in the appearance of the particle’s rotational viscosity due to vortex flow.
The Smoluchowski equation that governs the dynamical relaxation of colloid microstructure due to particle’s
Brownian motion under stationary flow is provided.
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I. INTRODUCTION

The study of dynamical properties of colloidal suspensions
is a problem of permanent interest [1–3]. These proper-
ties have important applications in industrial processes and
material science. Experimental techniques based on x-ray
correlations spectroscopy, dynamic light scattering, and small-
angle quasielastic neutron scattering measure the long-time
collective translational diffusion coefficient of the colloidal
particles in suspension [4,5]. Most of the measurements on this
coefficient are based on sedimentation experiments performed
in systems made of particles that experience direct pair inter-
action potentials of spherical symmetry [6]. The experiments
have reached a successful agreement with theory. Intense re-
search has been conducted in the past few years in cases where
colloidal particles interact through anisotropic potentials such
as in ferrofluids or in suspensions of rod-like-shaped particles
of fd virus. Due to birefringence measurements, it is known that
even at low shear rates [7,8] there occurs phase separation in fd
bacteriophage suspensions. Its rheological characterization is
currently performed with diffusion wave spectroscopy [9] and
optical tweezer microrheology experiments [10]. From the the-
oretical viewpoint, its rheological properties can be determined
through evolution equations derived from the moments of the
distribution function that satisfy the system’s Fokker-Planck
(FP) equation [11]. Recently, a mesoscopic approach to study
colloid dynamics based on nonequilibrium thermodynamics
(MNET) was developed and it permits us to attain the FP
kinetic equation [12–15]. This theory has been successfully
applied to describe anomalous diffusion in viscoelastic media
[16] via the formation of patterns in liquid crystals [17],
magnetization curves of ferrofluids under external magnetic
fields [18], the diffusion in suspensions under oscillatory shear
[19], and slow dynamics in colloids and supercooled liquids
[20,21]. Using this approach Mayorga et al. [22] derived the
above referred dynamical property for spherically symmetric
interacting Brownian particles in the absence of applied shear.

*marther@fis.cinvestav.mx

Santamaria-Holek et al. developed the theory to determine the
single-particle dynamics under stationary conditions [23,24]
and an oscillatory shear [19], including the many-body hy-
drodynamic interactions (HI) through the friction coefficients
but neglecting direct interactions among particles. In this
paper we extend these theoretical frameworks to encompass
the particle’s anisotropic interactions and coupling of their
translational-rotational movements. In the first part of the
paper we derive the one- and two-particle FP stochastic
equations which allow us to obtain the hydrodynamic balance
equations of linear, angular momentum and then for the energy
interchange of particles with the heat bath. At the low-density
limit and diffusion regime we recover from the balance of
linear momentum a known expression for the diffusion coeffi-
cient of spherical colloidal particles in orientational isotropic
suspensions with the particle’s anisotropic interactions. This
property is given in terms of the pair-correlation function of
the bulk suspension without taking into account HI and shear.
In the second part of the paper we present the derivation of the
FP equation valid at arbitrary concentration and which couples
the translational and rotational movement of the particles under
flow conditions. The resulting rotational diffusion coefficient
and its dependence on shear defines a rotational viscosity
contribution due to vortex flow.

II. BROWNIAN SUSPENSION WITHOUT
APPLIED SHEAR FLOW

Consider the system of volume V consisting of solvent with
constant mass density ρs and colloid density ρB formed by N

identical interacting particles of equal mass m with position ri

and orientation of its main axis of symmetry defined by the two
polar angles of orientation �i = (θi,φi). The total potential
energy of the system is U = �N

i,jφij /2 + �N
i=1Vext(ri ,�i,t),

where it is assumed that φij is the pairwise direct interaction
and Vext and external field acting on particle i at time t . The
translational and angular velocities are, respectively, vi , ωi ,
with i = 1, . . . ,N . Since particles are axial symmetric ωi has
only two components. Their components are referred to a
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space coordinate system. With respect to the polar axis of this
frame are defined the angles of orientation � of the particle.
According to the mesoscopic theory, we define a point in
the phase space of the system by � := (xN ), where xN =
(r1,�1,v1,ω1, . . . ,rN,�N,vN,ωN ). The probability density
P (N) at any time t and state � satisfy the conservation of
probability ∫

P (N)(�,t)d� = 1. (1)

The time evolution of the colloidal system is characterized
by three time scales. The hydrodynamic relaxation time for
solvent molecules velocities is τH = σ 2/ν = 10−8 s (average
particle size σ = 100 nm, solvent shear viscosity ν = 10−5

m2/s). The relaxation time of the Brownian (B) particle ve-
locity τB = (2τH /9)(ρp/ρs) = 2.2 × 10−9 s (ρp, ρs densities
of particle and fluid solvent). And the structural relaxation
time on which particle configuration change τR = σ 2/D0 =
4.7 × 10−3 s (D0 = kBTeq/6πησ , kB Boltzmann constant, Teq

equilibrium temperature) [25]. We write the Liouville equation
for colloids assuming that τR,τB � τH which implies that the
dynamic of the solvent particles decouple from the dynamic
of the colloids. It expresses the conservation of probability as
a continuity equation [26],

∂P (N)

∂t
+ �N

i=1vi · ∂P (N)

∂ri

+ �N
i=1ωi · (

Lui
− R̂i

)
P (N)

− m−1�N
i,j=1

∂φij

∂ri

· ∂P (N)

∂vi

− I−1�N
i,j=1(Lui

− R̂i)φij

∂P (N)

∂ωi

− m−1�N
i=1

∂Vext

∂ri

· ∂P (N)

∂vi

− I−1�N
i=1

(
Lui

− R̂i

)
Vext · ∂P (N)

∂ωi

= −�N
i=1

∂

∂vi

· J(N)
vi

− �N
i=1

∂

∂ωi

· J(N)
ωi

. (2)

In this version of the Liouville equation the fifth and seventh
terms include the total torque on a particle due to pair interac-
tion and external field as defined by Evans [27]. They are con-
tributions to intrinsic angular momentum about the particle’s
center of mass given by the operator Lui

= ui × ∂
∂ui

, where
u = u(�(θ,φ)) is a unitary vector in the direction of the main
axis of symmetry of particle i. The orbital angular momentum
is represented by R̂i = rij × ∂

∂ri
, rij = ri − rj . In the fourth

and sixth terms, however, there are the contributions of the total
force of all pairs of particles due to their direct interactions and
that from the external field, respectively [26]. I = ml2 is the
moment of inertia of a particle and l2 its radius of gyration.
We note that in the body-fixed frame the equation of motion of
the angular momentum of a sphere with an embedded linear
anisotropy or of a particle of rodlike shape in a solvent is [28]

dωγ

dt
= (Ik − Il)

Iγ

ωkωl − λγ ωγ + Aγ (t), (3)

where γ,k,l = 1,2,3, and Il is the moment of inertia of the
sphere about its center, or of the rod, about its principal axes.
λγ is the viscous damping and A(t)γ the Gaussian random
torque of the solvent on the particle. For the two particle’s
geometries considered it reduces to [28]

dωγ

dt
= −λγ ωγ + Aγ (t), (4)

where the z axis (γ = 3) is taken along the anisotropy, or of the
rod, since I1 = I2. This demonstrates that for the two systems
considered it is only necessary to know one component, I3 =
I . Nonetheless, in this paper we focus on spherical particles
only. In order to derive the mesoscopic dynamic equation of
P (N), it is assumed that P (N) fulfills the Gibbs entropy postulate
[12,29]

S = −kB

∫
P (N)(�,t)ln

P (N)(�,t)

P
(N)
LE (�)

d� + SLE, (5)

P
(N)
LE = exp

[
m

kBT

(
μB − �N

i=1
1

2
v2

i

)
− ml2

kBT
�N

i=1
1

2
ω2

i

− 1

2kBT
�N

i,j=1φij − 1

kBT
�N

i=1Vext

]
, (6)

with SLE and μB the local equilibrium (LE) entropy and
chemical potential. We will study colloid dynamic at the pair
particle level. Thus, it is defined the n-particle probability
density and flux given, respectively, by

P (n)(x1, . . . ,xn,t) = N !

(N − n)!

∫
P (N)dxn+1 . . . dxN,

and J(n)
vi

= N !

(N − n)!

∫
J(N)

vi
dxn+1 . . . dxN,

and analogously for J(n)
ωi

.
The time derivative of Eq. (5) together with Eq. (2) lead,

after performing a partial integration, to the entropy production
from which it results [22] (see Appendix A),

J(N)
vi

= −�N
j=1

←→
β

tt

ij ·
(

P (N)vj + kBT

m

∂P (N)

∂vj

)
− �N

j=1
←→
β

tr

ij l
2

(
P (N)ωj + kBT

I

∂P (N)

∂ωj

)
, (7)

J(N)
ωi

= −�N
j=1

←→
β

rt

ij

l2
·
(

P (N)vj + kBT

m

∂P (N)

∂vj

)
− �N

j=1
←→
β

rr

ij

(
P (N)ωj + kBT

I

∂P (N)

∂ωj

)
. (8)

In deriving the above expressions, a linear relationship
between fluxes and thermodynamic forces was assumed
[22,29]. Therefore, substituting these fluxes into the continuity
equation (2) yields the Fokker-Planck equations of one- and
two-particle distribution functions,

∂P (1)

∂t
+ v1 · ∂P (1)

∂r1
+ ω1 · (

Lu1 − R̂1
)
P (1) − m−1

∫
∂φ12

∂r1
· ∂P (2)

∂v1
dx2 − I−1

∫ (
Lu1 − R̂1

)
φ12 · ∂P (2)

∂ω1
dx2

− m−1
∫

∂Vext

∂r1
· ∂P (1)

∂v1
dx1 − I−1

∫ (
Lu1 − R̂1

)
Vext · ∂P (1)

∂ω1
dx1
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= ∂

∂v1
· ←→

β
tt

11 ·
(

P (1)v1 + kBT

m

∂P (1)

∂v1

)
+ ∂

∂ω1
· ←→

β
rr

11 ·
(

P (1)ω1 + kBT

I

∂P (1)

∂ω1

)

+ ∂

∂v1
· ←→

β
tr

11l
2

(
P (1)ω1 + kBT

I

∂P (1)

∂ω1

)
+ ∂

∂ω1

←→
β

rt

11

l2

(
P (1)v1 + kBT

m

∂P (1)

∂v1

)
, (9)

∂P (2)

∂t
+ �2

i=1vi · ∂P (2)

∂ri

+ �2
i=1ωi · (

Lui
− R̂i

)
P (2) − m−1�2

i,j=1
∂φij

∂ri

· ∂P (2)

∂vi

− I−1�2
i,j=1(Lui

− R̂i)φij

∂P (2)

∂ωi

− m−1�2
i=1

∂Vext

∂ri

· ∂P (2)

∂vi

− I−1�2
i=1

(
Lui

− R̂i

)
Vext

∂P (2)

∂ωi

= �2
i,j=1

∂

∂vi

· ←→
β

tt

ij ·
(

P (2)vi + kBT

m

∂P (2)

∂vi

)
+ �2

i,j=1
∂

∂ωi

←→
β

rr

ij

(
P (2)ωi + kBT

I

∂P (2)

∂ωi

)

+ �2
i,j=1

∂

∂vi

· ←→
β

tr

ij l
2

(
P (2)ωi + kBT

I

∂P (2)

∂ωi

)
+ �2

i,j=1
∂

∂ωi

←→
β

rt

ij

l2
·
(

P (2)vi + kBT

m

∂P (1)

∂vi

)
, (10)

Equations (9) and (10) constitute extensions of the cor-
responding FP equations derived by Mayorga et al. [22]
and Refs. [34,35] for the purely translational motion case
of Brownian spheres. These equations were cut up to pair
distribution functions and neglect the triplet P (3) distribution
function, and, therefore, they are expected to be valid at low
colloid concentration. The above FP Eqs. (9) and (10) depend
on the time-independent friction tensors ζij (xN ) and refer
to the temporal evolution of the probability density in the
internal phase space of configurations and velocities. These FP
were derived under the assumption of τB � τH , which means
that hydrodynamic interactions (HI) are instantaneous on time
scale τB since solvent dynamics is completely decoupled from
colloids variables. However, it is known that for bouyant
colloids where ρp ≈ ρs , then τB ≈ τH and, therefore, ζij

can no longer be time independent. In this case, for the FP
equations above to describe correctly the dynamics on this time
scale we must use the time-dependent friction tensors. These
time-dependent properties have been calculated approximately
by Van Saarlos and Mazur [36] and by Pusey et al. [37] at the
two-particle level, which, consequently, ignores many-particle
interactions for concentrated suspensions. Nonetheless, such
time-dependent hydrodynamic friction coefficients also can be
determined experimentally with diffusing wave spectroscopy
[38] and through lattice Boltzmann simulations [39]. When the
time relaxation of the colloids velocities are faster than their
structural relaxation time τR � τB � τH , we enter the over-
damped (difussion) regime described by the Smoluchowski
equation (SE) that will be derived in this paper in the second
section below from the first moments of FP. SE governs the
temporal evolution of the particle’s distribution function in
configuration space (r(t),�(t)). In deriving the SE equation
from FP we will obtain the known relation in the long-time
limit t � τB of the diffusion coefficient Dij = kT ζ−1

ij for the
relative motion of particles i and j , as has been done for
colloids of hard spheres [40]. We note that time-dependent Dij

(equivalently of ζij ) can also be derived from a linear response
treatment of FP [25,41]. We can see that FPs (9) and (10) are
dimensionally correct if we just use the lowest-order multipole
expansion of the static friction coefficients for two-body HI

as given in Ref. [42]. These properties have units [βtt
ij ] ∼

[6πησ/m] = 1/time, [βrr
ij ] = [8πησ 3/I ] = 1/time for every

i,j , and [βtr
11] = 0 = [βrt

11], [βtr
ij ] = [8πηr2

ij /I ] = 1/(length ×
time), and [βrt

ij ] = [8πηr2
ij /m] = length/time for i �= j , rij =

|ri − rj |. η is the solvent shear viscosity.

III. MACROSCOPIC DYNAMICS

The hydrodynamical evolution of the system is determined
by the conserved laws associated to the hydrodynamics fields.
These laws are given by the moments of the probability density
P (1); the density of Brownian particles in real space,

ρB(r,t) = m

∫
P (1)dv1dω1d�1, (11)

the linear momentum density,

ρBvB(r,t) = m

∫
P (1)v1dv1dω1d�1, (12)

by the intrinsic angular-momentum density,

ρBl2ωB = ρBsB = ml2
∫

P (1)ω1dv1dω1d�1, (13)

and energy density. Here Iω = ms, with s = l2ω. Following
the methods of Refs. [12,22] we obtain the mass conservation
equation ∂ρB/∂t = −∇ · (ρBvB), whereas the balance equa-
tion for the linear momentum is derived by using (12) and the
kinetic equation (9) [43] (see Appendix B),

ρB

dvB

dt
= − ∂

∂r1
· ←→

P
K,vv

B + Fd (t) − ρB

m

∂Vext

∂r1

− ρB

←→
β

tt

11 · vB − ρB

←→
β

tr

11 · sB. (14)

Here we have introduced the symmetric kinetic (K)
pressure tensor for the particles,

←→
P

K,vv

B = m

∫
P (1)(v1 − vB)(v1 − vB)dv1dω1�1, (15)
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and the density of pair direct force,

Fd (t) = −
∫ [

∂φ12

∂r1
(r1,r2,�1,�2)

]
P (2)dr1dr2

× d�1d�2dv1dω1dv2dω2 ≈ − ∂

∂r
· ←→

P
φ

B. (16)

This force contributes a potential component to the pressure
tensor [22,32],

←→
P

φ

B = −1

2

∫
r12r12

φ
′
(r12,�1,�2)

r12

∫ 1

0
P (2)

× (r1 − (1 − α)r12,r1 + αr12,v1,v2,ω1,ω2,�1,�2,t)

× dαdr12d�1d�2dv1dω1dv2dω2, (17)

φ′ := ∂φ12/∂r12.
Equation (14) therefore can be rewritten into its equivalent

form,

ρB

dvB

dt
= − ∂

∂r1
· ←→

P B − ρB

m

∂Vext

∂r1

−ρB

←→
β

tt

11 · vB − ρB

←→
β

tr

11 · sB, (18)

where
←→
P B = ←→

P
K,vv

B + ←→
P

φ

B .
The density of total angular momentum L(t) contains

two parts, the orbital ρBr × vB and intrinsic sB angular-
momentum components. Starting from the evolution equation
for dL/dt , one can derive from Eq. (18) the orbital angular-
momentum equation d(ρBr × vB)/dt which, when subtracted
from dL(t)/dt , yields the corresponding balance of intrinsic
angular momentum (see Appendix B),

ρB

dsB

dt
= − ∂

∂r1
· ←→

Q B − l2ρB

I

(
Lu1 − R̂1

)
Vext − 2P a

− ρB

←→
β

rr

11 · sB − ρB

←→
β

rt

11 · vB, (19)

where
←→
Q B = l2←→P K,vω

B + ←→
Q

φ

B . P a is the antisymmetric part
of the pressure tensor [46,47] of Eq. (17) [27].

Aside from the dissipative processes embodied in the
currents appearing in the balance equations of linear and
angular momentum, the balance equation of energy density
also takes into account the dissipation of energy due to the
relative movement of all particles in the fluid. In order to
account for this process we can follow the same method as
used before to derive (14) and attain the balance equation for
the total internal energy density of the colloids in the solvent
ρBuB := u

φ

B + u
K,v
B + u

K,ω
B , where

ρBu
φ

B = m

2

∫
P (1)φ12dv1dv2dω1dω2dr2�1d�2,

ρBu
K,v
B = m

2

∫
P (1)(v1 − vB)2dv1dω1d�1, (20)

ρBu
K,ω
B = I

2

∫
P (1)(ω1 − ωB)2dv1dω1d�1.

The result is

∂ρBuB

∂t
+ ∂

∂r1
· (

JB
q + ρBuBvB

)
= +m

∫
P (2) ∂φ12

∂r1
u1du1du2dω1dω2dr2d�1d�2

+ m

∫
P (2)

[(
Lu1−R̂1

)
φ12

]
u1du1du2dω1dω2dr2d�1d�2

− ←→
P

†
B :

∂vB

∂r1
− ←→

Q
†
B :

∂ωB

∂r1
− l2(

←→
β

tr

11)† :
←→
P

K,ωv

B

− (
←→
β

rt

11)† :
←→
P

K,vω

B − 2βtt
11

(
ρBu

K,v
B − ρBequ

K,vB

Beq

)
− 2βrr

11

(
ρBu

K,ω
B − ρBequ

K,ωB

Beq

)
, (21)

where the superscript index † means the transpose of a
matrix. The terms containing the friction tensors are dissipative
contributions due to the interchange of energy between
colloids and solvent [22].

We defined the fluxes and energy contributions

JB
q = JK,vv

q + JK,ωv
q + J(1)

qφ + J(2)
qφ + Q

(2)
qφ

J(1)
qφ = m

2

∫
(v1 − vB)P (2) φ12

2
dv1dv2dr2dω1dω2�1d�2

J(2)
qφ = −m

4

∫
r12r12

φ′

r12

∫ 1

0
(v1 + v2 − 2vB )P (2)dαdr12d�1d�2dv1dv2dω1dω2

Q(2)
qφ = −m

4

∫
r12

[(
Lu1 − R̂1

)
φ12

] ∫ 1

0
(ω1 + ω2 − 2ωB)P (2)dαdr12d�1d�2dv1dv2dω1dω2

(22)
JK,vv

q = m

2

∫
(v1 − vB)2(v1 − vB)P (1)dv1dω1�1

JK,wv
q = I

2

∫
(ω1 − ωB)2(v1 − vB)P (1)dv1dω1�1

ρBequ
K,ωB

Beq = 2ρBeqkBT

2
= I

2

∫
(ω1 − ωB)2P (1)

eq dv1dω1d�1

ρBequ
K,vB

Beq = 3ρBeqkBT

2
= m

2

∫
(v1 − vB)2P (1)

eq dv1dω1d�1.
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The last two energy identities are the equipartition theorems
of translational and rotational movement of a particle and we
introduced the symmetric pressure tensor,

←→
P

K,ωv

B = m

∫
P (1)(ω1 − ωB)(v1 − vB)dv1dω1d�1. (23)

Equations (18), (19), and (21) are similar to those derived
by Evans et al. [45] for a dense homogeneous homonuclear
diatomic fluid. In the diffusion regime, limit ρB

dvB

dt
= 0,

ρB
dsB

dt
= 0, and no hydrodynamic interaction among parti-

cles
←→
β

rt

11 = ←→
β

tr

11 = 0. Consider Vext = 0. For orientational
isotropic fluids P (1)(r,�,t) = P (1)(r,t), and both the pair
potential φ12(r12,�12) and P (2)(r1,r1 + r12,�12) depend only
on the relative orientation of two particles but not on each of the
two particle’s angles separately [27]. An important example of
this is the pair dipolar interaction potential to model ferrofluids.
The pressure tensor Eq. (17) and

←→
P B then are symmetric [27].

Since there is no external flow
←→
P B = pB1 is the osmotic

pressure, with 1 the third-order unit tensor. Using the fact
that the pair-correlation function and the two-particle reduced
distribution function ρ(2) are related by [26]

g(2)(r12,�1,�2) =
(

m�

ρBeq

)2

ρ(2)(r12,�1,�2),

ρ(2) :=
∫

P (N)dv1dω1dv2dω2dr3d�3

× dv3dω3 . . . drNd�NdvNdωN, (24)

where � = 4π . At thermal equilibrium, T = Teq, ρBeq =
mN/V = mn. We may obtain the osmotic pressure of the
solution using the method of Irving et al. [32],

pB = kBTeq
ρBeq

m
− 2π

3

(
ρBeq

m�

)2∫ ∞

0

∫ π

0

∫ 2π

0
g(2)(r12,�1,�2)

× φ′r3
12dr12d�1d�2, (25)

where d� = sinθdθdφ. This coincides with the well-known
expression given in Ref. [26]. Under the same orientational
isotropic fluid assumption, in equilibrium, diffusive regime,
and ignoring translation-rotation coupling, Eq. (18), leads to

− ∂

∂r1
· pB1 = ρBβtt

111 · vB. (26)

From the chain rule ∂pB/∂r ≡ (∂pB/∂ρB)(∂ρB/∂r) we find
that the first factor on the right-hand side is the virial expression
of the isothermal compressibility modulus, which is given in
Hansen et al. [26] in terms of the microstructural function
of the fluid. Finally, from the flux ρBvB and Eq. (26) we
obtain Fick’s law of diffusion ρBvB = −Dc∂ρB/∂r, where
at low density we recover the general virial expression for
the collective diffusion coefficient of the colloidal particles
derived by Felderhof [48] and Russel [49],

Dc = kBT

βtt
11m

[
1 + 4πn

∫ ∞

0
(g(r12) − 1)r2

12dr12

]−1

. (27)

The above equation is valid at low concentrations of
particles. The angle-averaged part of the pair-correlation

function is [26,50]

g(r12) = 1

�2

∫
g(2)(r12,�1,�2)d�1d�2dr12. (28)

It should be noted that in, general, for dipolar fluids,
such angle-averaged distribution is distinguishable from the
correlation function of an isotropic pure hard-sphere fluid at
moderate and high values of dipolar strength [51,52]. For fer-
rofluids one may use the friction function βtt

11 = 6πησ [m(1 +
(χT − χF )�)]−1, where the factors χT and χF take into
account thermodynamic and hydrodynamic interactions [53].
The value χT − χF ≈ −50 was obtained from an experimental
fit of the friction coefficient using a sample of maghemite
nanoparticles in n-decane [54]. However, from the experiments
reported in Ref. [54] for realistic suspensions, it is apparent
that both formulas of theses hydrodynamic friction coefficients
remain valid only for volume fractions on the order � � 0.01,
see, for instance, Fig. 6 of Ref. [54]. Thus, three-body HI
are necessary in order to improve such frictions for higher
concentrations leading up to order �2 dependencies, as was
demonstrated for monodisperse hard-sphere suspensions [55].

IV. COLLOIDAL SUSPENSION UNDER
FLOW CONDITIONS

We are concerned in this section with characterizing
colloid dynamics in the long-time regime through the time
evolution of the collective density variable ρ(r,�,t) when
there are structural relaxations on position and orientation
of the particles under a stationary applied external flow
v0

i = v0(ri ,�i,t) that produces a vortex field acting on each
particle i, ω0

i = ω0(ri ,�i,t) = ∇ ∧ v0/2. From the definition
of ρ given below, its diffusion equation is equivalent to the
Smoluchowski equation of the probability density P (N). This
constitutes the main kinetic equation that provides a quan-
titative description of the effect of shear on the mean-square
displacement of colloidal particles [19,56]. Its angular variable
dependence allows us to take into account the relaxation of
magnetization in ferrocolloids under external magnetic fields
[57]. For concentrated suspensions it is easier to derive the
diffusion equation of the collective density by starting, first,
from the evolution equation for the single density function
associated to particle i since it is not necessary to make
the factorization on the probability density into its n-body
reduced components, as was done in the previous section. For
this purpose, we derive the FP of P (N) under stationary flow.
Afterwards, the evolution equation of the first four moments
of P (N) for one particle i is generated, thus, resulting in the
continuity equation for the density ρi , the balance equations
of linear and intrinsic angular momentum, and those of the
second (for pressure tensor) and third (for change of kinetic
energy and stress) centered moments of the velocities, whereas
in the last three moments, they involve correlation of the
friction tensor of particle i with their partners velocities and,
therefore, represent their hydrodynamic interactions. Those
hydrodynamical correlations turn out to be expressed as
quadratures on configuration space and include sums over
distinct particles j �= i interacting with i. The HI then are
included into the collective colloid dynamics described by
ρ by using the effective medium approximation, which is
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an average of dynamical variables pertaining to particle i

and attained by performing a sum over i, transforming the
discrete particle sums that appear in the correlation of friction
and particle velocities as integrals on continuous variables
of position and angular coordinates. This confirms that the
origin of HI is due to temporal spatial relaxation of the
structure of the suspended colloids. At the long-time limit,
the so-attained mean linear and angular-momentum equations

of the whole colloid fluid yield the diffusion fluxes of
particles which, when substituted into the density’s continuity
equation, provides the effective Smoluchowski description of
the collective dynamics of particles in the diffusive regime.
Therefore, according to this scheme, let us, first, note that the
density function of a single particle i is ρi = m

∫
P (N)δ(ri −

r)δ(�i − �)d�, which provides a relationship with ρ

through

ρ(r,�,t) =
N∑

i=1

ρi = m

[ ∫
P (N)(r,�,v1,ω1,r2,�2,v2,ω2, . . . ,rN,�N,vN,ωN,t)dv1dω1dr2d�2dv2dω2 . . . drNd�NdvNdωN

+ · · · +
∫

P (N)(r1,�1,v1,ω1, . . . ,r,�,vi ,ωi . . . ,rN,�N,vN,ωN,t)dvidωidr1d�1dv1dω1 . . . drNd�NdvNdωN

+ · · · +
∫

P (N)(r1,�1,v1,ω1, . . . ,r,�,vN,ωN,t)dr1d�1dv1dω1 . . . drd�dvNdωN

]
= m

∫
P (1)(r,�,v1,ω1,t)dv1dω1, (29)

where in the second equality there appears N repeated terms of
the same quadrature of P (N) integrated on just N − 2 variables
of �, which is the definition of the one-particle density P (n=1).
Equation (29) is identical with ρB of Eq. (11) in Sec. II when
there is no external flow and for quiescent colloidal fluid under
thermal fluctuations only. Following the approach described
above, we find that, due to the explicit angular dependence of
the density, for a single particle the continuity equation reads

∂ρi

∂t
= −∇ · (ρivi) − (Lu − R̂) · (ρiωi), (30)

which is obtained by integrating Eq. (2) over the phase space �

with the factor δ(ri − r)δ(�i − �) and assuming the vanishing
of the current fluxes J(N)

vi
, J(N)

ωi
at high velocities. If we define

the baricentric velocities of the colloid suspension

ρv(r,�,t) = m

∫
�N

i=1viP
(N)δ(ri − r)δ(�i − �)d�,

(31)
ρω(r,�,t) = m

∫
�N

i=1wiP
(N)δ(ri − r)δ(�i − �)d�,

and from (29), Eq. (30) can be written as

∂ρ

∂t
= −∇ · (ρv) − (Lu − R̂) · (ρω). (32)

The extended version of (30) and (32) differs from that
of Sec. II since we are also interested now in relaxation of
particles in the real space of translational and orientational
degrees of freedom. Similar equations to ours have been used
by Caillol [58] and Chandra et al. [59] to study relaxation
processes in polar solvents, where the mean linear and angular
velocities of particle i are, respectively,

ρivi(r,�,t) = m

∫
viP

(N)δ(ri − r)δ(�i − �)d�,

(33)
ρiωi(r,�,t) = m

∫
ωiP

(N)δ(ri − r)δ(�i − �)d�.

In order to obtain the FP of the colloid system we
shall determine the currents J(N=1)

vi
:= Jvi

, J(N=1)
ωi

:= Jωi
of

the Liouville equation (2). According to the mesoscopic
nonequilibrium thermodynamic approach, these currents can
be determined with the use of a canonical structure of the
entropy production of the colloid system that is expressed as
a product of the fluxes and their conjugated forces. Curi’s
principle then dictates the form of the phenomenological
constitutive relation between fluxes as a function of the forces
that, when they are replaced in (2), yields the N -particle
Fokker-Planck equation for stationary flow (see Appendix C),

∂P (N)

∂t
+ �ivi · ∇ri

P (N) + �iωi · (
Lui

− R̂i

)
P (N) − m−1�N

i,j=1∇ri
φij · ∇vi

P (N) − I−1�N
i,j=1

(
Lui

− R̂i

)
φij · ∇ωi

P (N)

− m−1�N
i=1∇ri

Vext · ∇vi
P (N) − I−1�N

i=1

(
Lui

− R̂i

)
Vext · ∇ωi

P (N)

= �i,j∇vi
·
[(

vj − v0
j

) · (←→α tt

ij + ←→ε ij · ∇rj
v0

j

)
P (N) − ←→

ζ ij · FjP
(N) + kBT

m

←→α tt

ij · ∇vj
P (N) + (

ωj − ω0
j

) · l2←→α tr

ij P
(N)

+ kBT

I
�j l

2←→α tr

ij · ∇ωj
P (N)

]
+ �i,j∇ωi

·
[(

ωj − ω0
j

) · (←→α rr

ij + ←→ε ω

ij · (
Luj

− R̂i

)
ω0

j

)
P (N)

− ←→
ζ

ω

ij · TjP
(N) + kBT

I

←→α rr

ij · ∇ωj
P (N) + (

vj − v0
j

) · 1

l2
←→α rt

ij P
(N) + kBT

m

1

l2
←→α rt

ij · ∇vj
P (N)

]
. (34)
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This FP generalizes the one given by Santamaria-Holek
et al. [19] for translational motion to the case of interacting
colloids under external fields and vorticity flow that affects the
rotational Brownian motion of particles. Thus, as in Ref. [19],
we introduce the effective friction coefficients

←→α tt

ij := ←→
β

tt

ij − ←→ε ij · ∇rj
v0

j ,
(35)←→α rr

ij := ←→
β

rr

ij − ←→ε ω

ij · (
Luj

− R̂i

)
ω0

j ,

which quantify the departure of the friction due to Brownian

motion and HI among particles
←→
β

uu

ij (uu = t t,rr) from the
contribution due to fluid flow, which is linear in ∇rj

v0
j and

(Luj
− R̂j )ω0

j . In general,
←→
β

uu

ii , (uu = t t,rr), depend on the
HI among particles. For spherical particles that experience
only translational motion, its analytical form was determined
with the Faxén theorem in Ref. [23,62], where it was found
that

←→
ζ = ζ1 of Eq. (34) is related to inertial effects due to

time variations of v0, and ζ = ρp/ρs with ρs the density of
the fluid solvent. However, a similar calculation for uu = rr

and
←→
ζ

ω = ζω1′ with HI remains to be performed. For
spherical particles, if HI are ignored, one can approximate←→
β

tt

ii = β01δii , and
←→
β

rr

ii = βr
01′δii , with 1′ the second-order

unit matrix. β0 = 6πησ/m := 1/t t is the inverse of damping
time t t for translational motion, βr

0 = 8πησ 3/I := 1/tr . The
inertial times of translational and angular velocities are of
the same order of magnitude t t /t r = 10/3 [63]. Notice that
t t ,t r is set in a time scale where, for t 
 t t ,t r , inertial
effects are dominant, whereas for times much grater than
t t ,t r we enter the diffusion regime. In this long-time regime,
relaxation of velocities vi(t),ωi(t) have occurred, and their
constant values in the scale of t � t t ,t r are statistically
averaged values at equilibrium vi(r,�,t),ωi(r,�,t) whose
magnitude depends on the colloid density ρ(r,�,t) and
particle’s interactions. Thus, these averaged values depend on
time through structural relaxations. The mean velocities are
susceptible to be measured experimentally and also can be
calculated with MNET. Experimentally, thermal fluctuations
on density are probed with dynamic and depolarized light
scattering due to the slow structural relaxation of the parti-
cle configurations r(t),�(t). From samples of configuration
variables, experiments obtain the mean-square translational
and angular particle’s displacements. Whereas from MNET
the averaged velocities of the colloid collective motion are
determined from the hydrodynamic equations derived from
the FP (34). The result is (see Appendix D)

(
ρ(v − v0)

ρ(ω − ω0)

)
≈

⎡⎣− 1

m

(
Fd

1
l2 Td

)†

+ 1

m

(
ρ∇Vext

1
l2 ρ(Lu − R̂)Vext

)†

− ρ

(
ζ1 0

0 1
l2 ζ

ω1′

)
·
(

F

T

)†

+ kBT

(←→
A tt 0

0
←→
A

rr

)

·
(

1
m

∇ρ
1
I
(Lu − R̂)ρ

)†

+ kBTρ

(
1
m

∇
1
I
(Lu − R̂)

)†

·
(←→

A tt 0

0
←→
A

rr

)⎤⎦ ·
(

(
←→
B

tt

)−1 0

0 (
←→
B

rr

)−1

)
. (36)

Here the density force and torque definitions were used

−1

2
�N

i �=j=1

∫
P (N)

(
∇ri

1
l2 (Lui

− R̂)

)
φij δ(ri − r)δ(�i − �)d�

≈ − 1

m

∫
ρ(2)(r − r′,�,�′,t)

(
∇r

1
l2 (Lu − R̂)

)
φ(r − r′,�,�′)dr′d�′ = 1

m

(
Fd

1
l2 Td

)
,

�N
k=1

∫
P (N)

(
∇rk

1
l2 (Luk

− R̂)

)
Vextδ(rk − r)δ(�k − �)d� = 1

m

(
ρ∇Vext

1
l2 ρ(Lu − R̂)Vext

)
, (37)

which result after using the effective medium approximation. Now the fluxes of Eq. (36) are replaced in (32), resulting in the
effective overdamped (diffusion regime) Smoluchowski equation for the average density,

∂ρ

∂t
= −∇ · [

ρv0 + D0
(
μ̃tt + ←→

B
tt

dp · (
←→
B

tt

)−1
)
β · (−ρ∇Vext + Fd ) + ρβ−1

0

(
μ̃tt + ←→

B
tt

dp · (
←→
B

tt

)−1
) · f

+ ρζβ−1
0

(
μ̃tt + ←→

B
tt

dp · (
←→
B

tt

)−1
) · F

] + ∇ · (
←→
D

tt · ∇ρ) − (Lu − R̂) · [
ρω0 + Dr

0

(
μ̃rr + ←→

B
tt

dp · (
←→
B

tt

)−1
)
β

· (−ρ(Lu − R̂)Vext + Td ) + ρ
(
βr

0

)−1(
μ̃rr + ←→

B
rr

dp · (
←→
B

rr

)−1) · t + ρζω
(
βr

0 l
2)−1(

μ̃rr + ←→
B

rr

dp · (
←→
B

rr

)−1) · T
]

+ (Lu − R̂) · (
←→
D

rr · (Lu − R̂)ρ), (38)

where D0 = kBT /mβ0, Dr
0 = kBT /Iβr

0 . Equation (38) co-
incides with the SE given by Nägele [55] without
advective velocities. In the stationary regime and neglecting
HI, it coincides with the Yvon-Born-Green equation of

molecular fluids [50]. And with the one derived by Rex et al.
using a time-dependent density functional expansion of an
anisotropic fluid [66]. The effective force f = −(kBT /m)∇ ·←→
A

tt

, torque t = −(kBT /I )(Lu − R̂) · ←→
A

rr

, the mobilities
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←→μ tt
:= β−1

0 μ̃tt = (
←→
B

tt

)−1 − β−1
0

←→
B

tt

dp · (
←→
B

tt

)−1, ←→μ rr
:=

(βr
0)−1μ̃rr = (

←→
B

rr

)−1 − (βr
0)−1←→B rr

dp · (
←→
B

rr

)−1, and

←→
A

tt = 1 − β−1
0

←→
B

tt

dp

+ β−1
0

(←→
E

tt

dp − ←→ε − 1 + β−1
0

←→
B

tt

dp

) · ∇v0

←→
A

rr = 1′ − (
βr

0

)−1←→
B

rr

dp + (
βr

0

)−1(←→
E

rr

dp − ←→ε ω

− 1′ + (
βr

0

)−1←→
B

rr

dp

) · (Lu − R̂)ω0. (39)

Thus, we recover the known result first derived by
Santamaria-Holek et al. in Ref. [19] for the translational

diffusion part of Eq. (38) with effective diffusion
←→
D

tt

, and
we obtained a new expression for the rotational diffusion

coefficient
←→
D

rr

,

←→
D

tt = D0
[
μ̃tt + β−1

0

[(
μ̃tt + ←→

B
tt

dp · (
←→
B

tt

)−1
)

· (←→
E

tt

dp − ←→ε − 1 + β−1
0

←→
B

tt

dp

) · ∇v0
]s]

,

←→
D

rr = Dr
0

[
μ̃rr + (

βr
0

)−1[(
μ̃rr + ←→

B
rr

dp · (
←→
B

rr

)−1
)

· (←→
E

rr

dp−←→ε ω−1′+←→
B

rr

dp

) · (Lu − R̂)ω0
]s]

. (40)

The factors
←→
B

u

dp,
←→
B

u

and their diverse products that

appear in the definition of the mobility tensor ←→μ u
, u =

t t,rr are given, for instance, at two-body HI in (D9). At

very low density and no stationary flow
←→
B

u

dp = 0,
←→
B

tt =
β01,

←→
B

rr = βr
01′,

←→
E

u

dp = 0, ←→μ tt = β−1
0 1, and, therefore,

←→
D

tt = D01 and similarly for
←→
D

rr = Dr
01′. The rotational

diffusion coefficient (40) contains two contributions; the first
one is the thermal rotational diffusion that includes HI, whereas
the second part adds the effect of vortex flow. In addition, from
(D12) and (D13) of Appendix D we are led to the rotational

viscosity ←→η rr

HI = Dr
0ρ(←→ε ω − ←→

E
rr

dp) due to the particles’ HI
and external flow field. Another contribution to rotational
viscosity has been shown to occur in ferrofluid suspensions
without shear flow in the presence of moderate magnetic
fields. This magnetoviscous effect changes the fluid’s viscous
behavior by counteracting the rotational Brownian viscosity
due to thermal fluctuations and direct interactions among
particles [67,68]. Integrating (38) in the spatial coordinates
and using

∫
dr∇ · [. . . ] = 0 for ρ vanishing at the system

boundaries [55], and ρ(θ,φ,t) := ∫
drρ(r,�,t) the angular

dependence SE is attained,

∂ρ(θ,φ,t)

∂t
= −(Lu − R̂) ·

[ ∫
ρω0dr + Dr

0

∫ (
μ̃rr + ←→

B
rr

dp

· (
←→
B

rr

)−1)β · (−ρ(Lu − R̂)Vext + Td )dr

+ (
βr

0

)−1
∫ (

μ̃rr + ←→
B

rr

dp · (
←→
B

rr

)−1
)
β · ρtdr

+ ζω
(
βr

0 l
2
)−1

∫ (
μ̃rr +←→

B
rr

dp · (
←→
B

rr

)−1
) · ρdr

]
+ (Lu − R̂) ·

∫
[
←→
D

rr · (Lu − R̂)ρ]dr. (41)

It extends similar SE given by Nägele [55] to the case of a
particle’s HI and direct interactions. From this equation we can
see that we obtain the same kinetic equation of Martsenyuk
et al. [57] that describes the magnetization of suspensions of
ferromagnetic particles (see Appendix E).

Alternatively, using that
∫

d�(Lu − R̂)[. . . ] = 0,
ρ(r,t) := ∫

d�ρ(r,�,t) we get from (38)

∂ρ(r,t)
∂t

= −∇ ·
[ ∫

ρv0d� + D0
(
μ̃tt + ←→

B
tt

dp · (
←→
B

tt

)−1
)
β

·
∫

(−ρ∇Vext + Fd )d�

+ β−1
0

(
μ̃tt + ←→

B
tt

dp · (
←→
B

tt

)−1
)
β · ρf

+ ζβ−1
0

(
μ̃tt + ←→

B
tt

dp · (
←→
B

tt

)−1) · ρ

]
+ ∇ · [

←→
D

tt · ∇ρ], (42)

which is the SE given before by Santamaria-Holek et al. [19]
for the translational degree of freedom and coincides with one
given by Nägele [55].

V. CONCLUSIONS

In this paper we derived the Fokker-Planck equations for
one- and two-particle probability densities of suspensions
of particles with anisotropic interactions using the MNET
approach. In the hydrodynamic regime we obtained the
balance equations of linear, angular momentum, and energy
conservation. In the long-time limit and for orientational
isotropic colloidal suspensions at thermal equilibrium, the
former equation for the average translational velocity yields
the collective diffusion coefficient Dc. It depends on the
microstructure of the suspension through the equilibrium
pair-correlation function and the single-particle hydrodynamic
translational friction coefficient, which is a function of the
concentration. Furthermore, we considered that an external
flow field is imposed in the suspension and derived with MNET
the FP equation under arbitrary flow conditions. In the diffusive
regime we derived the Smoluchowski equation for particle’s
average density. This equation extended previous works [19]
on translational degree of freedom of particles in order to
encompass its rotational motion and effect of their direct
and hydrodynamics interactions. Therefore, the result is an
expression for the rotational diffusion coefficient of particles
under the action of applied shear. In the diffusive regime, the
balance equation of angular momentum leads to the derivation
of a rotational viscosity that adds to the one that originates
from thermal fluctuations of the particles in a quiescent fluid.
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APPENDIX A

The steps to derive the expressions for the currents are
provided. The dynamical evolution of the suspension will be
made through the one- and two-particle distribution functions.
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Using the definitions of P (n) and J
(n)
vi

and J (n)
ωi

for n = 1,2
we integrate the Liouville equation (2) on the remaining N -n
coordinates and obtain the continuity equation,

∂P (n)

∂t
+

n∑
i=1

vi · ∂P (n)

∂ri

+
n∑

i=1

ωi · (
Lui

− R̂i

)
P (N)

−m−1 N !

(N − n)!

N∑
i,j=1

∫
∂φij

∂ri

· ∂P (N)

∂vi

dxn+1 . . . dxN

−m−1
n∑

j=1

∂Vext

∂rj

· ∂P (N)

∂vj

−I−1 N !

(N − n)!

N∑
i,j=1

(
Lui

− R̂i

)
φij

·∂P (N)

∂ωi

dxn+1 . . . dxN − I−1
n∑

j=1

(Lu − R̂)Vext · ∂P (n)

∂ωj

= −
n∑

i=1

∂

∂vi

· J (n)
vi

−
n∑

i=1

∂

∂ωi

· J (n)
ωi

, (A1)

a relationship that will be used further. We note that Eq. (A1)
ignores the triplet distribution function P (3) [26] and, thus,
it is valid at the low-density limit. On the other hand, it is
assumed that at local equilibrium the factorization of P (N) is
valid in the same way as for its thermodynamic equilibrium
counterpart [22,30],

P (N)(xN,t) = P (1)(x1,t)P
(2)(x2,t) . . . P (1)(x1,t)g

(N)(xN,t),

(A2)

with the dynamical correlation function

g(N) = g(2)(x1,x2,t) . . . g(2)(xN−1,xN,t)δg(3)(x1,x2,x3,t) . . .

× δg(3)(xN−2,xN−1,xN,t) . . . δg(N)(x1, . . . ,xN,t).

(A3)

It should be noted that there are N factors P (1), N (N − 1)/2
factors g(2), N (N − 1)(N − 2)/3! factors g(3), and so on [30].
Within MNET the Gibbs equation of the solvent and colloids
is [12]

δS = −kBm

T

∫
μ(�,t)δP (N)d�, (A4)

where μ is the nonequilibrium chemical potential per unit mass
that can be derived by comparing (A4) with the variation of
(5) and using that δSLE = (m/T )

∫
μBδP (N)d� [12]. Thus,

we find

μ(r,�,v,ω,t) = μB + kBT

m
ln

P (N)

P
(N)
LE

, (A5)

where T is the local thermodynamic temperature.
Substituting (A2) and (A3) in the above equation
yields

μ = kBT

m
ln

P (1)

P
(1)
LE

+ kBT

m

1

2
ln

g(2)

g
(2)
LE

+ · · · + μB. (A6)

From the classical statistical theory of liquids, the equi-
librium electrochemical potential μB has two contributions;
an ideal μid reference potential and μexc excess term due to
direct interactions among particles, whereas the fundamental
equation of state reads μB := μid + μexc. It is also known that
P

(1)
LE is a Maxwell profile velocity [26],

P
(1)
LE = exp

[
m

kBT

(
μid

Beq − v2
1

2

)
− Iω2

1

2kBT

− 1

kBT

∑
j

φ1j − Vext

kBT

]
, (A7)

and the pair-correlation function g(2) contains the excess
part [31]. There are several approximations in a diagrammatic
expansion on the number of interacting particles for this static
structural property which serve our purpose to show its explicit
dependence on only μexc, aside from the direct interaction, for
instance, in the hypernetted chain approximation [26,31]

g(2)(r1,�1,r2,�2)LE = exp

[
1

kBT

(
mμexc

Beq(r1,�1,r2,�2)

− φ12(r1,�1,r2,�2) − Vext
)]

. (A8)

Using both equilibrium functions in (A6) we get, for the
local equilibrium chemical potential at the two-particle level,

μ = kBT

m
lnP (1) + v2

1

2
+ l2ω2

1

2
+ kBT

m
lng(2)

+ φ12

m
+ Vext

m
+ · · · (A9)

or, equivalently, μ = μ(1) + μ(2) + . . . , where μ1 =
(kBT /m)ln(P (1)/P

(1)
LE ) + μid , μ2 = (kBT /m)ln(g(2)/g

(2)
LE) +

μexc. Now, by replacing (A9) and (A2) in (A4) yields

δS = −m

T

∫
δP (1)μ(1)dx1 − m

2T

∫
δP (2)μ(2)dx2 + · · · .

(A10)

From the above equation we attain the time rate of change
of entropy per unit volume as

∂S(r,t)
∂t

= −m

T

∫
μ(1) ∂P (1)

∂t
dv1d�1dω1

− m

2T

∫
μ(2) ∂P (2)

∂t
dv1d�1dω1dr2dv2d�2dω2.

(A11)

The first term on the right-hand side is rewritten with the use
of (A1) with n = 1, thus,

−m

T

∫
μ(1) ∂P (1)

∂t
dv1dω1d�1

= − ∂

∂r1
· J (1)

s −
∫ (

Lu1 − R̂1
) · J (1)

s,ω1
d�1 + σ (1)(r1,t),

(A12)
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where, using Refs. [27,32], it yields

J (1)
s,ω1

= kB

∫
ω1P

(1)

(
μ(1)m

kBT
− 1

)
dv1dω1 − 1

4T l2

∫
r12

(
Lu1 − R̂1

)
φ12

∫ 1

0
P (2)dα

∂μ(1)

∂ω1
dr12dv1dω1d�1dv2dω2d�2

+ 1

T l2

∫ [(
Lu1 − R̂1

)
Vext

]
P (2) ∂μ(1)

∂ω1
dv1dω1d�1dv2dω2d�2,

J (1)
s = kB

∫
v1P

(1)

(
μ(1)m

kBT
− 1

)
dv1dω1d�1 − 1

2T

∫
r12r12

r12
φ′

12 ·
∫ 1

0
P (2)dα

∂μ(1)

∂v1
dr12dv1dω1d�1dv2dω2d�2

+ 1

T

∫ [
∂

∂r1
Vext

]
P (2) ∂μ(1)

∂ω1
dv1dω1d�1dv2dω2d�2,

σ (1) = −kB

∫ [
J (1)

v1
· ∂

∂v1
ln

P (1)

P
(1)
LE

+ J (1)
ω1

· ∂

∂ω1
ln

P (1)

P
(1)
LE

]
dv1dω1d�1dv2dω2d�2 (A13)

The last term above contains the first contribution to the entropy production at the one-particle level σ (1). Similarly, the
second term in (A11) can be calculated to give

− m

2T

∫
μ(2) ∂P (2)

∂t
dv1dω1d�1dr2dv1dω2d�2 = − ∂

∂r1
· J (2)

s −
∫ (

Lu1 − R̂1
) · J (2)

s,ωd�1 + σ (2)(r1,t), (A14)

where now

J (2)
s = − m

2T

∫
v1P

(1)

(
μ(1)m

kBT
− 1

)
dv1dω1d�1 − 1

2T

2∑
i,j=1

∫
rij rij

rij

φ′
ij ·

∫ 1

0
P (2)dα

∂μ(1)

∂v1
drij dv1dω1d�1dv2dω2d�2

+ 1

T

∫ [
∂

∂r1
Vext

]
P (2) ∂μ(1)

∂ω1
dv1dω1d�1dv2dω2d�2

+ m

2T

∫
(v1 + v2) · r12rij

r12
·
∫ 1

0
P (2)dα

∂μ(2)

∂r12
dr12dv1dω1d�1dv2dω2d�2

J (2)
s,ω = − 1

4T l2

∫
r12

(
Lu1 − R̂1

)
φ12 ·

∫ 1

0
P (2)dα

∂μ(1)

∂ω1
dr12dv1dω1d�1dv2dω2d�2,

+ 1

T l2

∫ [(
Lu1 − R̂1

)
Vext

]
P (2) ∂μ(1)

∂ω1
dv1dω1d�1dv2dω2d�2

σ (2) = −kB

∫ [
J (2)

v1
· ∂

∂v1
ln

g(2)

g
(2)
LE

+ J (2)
ω1

· ∂

∂ω1
ln

P (2)

P
(2)
LE

]
dv1dv2dr2dω1dω2d�1d�2

− kB

∫ [
J (2)

v2
· ∂

∂v2
ln

g(2)

g
(2)
LE

+ J (2)
ω2

· ∂

∂ω2
ln

g(2)

g
(2)
LE

]
dv1dv2dr2dω1dω2d�1d�2, (A15)

and we can identify in the last term the contribution to the
entropy production of two particles σ (2). Therefore, the total
entropy production is the sum of those two contributions
found,

σ (t) = kB

∫
J (1)

v1
· ∂

∂v1
ln

P (1)

P
(1)
LE

dx1

+ 1

2

2∑
i

∫
J (2)

vi
· ∂

∂vi

ln
g(2)

g
(2)
LE

dx2

+ k

∫
J (1)

ω1
· ∂

∂ω1
ln

P (1)

P
(1)
LE

dx1

+ 1

2

2∑
i

∫
J (2)

ωi
· ∂

∂ωi

ln
g(2)

g
(2)
LE

dx2 + . . . , (A16)

which constitute an extension of similar expression found by
Mayorga et al. [22] and Rubi et al. [12] for translational
velocity of spherical particles. According to Curi’s principle
[29] the unknown fluxes satisfy a linear relationship with
the thermodynamic forces throughout Onsager coefficients.
However, Snider and Lewchuck [33] demonstrated that for
systems with spin as in our case here, if the Onsager
coefficients do not depend on the spin variable sB , a generic
class of isotropic system where the constitutive relations
between forces and fluxes can be written as [33]

J (N)
vi

= −kB

N∑
i �=j,j=1

Lv1vj

∂

∂vj

ln
P (N)

P
(N)
LE

− kB

N∑
i �=j,j=1

Lv1ωj

∂

∂ωj

ln
P (N)

P
(N)
LE
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J (N)
ωi

= −kB

N∑
i �=j,j=1

Lωiωj

∂

∂ωj

ln
P (N)

P
(N)
LE

− kB

N∑
i �=j,j=1

Lωivj

∂

∂vj

ln
P (N)

P
(N)
LE

, (A17)

where
←→
L aiaj

are Onsager coefficients that may depend on
the variables of configuration and therefore represent hydro-
dynamics interaction among particles. Moreover, according to
the general form of the above currents there appears a hydro-
dynamic coupling of the rotational and translational movement
of the particles. For ai = (vi ,ωi), aj = (vj ,rj ,ωj ,�j ) the

unknown reciprocal relations
←→
L virj

= −←→
L rj vi

,
←→
L ωi�j

=
−←→

L �j ωi
[22,29] is satisfied. We will not consider in this

paper the anisotropic case for the spin dependence of Onsager
coefficients as given by Snider et al. [33]. Thus, we define
the spin-independent static (but configurational dependent)
hydrodynamic friction tensors as

←→
β

tt

ij = m
←→
L vivj

P (N)T
,

←→
β

tr

ij = m
←→
L viωj

P (N)T l2
(A18)

←→
β

rt

ij = ml2←→L ωivj

P (N)T
,

←→
β

rr

ij = I
←→
L ωiωj

P (N)T
,

which, when replaced in (A17), yield the currents of (7) and
(8) in the main text.

APPENDIX B

The momentum balance equation results from differentiat-
ing (12) and using the conservation probability equation (9).
Additionally, using that the probability density P (1) decays
quickly for large velocities, we obtain

∂ρBvB

∂t
+ m

∂

∂r1
·
∫

dv1dω1d�1v1v1P
(1)

+ m
(
Lu1 − R̂1

) ·
∫

dv1dω1d�1v1ω1P
(1)

=
∫

dv1dω1d�1dv2dω2dr2d�2v1
∂φ12

∂r1
· ∂P (2)

∂v1

+ m
←→
β

tt

11 ·
∫

dv1dω1d�1v1
∂

∂v1
(P (1)u1)

+ m
←→
β

tr

11 ·
∫

dv1dω1d�1v1
∂

∂v1
(P (1)ω1). (B1)

Introducing now the definitions (11), (12), (15), and (16)
we arrive at

∂ρBvB

∂t
+ ∂

∂r1
· (←→

P
K,vv

B + ρBvBvB

) + (
Lu1 − R̂1

)
· (←→

P
K,vω

B + ρBvBωB

) + Fd −ρB

←→
β

tt

11 · vB − ρB

←→
β

tr

11 · sB,

(B2)

If we define the total time derivative d/dt = ∂/∂t + vB · ∇
we obtain (14). In order to derive Eq. (19) we need to multiply
component γ of Eq. (14) by rδ and subtract the symmetric

equation [29,44], yielding

d

dt
[ρB(rγ vB,δ − rδvB,γ )]

= − ∂

∂rr

(rγ Pδr − rδPγ r ) + Pδγ − Pγδ

− ρB

m

(
rγ

∂

∂rδ

− rδ

∂

∂rγ

)
Vext

+ ρB

[
rδ

(←→
β

tt

11

)
γ r

− rγ

(←→
β

tt

11

)
δr

]
vB,r

+ ρB

[
rδ

(←→
β

tr

11

)
γ r

− rγ

(←→
β

tr

11

)
δr

]
sB,r . (B3)

Finally, it results as follows:

d

dt
[ρBr × vB] = − ∂

∂r
· (r × ←→

P B) + 2
←→
P

a − ρB

m
r × ∇Vext

− ρBr × ←→
β

tt

11 · vB − ρBr × ←→
β

tr

11 · sB,

(B4)

where we added the coefficient 2 in the second term on
the right-hand side in order to conform with the anisotropic
contribution defined by Evans [27,45]. This term couples the
equations of motion of orbital angular momentum above with
that of the intrinsic angular momentum. It must, therefore,
be added to the dynamic equation for ρBdsB/dt . The other
remaining terms in such an equation are derived by taking the
time derivative of (13) and using ∂P (1)/∂t from (9), yielding

ρB

dsB

dt
= − ∂

∂r1
· l2←→P B

K,vω + Td (t) − l2ρB

I
(Lu1 − R̂1)Vext

− 2P a − ρB

←→
β

rr

11 · sB − ρB

←→
β

rt

11 · vB, (B5)

where we have defined the torque’s density of pairs interaction,

Td (t) = −
∫ [

(Lu1 − R̂1)φ12(r1,r2,�1,�2)
]
P (2)

× dr1dr2d�1d�2dv1dω1dv2dω2

≈ − ∂

∂r
· ←→

Q
φ

B. (B6)

The potential component of the torque tensor is [27]

←→
Q

φ

B = −1

4

∫
r12

(
Lu1 − R̂1

)
φ(r12,�1,�2)

∫ 1

0
P (2)

× (r1 − (1 − α)r12,r1 + αr12,v1,v2,ω1,ω2,�1,�2,t)

× dαdr12d�1d�2dv1dω1dv2dω2. (B7)

We also introduced the symmetric kinetic pressure tensor
for the particles,

←→
P

K,vω

B = m

∫
P (1)(v1 − vB)(ω1 − ωB)dv1dω1d�1. (B8)

Thus, the final result is (19). Note that its general form
is dictated by the evolution equation for the density of total
angular momentum L = sB + ρBr × vB that is attained using
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M. HERNÁNDEZ-CONTRERAS PHYSICAL REVIEW E 88, 022317 (2013)

similar methods as those explained in Refs. [33,44,46]

dL
dt

= d

dt
[sB + ρBr × vB]

− ρB

m

[
r × ∇Vext + l2ρB

I
(Lu − R̂)Vext

]
+ r × Fd

+ ∇ · (r × ←→
P B + ←→

Q B) − ρBr × ←→
β

tt

11 · vB

− ρBr × ←→
β

tr

11 · sB + ρB

←→
β

rr

11 · sB + ←→
β

rt

11 · vB.

(B9)

Subtracting (B4) from this equation yields Eq. (19).

APPENDIX C

We follow the methods of MNET, Refs. [12,19,20], and
calculate the entropy production of the system from the Gibbs
entropy postulate

S = −kB

∫
�N

i=1P
(N)ln

P (N)

P
(N)
LE

δ(ri − r)δ(�i − �)d� + SLE,

(C1)

where SLE is the reference local equilibrium entropy with

P
(N)
LE = exp

[
m

kBT

(
μB − �N

i=1
1

2

(
vi − v0

i

)2
)

− ml2

kBT
�N

i=1
1

2

(
ωi − ω0

i

)2 − 1

2kBT
�N

i,j=1φij

− 1

kBT
�N

i=1Vext

]
, (C2)

where μB is the local equilibrium chemical potential.
Taking the time derivative of Eq. (C1) and performing a par-

tial integration with the use of (2) results in a balance equation
for the entropy, from which the entropy production reads

σ = −m

T

∫
�N

i=1Jvi
· ∂μ

∂vi

δ(ri − r)δ(�i − �)d�

− m

T

∫
�N

i=1Jωi
· ∂μ

∂ωi

δ(ri − r)δ(�i − �)d�

+ m

T

∫
�N

i=1Ji · (
vi − v0

i

) · ∂

∂ri

v0
i δ(ri − r)δ(�i − �)d�

+ m

T

∫
�N

i=1Ji · l2
(
ωi − ω0

i

)
· ∂

∂ri

ω0
i δ(ri − r)δ(�i − �)d� + m

T

∫
�N

i=1Jω
i

· (
vi − v0

i

) · (Lui
− R̂i)v0

i δ(ri − r)δ(�i − �)d�

+ m

T

∫
�N

i=1Jω
i · l2

(
ωi − ω0

i

)
· (

Lui
− R̂i

)
ω0

i δ(ri − r)δ(�i − �)d�

+ m

T

∫
�N

i=1Ji
0 · Fiδ(ri − r)δ(�i − �)d�

+ m

T

∫
�N

i=1Ji,ω
0 · Tiδ(ri − r)δ(�i − �)d�, (C3)

where the first two terms are diffusion processes in phase
space. Fi = ∂v0

i /∂t , Ti = ∂ω0
i /∂t are forces and torques

due to the flow [19]. Ji = (vi − vi)P N , Jω
i = (ωi − ωi)P N ,

Ji
0 = (vi − v0

i )P N , Ji,ω
0 = (ωi − ω0

i )P N . The last two terms
are diffusion with respect to the flow velocity [19]. We define
the nonequilibrium chemical potential as follows:

μ(�,t) = kBT

m
lnP (N) + 1

2
�N

i=1

(
vi − v0

i

)2

+ l2

2
�N

i=1

(
ωi − ω0

i

)2 + 1

2m
�N

i,j=1φij + 1

m
�N

i=1Vext.

(C4)

Since the entropy production is a positive defined property,
nonequilibrium thermodynamics implies [29], from Eq. (C3),
that there exist linear relationships between the fluxes Jvi

,
Jωi

and forces ∂μ/∂vi , ∂μ/∂ωi , respectively. According to
Curi’s principle, these vectorial quantities are given by the
constitutive relations

Jvi
= −�j

←→α tt

ij · (
vj − v0

j

)
P (N) − kBT

m
�j

←→α tt

ij · ∇vj
P (N)

− �j
←→ε ij · (

vj − v0
j

) · ∇rj
v0

jP
(N) − �j l

2←→α tr

ij

· (
ωi − ω0

i

)
P (N) − kBT

I
�j l

2←→α tr

ij · ∇ωj
P (N)

+ �j

←→
ζ ij · FjP

(N), (C5)

with ∇γ = ∂
∂γ

, γ = vj ,rj ,ωj ,

Jωi
= −�j

1

l2
←→α rt

ij · (
vi − v0

i

)
P (N) − kBT

m
�j

1

l2
←→α rt

ij

· ∇vj
P (N) − �j

←→ε ω

ij · (
ωj − ω0

j

) · (
Luj

− R̂j

)
ω0

jP
(N)

− �j
←→α rr

ij · (
ωj − ω0

j

)
P (N) − kBT

ml2
�j

←→α rr

ij · ∇ωj
P (N)

+ �j

←→
ζ

ω

ij · TjP
(N). (C6)

The following tensors were defined in terms of
the Onsager coefficients

←→
L aiaj

, with ai = (vi ,ωi), aj =
(vj ,rj ,vj ,ωj ,�j ,ωj ),

←→α tt

ij = m
←→
L vivj

T P (N)
, ←→α tr

ij = m
←→
L viωj

T P (N)l2
, ←→ε ij = m

←→
L virj

T P (N)
,

←→α rr

ij = ml2←→L ωiωj

T P (N)
, ←→α rt

ij = ml2←→L ωiωj

T P (N)
,

(C7)

←→ε ω

ij = ml2←→L ωi�j

T P (N)
,

←→
ζ ij = m

←→
L vivj

T P (N)
,

←→
ζ

ω

ij = m
←→
L viωj

T P (N)
.

These Onsager coefficients satisfy the reciprocal relations←→
L virj

= −←→
L rj vi

,
←→
L ωi�j

= −←→
L �j ωi

[19,60], which can
depend on flow. The mesoscopic nonequilibrium approach
breaks down for Onsager reciprocal relations are not valid far
from equilibrium states. Such states are reached with strong
flows. Another limitation of MNET is that, in general, ρ(2)

depends on applied flow and its functional form is not known.
At low concentration it can be approximated through the
pair-correlation function [61].

Replacing the currents, Eqs. (C5)–(C6), in (2), we obtain
the N -particle Fokker-Planck equation (34) for stationary flow.
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APPENDIX D

In the inertial regime (t 
 t t ,t r ) the out-of-equilibrium dynamics of the system is provided by the continuity equation Eq. (32),
and the balance equation of linear momentum is obtained by differentiating (33) and using (34),

ρi

divi

dt
= −∇ · ←→

P
vv

i − (Lu − R̂) · ←→
P

ωv

i −
∫

�jP
(N)∇ri

φij δ(ri − r)δ(�i − �)d� −
∫

P (N)∇ri
Vextδ(ri − r)δ(�i − �)d�

−
∫

�j

←→
β

tt

ij · (
v(2)

j − v0
j

)
ρ(2)δ(ri − r)δ(�i − �)dridrj d�id�j

−
∫

�j l
2←→α tr

ij · (
ω

(2)
j − ω0

j

)
ρ(2)δ(ri − r)δ(�i − �)dridrj d�id�j + ρi

←→
ζ · Fi . (D1)

Similarly, we deduce the balance equation of intrinsic angular momentum,

ρi

di l
2ωi

dt
= −∇ · l2←→P vω

i − (Lu − R̂) · l2←→P ωω

i − ml2I−1
∫

�jP
(N)(Lui

− R̂i)φij δ(ri − r)δ(�i − �)d�

−
∫

P (N)(Lui
− R̂i

)
Vextδ(ri − r)δ(�i − �)d� −

∫
�j l

2←→β rr

ij · (
ω

(2)
j − ω0

j

)
ρ(2)δ(ri − r)δ(�i − �)dridrj d�id�j

−
∫

�j
←→α rt

ij · (
v(2)

j − v0
j

)
ρ(2)δ(ri − r)δ(�i − �)dridrj d�id�j + ρi

←→
ζ

ω · Ti − 2
←→
P

a

i , (D2)

where ρ(2)(ri ,�i,rj ,�j ,t) = m
∫

P (N)d�N−2
ij , d�N−2

ij = dr1d�1dv1dω1 . . . dvidωidvj dωj of N − 2 particles, and the convec-

tive derivative di

dt
= ∂

∂t
+ vi · ∇ + ωi · (Lu − R̂). Here v(2) and ω(2) depend on rirj�i�j . The first terms on the right-hand side

of the above equations are the drag forces and torques on the particles mediated by HI which modify their velocities due to the
distribution of particles [19]. Equations (D1) and (D2) depend on the pressure tensors for the particles,

←→
P

vv

i = m

∫
P (N)(vi − vi)(vi − vi)δ(ri − r)δ(�i − �)d�,

←→
P

vω

i = m

∫
P (N)(vi − vi)(ωi − ωi)δ(ri − r)δ(�i − �)d�,

(D3)←→
P

ωω

i = m

∫
P (N)(ωi − ωi)(ωi − ωi)δ(ri − r)δ(�i − �)d�,

←→
P

ωv

i = m

∫
P (N)(ωi − ωi)(vi − vi)δ(ri − r)δ(�i − �)d�.

That satisfies the corresponding evolution equations

di

dt

←→
P

vv

i + 2

[(
β01 + ∇vi + 1

2
∇ · vi1 + 1

2
(Lu − R̂) · ωi1

)
· ←→

P
vv

i

]s

+ 2
[(

l2←→α tr

ii + (Lu − R̂)vi

) · ←→
P

ωv

i

]s

= 2kBT
ρi

m
(←→α tt

)s − 2

( ∫
�j,i �=j

←→
β

tt

ij · (
v(2)

j − v0
j

)(
v(2)

i − v0
i

)
ρ(2)δ(ri − r)δ(�i − �)dridrj d�id�j

)s

− 2

( ∫
�j,i �=j l

2←→α tr

ij · (
ω

(2)
j − ω0

j

)(
v(2)

i − v0
i

)
ρ(2)δ(ri − r)δ(�i − �)dridrj d�id�j

)s

, (D4)

di

dt

←→
P

ωω

i + 2

[(
βrr

ii 1′ + (Lu − R̂)ωi + 1

2
∇ · vi1′ + 1

2
(Lu − R̂) · ωi1′

)
· ←→

P
ωω

i

]s

+ 2

[(
1

l2
←→α rt

ii + ∇ωi

)
· ←→

P
vω

i

]s

= 2kBT
ρi

I
(←→α rr

)s − 2

( ∫
�j,i �=j

←→
β

rr

ij · (
ω

(2)
j − ω0

j

)(
ω

(2)
i − ω0

i

)
ρ(2)δ(ri − r)δ(�i − �)dridrj d�id�j

)s

− 2

( ∫
�j,i �=j

1

l2
←→α rt

ij · (
v(2)

j − v0
j

)(
ω

(2)
i − ω0

i

)
ρ(2)δ(ri − r)δ(�i − �)dridrj d�id�j

)s

. (D5)

The last terms on (D4) and (D5) add HI to the pressure tensor [19]. This cross-correlation of velocities of distinct particles (dp)
implies that stresses in the system are modified by HI [19]. In Eqs. (D1) and (D2) we used the values of friction tensors without

HI
←→
β

tt

ii ≈ β01δii ,
←→
β

rr

ii ≈ βrr
ii 1′δii = βr

01′δii , and Eq. (35). The superscript s denotes the symmetric part of a tensor. Following
the method of Ref. [19], in order to rewrite the quadrature terms of (D1) and (D2) and then (D4) and (D5) it is necessary to derive
also the evolution equations for the cross-correlation of velocities for distinct particles,

←→
C

vv

ij = m

∫
P (N)(vi − vi)(vj − vj )δ(ri − r)δ(�i − �)d�

(D6)←→
C

ωω

ij = m

∫
P (N)(ωi − ωi)(ωj − ωj )δ(ri − r)δ(�i − �)d�,
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whose result is

di

dt

←→
C

vv

ij + 2

[(
∇vi + 1

2
∇ · vi1 + 1

2
(Lu − R̂) · ωi1

)
· ←→

C
vv

ij

]s

+ 2
[
(Lu − R̂)vi · ←→

C
ωv

ij

]s

= 2kBT

m

∫
�N

k=1
←→α tt,s

ij δjkρ
(2)δ(ri − r)δ(�i − �)dridrj d�id�j

− 2

( ∫
�N

k=1
←→
β

tt

ik · (
v(2)

k − v0
k

)(
v(2)

j − v0
j

)
ρ(2)δ(ri − r)δ(�i − �)dridrj d�id�i

)s

− 2

( ∫
�N

k=1l
2←→α tr

ik · (
ω

(2)
j − ω0

j

)(
v(2)

i − v0
i

)
ρ(2)δ(ri − r)δ(�i − �)dridrj d�id�j

)s

, (D7)

di

dt

←→
C

ωω

ij + 2

[(
(Lu − R̂)ωi + 1

2
∇ · vi1′ + 1

2
(Lu − R̂) · ωj 1′

)
· ←→

C
ωω

ij

]s

+ 2
[∇ωi · ←→

C
vω

ij

]s

= 2kBT

I

∫
�N

k=1
←→α rr,s

ij δjkρ
(2)δ(ri − r)δ(�i − �)dridrj d�id�j

− 2

( ∫
�N

k=1
←→
β

rr

ik · (
ω

(2)
k − ω0

k

)(
ω

(2)
j − ω0

j

)
ρ(2)δ(ri − r)δ(�i − �)dridrj d�id�j

)s

− 2

( ∫
�N

k=1
1

l2
←→α rt

ik · (
v(2)

j − v0
j

)(
ω

(2)
i − ω0

i

)
ρ(2)δ(ri − r)δ(�i − �)dridrj d�id�j

)s

. (D8)

Both equations are valid for k �= i. Higher-order moments of velocities are not considered since they relax faster than the ones
considered here [19]. The friction tensors for two particles are related to the mobility ←→μ through [64]⎛⎝ ←→

β tt ←→
β

tr

←→
β

rt ←→
β

rr

⎞⎠−1

=
( ←→μ tt ←→μ tr

←→μ rt ←→μ rr

)
,

β0
←→μ tt

ij := μ̃tt
ij ≈ 1δij + 3

4

σ

rij

(1 + r̂ij r̂ij )(1 − δij ) − 3

4

σ

rijs

(1 + r̂ijs
r̂ijs

) + . . . ,

βr
0
←→μ rr

ij := μ̃rr
ij ≈ 1′δij + 3

2

(
σ

rij

)3 (
r̂ij r̂ij − 1

3
1′

)
(1 − δij )

− 3

2

(
σ

rijs

)3 [
r̂is j r̂ijs

− 1

3
1′ − 2(r̂ijs

∧ n̂)(r̂ijs
∧ n̂)

]
+ . . . , (D9)

where we kept terms up to first and third order in σ/rij for uu = t t,rr , respectively. rijs
is the distance between particle i and

the image of j with respect to an infinite plane. n̂ is a unit vector normal to the surface of the sphere. We shall not consider the

HI couplings uu = tr,rt ,
←→
P

ωv
,
←→
P

vω

. At very low densities ←→μ tt

ij = (
←→
β

tt

)−1
ij ≈ β−1

0 1δij and ←→μ rr

ij = (
←→
β

rr

)−1
ij ≈ (βr

0)−11′δij

but, in general, for concentrated suspensions they are nonzero for distinct particles as seen in (D9). In the long-time limit this

amounts to neglecting inertial terms [19,56] divi/dt , diωi/dt , di

←→
C

vv

ij /dt , di

←→
C

ωω

ij /dt , di

←→
C

vv

ij /dt , di

←→
C

ωω

ij /dt , ∇viβ
−1
0 
 1,

∇ · viβ
−1
0 
 1, (Lu − R̂) · ωiβ

−1
0 
 1, (Lu − R̂)ωi(βr

0)−1 
 1, ∇ · vi(βr
0)−1 
 1, (Lu − R̂) · ωi(βr

0)−1 
 1 in Eqs. (D1) and
(D2) and then (D4) and (D5). One may show that, for distinct particles, i �= j to the lowest order in σ/rij equations (D7) and
(D8), yielding

kBT

m

∫
�j

←→α tt

ij · ←→
β

tt

ij δ(ri − r)δ(�i − �)dridrj d�id�j

≈
∫

�N
j=1,i �=jβ0

←→
β

tt

ij · (
v(2)

i − v0
i

)(
v(2)

j − v0
j

)
ρ(2)δ(ri − r)δ(�i − �)dridrj d�id�j ,

kBT

I

∫
�j

←→α rr

ij · ←→
β

rr

ij δ(ri − r)δ(�i − �)dridrj d�id�j

≈
∫

�N
j=1,i �=jβ

r
0
←→
β

rr

ij · (
v(2)

i − v0
i

)(
v(2)

j − v0
j

)
ρ(2)δ(ri − r)δ(�i − �)dridrj d�id�j . (D10)

Also using the effective medium approximation valid at intermediate volume fractions [19], where dynamical properties
are obtained from a configurationally averaged suspension. Thus, a test particle i performs its hydrodynamic and Brownian
motion in the averaged colloidal fluid [19,65]. This amounts to replacing

∫
f (r′,�′)dr′d�′ −→ ∫

�if (ri ,�i)drid�i in the
above equations, which are finally used in Eqs. (D1) and (D2) and then (D4) and (D5), yielding the effective pressure tensors

←→
P

vv ≈ kBT

m

[
ρβ−1

0
←→α tt − β−2

0

∫
←→α ∗t t

(r′,�′)ρ(2)dr′d�′
]s

, (D11)
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with ←→α ∗t t
(r,�) = ←→

β
tt

(r,�) · ←→α tt
(r,�),

←→
P

ωω ≈ kBT

I

[
ρ
(
βr

0

)−1←→α rr − (
βr

0

)−2
∫

←→α ∗rr
(r′,�′)ρ(2)dr′d�′

]s

, (D12)

where ←→α ∗rr
(r,�) = ←→

β
rr

(r,�) · ←→α rr
(r,�). These pressure tensors can be recast into another form after assuming small spatial

gradients in the velocity [19] (v); ω(r − r′,�,�′,t) − ω0(r − r′,�,�′,t) ≈ ω(r,�,t) − ω0(r,�,t) [19,22] and using the distinct
particles expressions of (D10) to define

←→
B

tt

dp(r,�,t) = (β0ρ
2)−1

∫ ←→
β

tt

(r′�′) · ←→
β

tt

(r′�′)ρ(2)(r − r′,�,�′,t)dr′d�′

←→
B

rr

dp(r,�,t) = (
βr

0ρ
2)−1

∫ ←→
β

rr

(r′�′) · ←→
β

rr

(r′�′)ρ(2)(r − r′,�,�′,t)dr′d�′

(D13)←→
E

tt

dp(r,�,t) = (β0ρ
2)−1

∫ ←→
β

tt

(r′�′) · ←→ε (r′�′)ρ(2)(r − r′,�,�′,t)dr′d�′

←→
E

rr

dp(r,�,t) = (
βr

0ρ
2
)−1

∫ ←→
β

rr

(r′�′) · ←→ε ω
(r′�′)ρ(2)(r − r′,�,�′,t)dr′d�′,

where, for all particles,

←→
B

tt

(r,�,t) = ρ−2
∫ ←→

β
tt

(r′�′)ρ(2)(r − r′,�,�′,t)dr′d�′

(D14)←→
B

rr

(r,�,t) = ρ−2
∫ ←→

β
rr

(r′�′)ρ(2)(r − r′,�,�′,t)dr′d�′

is valid. The very low density limit of no HI of (D13) reduce to tensor zero in all cases, whereas for (D14) they reduce to β01,
βr

01′, respectively. Replacing (D13) and (D14) into (D11) and (D12) and using (D1) and (D2), the effective currents (36) follow(←→
B tt 0

0
←→
B

rr

)
·
(

ρ(v − v0)
ρ(ω − ω0)

)

≈ − 1

m

(
Fd

1
l2 Td

)
+ 1

m

(
ρ∇Vext

1
l2 ρ(Lu − R̂)Vext

)
− ρ

(
ζ1 0

0 1
l2 ζ

ω1′

)
·
(

F
T

)
+ kBT

(←→
A tt 0

0
←→
A

rr

)
·
( 1

m
∇ρ

1
I
(Lu − R̂)ρ

)

+ kBTρ

(
1

m
∇,

1

I
(Lu − R̂)

)
·
(←→

A tt 0

0
←→
A

rr

)
. (D15)

APPENDIX E

Here we demonstrate the SE for the density ρ(θ,�,t)
of Martensyuk et al. [57]. The system is a diluted fer-
romagnetic ideal gas made of identical spherical particles
of diameter σ and magnetic moment −→μ under a constant
external magnetic field H independent of time, and there is
no flow field v0 = 0. Martsenyuk et al. determined the SE
governing the purely rotational relaxation of the particles
without taking into account their translational motion in
order to explain the kinetic magnetization of the particles.

Since there are no particle interactions Td = 0,
←→
B

rr

dp = 0,
at low colloid density the effective inverse rotational friction

(
←→
B

rr

)−1 = (βr
0)−11 and μ̃tt = 1′. Thus, ←→μ rr = (βr

0)−11′,
therefore, we have the product

←→
B

rr

dp · ←→
B

rr = 0. From (40) the

rotational diffusion coefficient reduces to
←→
D

rr = Dr
0μ̃

rr1′ =
(βr

0)−1 kBT
I

1′ = 1
βIβr

0
1′ = 1

β8πησ 3 1′ = 1
2τB

1′, whereas from the

definition of
←→
A

rr = 1′ at low densities, ∇ · ←→
A

rr = 0, and
then the torque t = 0. The external torque due to vortex flow

T = ∂ω0

∂t
= 0. The external field is Vext = −−→μ êH, with ê =

−→μ /|−→μ | [57]. Thus, −βLuVext = β−→μ ê × Hδ(r) := −→
ξ δ(r).

Substituting into the diffusion Eq. (41) yields

∂ρ(θ,φ,t)

∂t
= 1

2τB

[
L2

uρ + Lu · (ρ
−→
ξ )

]
. (E1)

As in Martsenyuk et al. [57], using the projection of
−→
ξ

along the unitary angle θ̂ , that is, ρ
−→
ξ · θ̂ = ξsinθρ, ξ = |−→ξ |,

and the spherical coordinates representation of the Laplacian
and divergence angular operators L2

u,Lu yields

∂ρ(θ,φ,t)

∂t

= 1

2τBsinθ

{
∂

∂θ

[
sinθ

(
∂ρ

∂θ
+ ρξsinθ

)]
+ 1

sinθ

∂2ρ

∂φ2

}
,

(E2)

which is the main kinetic equation in Martsenyuk et al. [57].
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