
PHYSICAL REVIEW E 88, 022313 (2013)

Overlap fluctuations in glass-forming liquids
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We analyze numerically thermal fluctuations of the static overlap between equilibrium configurations in a
glass-forming liquid approaching the glass transition. We find that the emergence of slow dynamics near the onset
temperature correlates with the development of non-Gaussian probability distributions of overlap fluctuations,
measured using both annealed and quenched definitions. Below a critical temperature, a thermodynamic field
conjugate to the overlap induces a first-order phase transition, whose existence we numerically demonstrate in
the annealed case. These results establish that the approach to the glass transition is accompanied by profound
changes in the nature of thermodynamic fluctuations, deconstructing the view that glassy dynamics occurs with
little structural evolution.
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Theoretical approaches to the physics of glass-forming
materials are broadly organized in two categories [1]. A
first class of theories concentrates on thermodynamic aspects,
typically starting from a description of (assumed) relevant
structural features of viscous liquids (configurational entropy,
geometrical motifs, free volume), from which slow dynamics
is predicted to emerge [2]. A second class of models is based on
the opposite view that the thermodynamics of viscous liquids
is not evolving in any essential way and focuses directly on
relaxational aspects. This dynamical viewpoint is justified by
the observation that the structure of viscous liquids does not
seem to differ drastically from that of simple liquids, at least at
the level of two-body static correlations. In recent years, this
view gained support because it can directly be connected to
detailed studies of dynamic heterogeneity in glassy materials
[3], which have unambiguously established that nontrivial
spatiotemporal fluctuations accompany the glass transition [4].

In this work, we show that nontrivial, measurable ther-
modynamic fluctuations develop in supercooled liquids ap-
proaching the glass transition. We characterize their nature
and show that they are also intimately related to dynamics.
To obtain these results, we analyze the thermal fluctuations of
a thermodynamic quantity, the overlap between equilibrium
configurations. The physical motivation is that if the glass
transition is controlled by a sharp decrease in the number of
available metastable states [5] possibly leading to the entropy
crisis first discussed by Kauzmann [6], it should then become
more likely for two independent equilibrium configurations
to belong to the same state and thus to have a large mutual
overlap. Therefore, thermal fluctuations of the overlap, just like
the more technical construction of point-to-set correlations [7],
should directly reveal and quantify the emergence of growing
structural correlations in glass-forming liquids approaching
the glass transition.

In the context of supercooled liquids, the fluctuations of the
overlap Q between equilibrium configurations have first been
analyzed for spin glass models displaying a random first-order
transition (RFOT) [8,9], where the overlap distribution is
needed to characterize the low-temperature phase. However,
the overlap is also useful above the glass transition, because
it allows the introduction of a Landau free energy V (Q),
also called “effective potential” [10]. The potential was
shown theoretically to capture the temperature evolution of

RFOT free energy landscapes. In the mean-field limit where
these concepts are well-defined, V (Q) loses convexity when
metastable states first appear; it then develops a local minimum
at the mode-coupling singularity, which becomes the global
one at the “ideal” or Kauzmann glass transition [10]. Direct
measurements of V (Q) in finite dimensions are scarce and
conflicting [11–14]. It was found to display none of the
mean-field features in two lattice glass models [12,13], while a
recent investigation using soft spheres suggests a change in the
convexity of V (Q) near the mode-coupling temperature [14].

The potential V (Q) also serves as a starting point for field-
theoretical calculations attempting to extend RFOT results
to finite dimensions [15–19]. These calculations additionally
suggest that the RFOT mean-field landscape is highly fragile
with respect to finite-dimensional fluctuations [20], which
could even affect the universality class to be considered [21].
Since these findings directly challenge the relevance of a
thermodynamic perspective to supercooled liquids, detailed
studies of V (Q) in finite dimensions are needed.

A more direct interpretation of the effective potential is
obtained from its definition as a “large deviation” function for
the equilibrium fluctuations of the overlap,

P (Q) ∼ exp[−βNV (Q)], (1)

where P (Q) is the probability distribution of equilibrium
overlap fluctuations in a system with N particles at temperature
T = β−1 (we set Boltzmann’s constant to unity). Equation (1)
shows that the temperature evolution of V (Q) directly affects
the nature of thermal fluctuations of the overlap and also
suggests a conceptually simple way of measuring V (Q). Inter-
estingly, Eq. (1) provides a direct connection with dynamical
views of glasses. Recently, large deviations of dynamical ob-
servables have been analyzed [22]. The emergence of spatially
heterogeneous dynamics was related to the appearance of
non-Gaussian (nearly exponential) probability distributions
of dynamic fluctuations. Equivalently, these broad tails im-
ply that a field conjugated to the dynamic activity should
induce a nonequilibrium first-order phase transition between
two phases with distinct dynamics, as observed numerically
[23,24]. While the existence of long-lived metastable states (as
in RFOT) is sufficient to explain these dynamic fluctuations
and nonequilibrium transitions [25], alternative explanations
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with trivial thermodynamics also exist [23]. Therefore, estab-
lishing the existence of thermodynamic observables obeying a
phenomenology similar to that of dynamic ones will provide a
concrete bridge between static and dynamic viewpoints [26].

We use computer simulations to analyze static fluctuations
of the overlap in a simple numerical model of a glass-
forming material. We consider a 50:50 binary mixture of
harmonic spheres [27] of diameter ratio 1.4, which we
study using Monte Carlo dynamics. The Hamiltonian reads
H ({r}) = ∑

j>i v( |ri−rj |
σij

), with the harmonic pair interaction

v(r � 1) = E
2 (1 − r)2, truncated for distances larger than the

mean diameter σij = 1
2 (σi + σj ), and {r} ≡ (r1, . . . ,rn). For

the density ρ = 0.675 (using the small particle diameter as
the unit length), this model behaves as a binary hard sphere
mixture [28], which is a well-established model to analyze
the glass transition. It is characterized by an onset tem-
perature around Ton ≈ 10 and a mode-coupling temperature
Tmct ≈ 5.2, with temperatures expressed in units of 10−4E

[29]. The overlap Q12 between configurations 1 and 2 is
defined as

Q12 = 1

N

N∑
i,j=1

θ (a − |r1,i − r2,j |), (2)

where θ (x) is the Heaviside function, r1,i denotes the position
of particle i within configuration 1, and we take a = 0.3.
By definition, Q11 = 1, while Q12 is small for uncorrelated
configurations. (of order ≈ 4

3πρa3 ≡ Qrand � 1). Note that
exchanging the positions of two particles does not decrease
Q12. Therefore, the overlap represents an “agnostic” measure
of the degree of similarity between two amorphous density
fields, with no reference to a specific type of structural order.

By definition, V (Q) represents the free energy cost to
maintain two thermalized copies of the liquid at a fixed value
of their mutual overlap. Formally, this amounts to performing
the following quenched calculation:

Vq(Q) = − T

N

∫
dr2

e−βH2

Z2
log

∫
dr1e

−βH1δ(Q − Q12),

(3)

where H1 ≡ H ({r1}) and H2 ≡ H ({r2}), while Z2 is the
corresponding partition functions. In Eq. (3), the thermal
fluctuations of Q12 are first probed for a fixed configuration
2 drawn from the equilibrium distribution, and then the loga-
rithm of the probability distribution is averaged by sampling
independent configurations.

This procedure is numerically demanding because it re-
quires two successive averages. A simpler, but approximate,
procedure is to use an annealed definition:

Va(Q) = − T

N
log

∫∫
dr2dr1e

−β(H2+H1)δ(Q − Q12), (4)

where configurations 1 and 2 are fluctuating simultaneously,
and no disorder average is needed.

Direct measurements of V (Q) are difficult because typical
fluctuations of Q are small compared to the average value
≈Qrand. To probe large deviations of the overlap, we use
umbrella sampling techniques to measure the statistical weight
of untypical values of the overlap. In practice, we use for each

temperature T a series of n independent simulations, each
simulation being biased by a Gaussian perturbation to the orig-
inal Hamiltonian, Wi(Q) = ki(Q − Qi)2, for (i = 1, . . . ,n),
which biases the overlap towards a desired value Qi ∈
[Qrand,1]. We make sure that each independent simulation first
reaches the (biased) equilibrium and that simulations are long
enough that they can properly sample equilibrium fluctuations
in the biased phase space. Thus, each simulation returns the
measurement of the (biased) probability distribution functions,
Pi(Q). We then use multihistogram reweighting methods
to reconstruct the unbiased probability P (Q) from the n

independently measured Pi(Q) [30],

P (Q) =
∑n

i=1 Pi(Q)∑n
i=1 e−βWi /Zi

, (5)

where the Zi are defined self-consistently as

Zi =
∫ 1

0
dQ′

∑n
j=1 Pj (Q′)∑n

j=1 eβ(Wi−Wj )/Zj

. (6)

We find that up to 16 independent simulations are needed to
accurately reconstruct P (Q) over the entire relevant range,
depending on the system size studied, N = 64, 108, and 256,
and on the temperature, T � 7. We were not able to properly
sample fluctuations for T < 7 (and thus closer to Tmct). The
more demanding simulations are for large Q, large N , and low
T . Up to 40 independent samples were used for the disorder
average in Eq. (3). Finally, note that using biasing potentials
Wi(Q) efficiently solves the problem (first discussed in
Ref. [11]) of translational and rotational invariances in Eqs. (3)
and (4).

We present in Fig. 1 the numerical results obtained for
both Vq(Q) and Va(Q) in harmonic spheres for a range of
temperatures, T � 7, which thus encompasses the onset of
slow dynamics. These results indicate that thermal fluctuations
of the overlap become broader as temperature is lowered
and deviate increasingly from a Gaussian behavior, which
would correspond, via Eq. (1), to a parabolic V (Q). As
suggested by the dashed lines, the fluctuations are well
described for temperatures T � 10 and for intermediate Q

by an exponential behavior. Note that for the annealed case
at the lowest T the potential is clearly not convex, at least
for this moderate system size [31]. Overall, this behavior is in
excellent agreement with results obtained within mean-field
models displaying a RFOT, where the convexity of Vq(Q)
is lost below Ton. For finite-dimensional systems, convexity
should be restored through the emergence of interfaces and
phase separation between high-Q and low-Q phases [14],
therefore yielding exponential decay in P (Q), and thus linear
behavior for V (Q) ∼ −T log P (Q), as observed in Fig. 1. We
find quantitative, rather than qualitative, differences between
Va and Vq. The main effect of the quenched disorder in these
data is to introduce an additional source of fluctuations which
depresses slightly the emergence of exponential decay from
T ≈ 10 for the annealed case to T ≈ 8 for the quenched case.

It is remarkable that V (Q), which quantifies the thermal
fluctuations of a purely static observable, loses convex-
ity near (or slightly below) the onset temperature. Below
Ton, time correlation functions develop a two-step decay,
and dynamics become spatially heterogeneous. Our results
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FIG. 1. (Color online) Temperature evolution of effective poten-
tial using (a) annealed and (b) quenched averages, for N = 108
particles. Very similar behavior is obtained for N = 64 and N = 256
(not shown). Data are vertically shifted data at different T such that
V (Q) = 0 at the low-Q mininum. Dashed lines represent straight
lines, and temperature decreases from top to bottom.

are thus qualitatively distinct from the emergence of non-
Gaussian fluctuations of dynamic observables [22], and they
demonstrate that thermodynamic fluctuations are (at least) as
relevant as dynamic ones. The physical interpretation of the
behavior of V (Q) offered by RFOT is that Ton marks the
emergence of many metastable states, whose number decreases
as temperature is lowered further. This makes it more and
more likely for two configurations drawn at random to belong
to the same state and thus to have a large mutual overlap, as
observed in Fig. 1. This also suggests that the driving force for
structural relaxation is reduced at low T , which is the RFOT
theory explanation for the slowing down of the dynamics [32].

A direct, but spectacular, consequence of the loss of
convexity of V (Q) is that a field conjugated to the overlap
should induce an equilibrium first-order phase transition
[10,33–36], because its main effect is to “tilt” the potential
towards large Q values. Physically, this amounts to studying
the phase diagram of two coupled copies of the same system:

Htot({r1},{r2}) = H ({r1}) + H ({r2}) − εQ12. (7)

In the quenched version, copy 2 is drawn from the equilibrium
distribution, the thermal properties of copy 1 are measured
and then averaged over independent copies 2. In the annealed
scheme, the copies evolve simultaneously under the influence
of Htot in Eq. (7). Generalizing Eq. (5) to take into account the
presence of the thermodynamic field ε, we directly estimate
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FIG. 2. (Color online) Numerical indications of a thermodynamic
first-order equilibrium phase transition ending at a critical point
near (Tc ≈ 9.8, εc ≈ 10). (a) Isotherms ε(Q) for N = 256. The
dashed coexistence line is drawn using the d = 3 Ising model critical
exponent. (b) Probability distribution of overlap fluctuations across
the first-order transition at T = 8 and N = 108, the coexistence
occurring near ε ≈ 6.17. (c) Temperature evolution of the maximum
of the static susceptibility for different system sizes.

P (Q,ε) from the set of numerical simulations described above.
We can then explore relevant features of the (T ,ε) phase
diagram.

We present in Fig. 2 our main findings for the annealed case,
which establish the existence of first-order phase transition
terminating at a second-order critical point. Figure 2(a)
shows the evolution of isotherms ε(Q), in a representation
which underlies the analogy with the standard liquid-gas
coexistence region. While Q increases smoothly with ε at high
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temperature, it develops a sharp jump as temperature becomes
lower than T ≈ 10. By construction, this must correspond
to the temperature where Va(Q) loses convexity in Fig.
1. A stronger indication of the emergence of a first-order
phase transition is obtained by measuring the fluctuations
of the overlap at finite ε, as shown in Fig. 2(b). While the
fluctuations are nearly Gaussian for small and large values of
the coupling field, they are clearly bimodal at intermediate ε,
with peak positions revealing the values of the overlap in the
coexisting two phases. Finally, Fig. 2(c) presents data for the
static susceptibility χ (Q,ε) = N [〈Q2〉 − 〈Q〉2]. Increasing ε

at constant T we find that χ displays a maximum at a well-
defined value of the field, which coincides with the value for
which P (Q) is bimodal. We report the temperature evolution
of this maximum for various system sizes in Fig. 2(c). These
data indicate that fluctuations are enhanced with increasing
N at low enough temperature, supporting the existence of a
first-order phase transition in the thermodynamic limit below
a critical temperature Tc, which is expected to be in the same
universality class as the d = 3 Ising model [37]. Indeed, our
data are compatible with χ ∼ Ld at low T , while the data
for χ/Lγ/ν cross near Tc ≈ 9.8 ± 1 when using the 3d Ising
values of the critical exponents. We note that the isotherms
in Fig. 2(a) are well described below Tc by a jump in Q

increasing as �Q ∼ (εc − ε)β using again the Ising value for β

and εc ≈ 10. By contrast, the quenched coupling is believed to
be in a different universality class, the one of the random-field
Ising model [38]. We would need data at lower temperature to
test this interesting prediction, a task we leave for future work.

The present results unambiguously demonstrate the emer-
gence of strongly non-Gaussian thermodynamic fluctuations
in a three-dimensional, bulk supercooled liquid approaching
its glass transition. This is also revealed by the existence,
which we establish using finite-size scaling analysis, of an
equilibrium first-order phase transition in the (T ,ε). Such a
phase transition was hinted at in earlier numerical studies
[14,35,36], but thermalization and sampling issues, finite-size
effects, the location of the critical point, and its connection
with the onset of slow dynamics had not been discussed.

This shows that the nature of V (Q) in finite-dimensional
liquids is compatible with the mean-field RFOT starting point
used in field-theoretical calculations and seems to contradict
the claim that a different form of the potential should be used
[21]. It also shows, somewhat surprisingly, that mean-field

results are more robust for real liquids than for more abstract
spin glass models [20].

Interestingly, the present first-order transition is more easily
studied numerically than the transition induced by a random
pinning field recently analyzed for the same model [39]. While
both transitions result from the unique properties of RFOT
free energy landscapes, only the latter corresponds to an ideal
glass transition line [40], of the type possibly occurring in bulk
liquids at low temperature. It would be interesting to perform
a finite-size scaling analysis of the type presented here for the
random pinning case as well.

Although of purely thermodynamic origin, the present
phase transition shares in fact many similarities with the
nonequilibrium transition induced by a field conjugate to the
dynamic activity [23]. Both are first-order transitions induced
by an external biasing field and differ qualitatively from the
bulk glass transition. Their qualitative similarity is further
demonstrated by the observation that the jump in the overlap
reported in Fig. 2(a) is accompanied by a sharp change in the
dynamics. We find, for instance, a decrease of 3 decades of the
self-diffusion constant for T = 9 when the overlap jumps from
0.25 to 0.7. This shows that a first-order change of the dynamic
activity can, in fact, be easily triggered by a thermodynamic
field under fully equilibrium conditions. Combined with the
results in Ref. [25], our work suggests that nonequilibrium
first-order transitions in space-time are natural consequences
of the emergence of a nontrivial effective potential, V (Q),
which efficiently captures the complexity of the underlying
free energy landscape.

More generally, the parallel evolution of static and dynamic
fluctuations unveiled here suggests that the temperature evolu-
tion of thermodynamic fluctuations drives the slow dynamics
in glass-forming liquids, deconstructing the familiar view that
glassy dynamics occurs with little structural evolution.
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