
PHYSICAL REVIEW E 88, 022306 (2013)

Effective electrostatic interactions in mixtures of charged colloids
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We present a theory of effective electrostatic interactions in polydisperse suspensions of charged macroions,
generalizing to mixtures a theory previously developed for monodisperse suspensions. Combining linear response
theory with a random phase approximation for microion correlations, we coarse grain the microion degrees of
freedom to derive general expressions for effective macroion-macroion pair potentials and a one-body volume
energy. For model mixtures of charged hard-sphere colloids, we give explicit analytical expressions. The resulting
effective pair potentials have the same general form as predicted by linearized Poisson-Boltzmann theory, but
consistently incorporate dependence on macroion density and excluded volume via the Debye screening constant.
The volume energy, which depends on the average macroion density, contributes to the free energy and so
can influence thermodynamic properties of deionized suspensions. To validate the theory, we compute radial
distribution functions of binary mixtures of oppositely charged colloidal macroions from molecular dynamics
simulations of the coarse-grained model (with implicit microions), taking effective pair potentials as input. Our
results agree closely with corresponding results from more computationally intensive Monte Carlo simulations of
the primitive model (with explicit microions). Simulations of a mixture with large size and charge asymmetries
indicate that charged nanoparticles can enhance electrostatic screening of charged colloids. The theory presented
here lays a foundation for future large-scale modeling of complex mixtures of charged colloids, nanoparticles,
and polyelectrolytes.
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I. INTRODUCTION

Soft materials, such as suspensions of colloids or nanopar-
ticles and solutions of polymers or surfactants, are complex
mixtures of microscopic and mesoscopic components [1].
Polydispersity in the intrinsic properties of macromolecules
or mesoscopic particles can significantly modify intermolec-
ular (interparticle) forces [2] and in turn self-assembly and
macroscopic behavior. While rigid particles have static dis-
tributions of size and shape [3,4], polymer coils in solution
can fluctuate in conformation [5]. Further variation can arise
when counterions dissociate (in water or other polar solvents),
leaving colloidal or polyelectrolyte macroions with a broad
charge distribution.

The influence of polydispersity on thermodynamic phase
behavior, structure, and dynamics of soft materials has drawn
increasing attention in recent years. This trend stems not only
from fundamental interest in the rich materials properties of
mixtures, but also from the prevalence of polydispersity in
natural colloids, such as clays and many biological systems.
Moreover, tuning interparticle forces has practical applications
in stabilizing unusual morphologies and engineering novel
materials.

Thermal and structural properties of bidisperse colloidal
mixtures have been explored by a variety of experimental
methods, including light scattering and microscopy [6–14].
Theoretical and computational studies have applied integral-
equation methods [13–19], Poisson-Boltzmann theory
[20–22], classical density-functional theory (DFT) [23,24],
and computer simulations [25–30]. Recent related work has
explored mixtures of colloids and nanoparticles, characterized
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by extreme asymmetries in size and charge, via experiments
[31–34], integral-equation theory [35], and simulation [36].

In modeling charged colloids, electrostatic interactions
between macroions are commonly approximated by Yukawa
(screened-Coulomb) effective pair potentials, as first derived
in the classic works of Derjaguin and Landau [37] and Verwey
and Overbeek [38], extending the Debye-Hückel theory
of electrolytes. Studies of charged colloidal mixtures also
typically assume Yukawa pair potentials, which emerge from
generalizing either the Derjaguin-Landau-Verwey-Overbeek
(DLVO) theory or integral-equation theories based on the
mean spherical approximation [16]. For salty suspensions, in
which direct Coulomb interactions are strongly screened by
microions (counterions and salt ions), the Yukawa model has
proven reasonably accurate. Recent observations of deionized
mixtures [12], however, have called into question the accuracy
of the Yukawa model when applied to weakly screened
macroions.

Previously, one of us modeled effective electrostatic in-
teractions in one-component (monodisperse) suspensions of
charge-stabilized colloids [39,40] and polyelectrolyte solu-
tions [41,42] using linear response theory. Within a mean-
field (random-phase) approximation, equivalent to Poisson-
Boltzmann theory in its neglect of correlations between
microions [43,44], linear response theory recovers the usual
Yukawa effective pair potential between nonoverlapping
macroions, but with a screening constant that depends on
both salt and macroion densities and consistently incorpo-
rates excluded volume. Beyond a density-dependent effective
pair potential, the theory also predicts a one-body volume
energy, as do related approaches to effective interactions [43]
based on integral-equation theories [45–53], classical density-
functional theory [54], and extended Debye-Hückel theo-
ries [55–58]. Although independent of macroion coordinates,
the volume energy contributes to the free energy a term that
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depends on macroion density and thus can affect bulk thermo-
dynamic properties at low salt concentrations (approaching
counterion concentrations).

The volume energy has been identified [54,58,59] as a
possible origin of anomalous phase behavior observed in
deionized monodisperse suspensions [60–70]. Theoretical
modeling is complicated, however, by nonlinear screening [71]
and charge regulation [22,44,72–74]. In a recent extension of
the DFT approach, Bier et al. [30] presented an expression
for the volume energy of bidisperse charged colloids. A
subsequent experimental study [12] invoked this volume
energy as a possible explanation of unusual fluid-crystal phase
separation in deionized binary mixtures with large charge
asymmetry. Accurate theoretical predictions of the complex
phase behavior of colloidal mixtures over a vast parameter
space require a reliable theory of effective interactions.

In this paper we generalize linear response theory to poly-
disperse mixtures of macroions. In Sec. II we begin by defining
the primitive model of charged colloids and polyelectrolytes.
Within the primitive model, we develop in Sec. III the gen-
eralization of linear response theory to polydisperse mixtures
and derive general expressions for the effective interactions.
In Sec. IV we present explicit analytical expressions for the
effective pair potentials and volume energies of polydisperse
suspensions of charged hard-sphere colloids and compare
with previous theoretical results. In Sec. V and the Appendix
we discuss the calculation of structural and thermodynamic
properties of bidisperse colloidal suspensions as functions of
size and charge ratios. Finally, in Sec. VI we summarize and
conclude with suggestions for future applications.

II. PRIMITIVE MODEL OF MIXTURES

We consider spherical macroions of various species (m =
1,2,3, . . .), having diameters σm (radii am) and valences Zm,
suspended in a solvent with microions (species μ = 1,2,3, . . .)
of valences zμ (see Fig. 1). Adopting the primitive model of
charged colloids and polyelectrolytes, we treat the solvent as
a dielectric continuum of dielectric constant ε that reduces the
strength of electrostatic interactions. The macroions are con-
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FIG. 1. (Color online) Primitive model of binary mixture of
charged colloids: two species of charged macroions (valences Z1

and Z2), microions (counterions and salt ions), and implicit solvent.

fined to a fixed volume V , while the microions (counterions,
salt ions) are free to exchange with an electrolyte reservoir
(e.g., via a semipermeable membrane), which maintains a
fixed salt chemical potential (Donnan equilibrium) at absolute
temperature T . For simplicity, we model the microions as point
ions and assume a symmetric electrolyte of salt ion pairs with
valences z+ and z−.

The Hamiltonian of this model system can be separated
according to H = Hcore + Hel, where Hcore incorporates inter-
actions between macroion cores, as well as the total kinetic
energy, and Hel is the total Coulomb electrostatic energy

Hel = Hm + Hμ + Hmμ. (1)

The first term on the right-hand side accounts for interactions
among macroions m, the second term interactions among
microions μ, and the last term macroion-microion interactions.
An explicit expression for the macroion Hamiltonian is

Hm =
∑
m

Nm∑
i<j

vmm(rij ) +
∑
m<n

Nm∑
i=1

Nn∑
j=1

vmn(rij ), (2)

where Nm is the number of macroions of species m and
vmn(rij ) = ZmZne

2/εrij is the (Coulomb) potential energy
between a pair of macroions (labeled i and j ) of species m

and n separated by center-to-center distance rij , e being the
electron charge. Similarly, the microion Hamiltonian is

Hμ =
∑

μ

Nμ∑
i<j

vμμ(rij ) +
∑
μ<ν

Nμ∑
i=1

Nν∑
j=1

vμν(rij ), (3)

where Nμ is the number of microions of species μ and
vμν(rij ) = zμzνe

2/εrij is the potential energy between a pair of
microions of species μ and ν. Finally, the macroion-microion
interaction Hamiltonian is given by

Hmμ =
∑
m,μ

Nm∑
i=1

Nμ∑
j=1

vmμ(rij ), (4)

where vmμ(rij ) = Zmzμe2/εrij is the macroion-microion pair
potential energy. Latin and Greek subscripts here refer to
macroions and microions, respectively. Note that the subscripts
m and μ are used both to represent macroions and microions
as a whole and as an index to label different species of
macroion and microion, the distinction being clear from the
context. The condition of global electroneutrality dictates that∑

m ZmNm + ∑
μ zμNμ = 0.

III. LINEAR RESPONSE THEORY

Within the primitive model, we outline a general coarse-
graining approach to modeling effective electrostatic inter-
actions in polydisperse suspensions of charged macroions,
extending to mixtures the linear response theory formu-
lated previously for monodisperse suspensions of spherical
macroions [39,40]. Integrating out microion degrees of free-
dom from the partition function, assuming linear response of
microion densities to macroion electrostatic potentials, and
making a mean-field approximation for the microion response
functions, we obtain effective pair potential energies between
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macroion species m and n of the form

vmn,eff(r) = Amn

exp(−κr)

r
, r > am + an, (5)

where κ is the inverse Debye screening length and the prefac-
tors Amn depend on macroion sizes and charges. Equation (5)
is the well-known Yukawa effective pair potential assumed in
many simulation studies [11,75,76]. In addition to confirming
the general form of the effective pair potentials, however, our
approach also incorporates macroion excluded volume into
the screening constant and yields a one-body volume energy,
which depends on the bulk densities of all microions (both salt
ions and counterions).

A. Coarse graining microion degrees of freedom

We begin by extending to mixtures a general statistical
mechanical procedure for formally averaging over microion
degrees of freedom such that the system partition function
remains unchanged. If this averaging is performed exactly, the
resulting coarse-grained model will reproduce thermodynamic
properties of the original model [43,77]. The canonical
partition function for our model mixture is given by

Z = 〈〈exp(−βH )〉μ〉m, (6)

where β ≡ 1/kBT and the angular brackets represent classical
traces over relevant degrees of freedom. After coarse graining,
achieved by integrating over microion degrees of freedom for
a fixed macroion configuration, Eq. (6) can be re-expressed as

Z = 〈exp(−βHeff)〉m, (7)

where Heff ≡ Hcore + Hm + Fμ and

Fμ ≡ −kBT ln〈exp[−β(Hμ + Hmμ)]〉μ (8)

can be interpreted as the free energy of microions in a
fixed configuration of macroions. To make coarse-grained
models of effective interactions practical for simulations or
further theoretical development, approximations are necessary
to render Fμ in an analytical or numerically computable form.

B. Linear response approximation for microions

Following the general approach of Silbert and co-
workers [78–80], we regard the interactions of the macroions
with the microions as external perturbations to a uniform
microion plasma. As a first step, we define an intermediate
free energy as a function of a charging parameter λ,

Fμ(λ) ≡ −kBT ln〈exp[−β(Hμ + λHmμ)]〉μ. (9)

With this definition, Fμ = Fμ(λ = 1) can be written as

Fμ = Fμ(0) +
∫ 1

0
dλ〈Hmμ〉λ, (10)

where 〈 〉λ denotes an average over microion degrees of
freedom in a system where the macroions are charged to a
fraction λ of their full charges.

In Eq. (10), Fμ(0) is the free energy of a reference system
consisting of a classical gas of microions in a free volume

Vf = V (1 − η), which excludes the fraction

η = 4π

3V

∑
m

Nma3
m (11)

of the total volume that is occupied by macroion hard cores.
To ensure that the reference system is electroneutral, it is
convenient to add to and subtract from Fμ(0) the energy
of a uniform compensating background charge distribution,
occupying the same free volume, having uniform number
density

ρb = 1

Vf

∑
m

ZmNm. (12)

Denoting the energy of this background by

Eb = −Vf ρ2
b

2ε
lim
k→0

4πe2

k2
, (13)

we can redefine the microion interaction energies as

H ′
μ ≡ Hμ + Eb, H ′

mμ ≡ Hmμ − Eb. (14)

The microion free energy Fμ then can be expressed as

Fμ = Fp +
∫ 1

0
dλ〈H ′

mμ〉λ, (15)

where Fp = −kBT ln〈exp(−βH ′
μ)〉μ is the free energy of a

microion plasma with the neutralizing background charge
density eρb.

The next step in approximating Fμ is to relate the macroion-
microion Hamiltonian [Eq. (4)] to number density operators
ρm(r) and ρμ(r) of macroions and microions, respectively, and
to the macroion-microion pair potentials vmμ(r):

Hmμ =
∑
m

∑
μ

∫
Vf

dr
∫

Vf

dr′ρm(r)vmμ(|r − r′|)ρμ(r′).

(16)
The integrand in Eq. (15) then can be expressed in terms of
Fourier components

〈H ′
mμ〉λ = 1

Vf

∑
m

∑
μ

∑
k

ρ̂m(k)v̂mμ(k)〈ρ̂μ(−k)〉λ − Eb,

(17)
where the Fourier transforms are defined over the free volume,
for example,

ρ̂m(k) =
∫

Vf

dr ρm(r) exp(−ik · r). (18)

To develop a response theory, we first define an external
potential applied by the macroions to the (otherwise uniform)
microion plasma:

vext(r) ≡
∑
m

Zm

∫
dr′vm(|r − r′|)ρm(r′), (19)

where vm(r) ≡ vmμ(r)/Zmzμ. We then make the approxi-
mation that the microion densities respond linearly to the
macroion external potential. Denoting by χμν(k) the linear
response functions of the unperturbed microion plasma (with
λ = 0) and defining χμ(k) ≡ ∑

ν zνχμν(k), then to linear order
in the external potential

〈ρ̂μ(k)〉λ = λχμ(k)v̂ext(k), k �= 0, (20)
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the Fourier transform of the external potential being

v̂ext(k) =
∑
m

Zmv̂m(k)ρ̂m(k). (21)

Note that the k = 0 component must be excluded since
ρ̂μ(0) = Nμ is fixed by the condition of electroneutrality.

Using Eqs. (17) and (20), the linear response approximation
for the microion free energy [Eq. (15)] can be expressed as

Fμ = Fp + 1

2Vf

∑
m

∑
μ

∑
k �=0

ρ̂m(k)v̂mμ(k)χμ(k)v̂ext(−k)

+ 1

Vf

∑
m

∑
μ

NmNμ lim
k→0

v̂mμ(k) − Eb. (22)

Equation (22) can be recast in the more intuitive form

Fμ =
∑
m

Nm∑
i<j

vmm,ind(rij ) +
∑
m<n

Nm∑
i=1

Nn∑
j=1

vmn,ind(rij ) + E0,

(23)
where vmn,ind(r) are microion-induced pair potentials between
macroions, whose Fourier transforms are given by

v̂mn,ind(k) = ZmZnv̂m(k)v̂n(k)
∑

μ

zμχμ(−k), (24)

and E0 is a one-body volume energy

E0 = Fp + 1

2

∑
m

Nm lim
r→0

vmm,ind(r)

− 1

2Vf

∑
m,n

NmNn lim
k→0

v̂mn,ind(k)

+ 1

Vf

∑
m

∑
μ

NmNμ lim
k→0

v̂mμ(k) − Eb. (25)

Equation (23) suggests expressing the effective Hamiltonian
as

Heff = Hcore +
∑
m

Nm∑
i<j

vmn,eff(rij )

+
∑
m<n

Nm∑
i=1

Nn∑
j=1

vmn,eff(rij ) + E0, (26)

thus identifying

vmn,eff(r) = vmn(r) + vmn,ind(r) (27)

as an effective (microion-mediated) pair potential between
macroions of species m and n.

Note that our coarse-grained model involves only one- and
two-body effective interactions, which is a direct consequence
of the linear approximation for the response of the microion
densities [Eq. (20)]. Nonlinear response entails many-body
effective interactions, as well as corrections to the one- and
two-body interactions [71]. The linear response approximation
is reasonable for sufficiently weakly charged macroions and
proves valid even for highly charged macroions if the bare
valence is replaced by an effective valence via charge renor-
malization theory [44,73,74]. For monodisperse suspensions,
the theory accurately predicts thermodynamic and structural

properties (osmotic pressures and radial distribution functions)
for electrostatic coupling strengths as high as ZmλB/am �
15 [44,73,74].

IV. ANALYTICAL RESULTS

Calculating effective interactions in polydisperse mixtures
of charged colloids requires approximating the linear response
functions χμ(k). Following previous studies of monodisperse
charged colloids [39,40], we adopt the random-phase approx-
imation, which provides χμ(k) in analytical form and thus
yields analytical expressions for the induced pair potentials
between macroions, from Eq. (24), and for the volume energy,
from Eq. (25).

A. Response functions of the microion plasma

The linear response functions of the reference microion
plasma are proportional to the corresponding partial structure
factors [81]

χμν(k) = −β
∑

μ

nμSμν(k), (28)

where nμ = Nμ/Vf is the average number density of microion
species μ in the free volume, thus incorporating the excluded
volume of macroion hard cores. The partial structure factors
Sμν(k) are related in turn to the Fourier transforms of the pair
correlation functions hμν(r):

Sμν(k) = xμ[δμν + nνĥμν(k)], (29)

where xμ is the concentration of microion species μ. In Fourier
space, ĥμν(k) is related to the direct correlation function ĉμν(k)
via the Ornstein-Zernike integral equation

ĥμν(k) = ĉμν(k) +
∑

λ

nλĉμλ(k)ĥλν(k). (30)

For a weakly coupled plasma whose average Coulomb energy
is much lower than the average thermal energy, we can approx-
imate the direct correlation functions by their asymptotic lim-
its ĉμν(k) � −βv̂μν(k) = zμzν ĉ(k), where ĉ(k) = −4πλB/k2

and λB = e2/εkBT is the Bjerrum length, defined as the
separation between two elementary charges e at which the
electrostatic potential energy equals the typical thermal energy
kBT . Further assuming ĥμν(k) = zμzνĥ(k), it follows that

ĥμν(k) = zμzν ĉ(k)

1 − n0ĉ(k)
(31)

with n0 ≡ ∑
μ z2

μnμ. Combining Eqs. (28)–(31), we obtain the
linear response functions

χμ(k) = − βzμnμ

1 + κ2/k2
, (32)

where the inverse Debye screening length is defined as
κ ≡ √

4πλBn0. We emphasize that κ here incorporates the
macroion excluded volume since n0 involves the microion
densities nμ in the free volume, i.e., the volume not excluded
by the macroion hard cores. Thus our definition of κ is larger
than the conventional definition by a factor of 1/

√
1 − η. With

Eq. (32), the effective electrostatic interactions now can be
explicitly calculated.
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B. Effective pair potentials and volume energy

The general expressions derived for the effective pair
potentials and volume energy apply to any type of spherical
macroion, provided only that the macroion-microion interac-
tion can be factorized as vmμ(r) = Zmzμvm(r). For separations
exceeding the macroion radius (assuming point microions),
vmμ(r) is of Coulomb form. For colloidal macroions with
an impenetrable core, the potential inside the core may be
chosen [39,54] to ensure exclusion of microions from the core:

βvm(r) =
{

λB
1
r
, r > am

λB
αm

am
, r < am,

(33)

where the constant αm can be fixed to impose the condition
ρμ(r) = 0 for r < am. With the appropriate choice of αm =
κam/(1 + κam), Eq. (33) has the Fourier transform

βv̂m(k) = 4πλB

k2

1

1 + κam

[
cos(kam) + κ

sin(kam)

k

]
. (34)

Next, substitution of Eqs. (32) and (34) into Eq. (24)
yields the Fourier transform of the microion-induced pair
potential

βv̂mn,ind(k) = −ZmZnβ
2κ2

4πλB

k2

k2 + κ2
v̂m(k)v̂n(k), (35)

with an inverse transform

βvmn,ind(r) =

⎧⎪⎪⎨
⎪⎪⎩

Bmn
exp[−κ(r−am−an)]

κr
− βvmn(r), r � am + an

Bmn

{− κ
2 (am + an − |am − an|) − 1, r � |am − an|

κ
4

[
r + (am−an)2

r
− 2(am + an)

] − 1, |am − an| < r < am + an,

(36)

where Bmn ≡ ZmZnκλB/[(1 + κam)(1 + κan)]. Substituting
this result for the induced pair potentials into Eq. (27), we
finally obtain effective macroion-macroion pair potentials (for
r � am + an)

βvmn,eff(r) = ZmZnλB

exp[κ(am + an)]

(1 + κam)(1 + κan)

exp(−κr)

r
. (37)

Thus we recover the Yukawa pair potential of Eq. (5), with the
prefactor determined to be

Amn = ZmZn

e2

ε

exp[κ(am + an)]

(1 + κam)(1 + κan)
. (38)

The effective pair potentials of Eq. (37) are the same as those
predicted by the DLVO theory extended to mixtures in the
dilute limit, i.e., by solving the linearized Poisson-Boltzmann
equation with free boundary conditions. Our result applies
also, however, at nonzero macroion concentrations—as long
as the linear response approximation remains valid—in which
case the screening constant depends on both salt and macroion
densities and incorporates the macroion excluded volume.

Similar results for effective pair potentials in colloidal
mixtures have been derived by Ruiz-Estrada et al. [16] using
integral-equation theory. Starting from the primitive model
and contracting the Ornstein-Zernike equation (relating pair
and direct correlation functions) to eliminate explicit reference
to the direct correlation functions between microions, these
authors obtain a formal expression for effective direct corre-
lation functions between macroions. Making a mean spherical
approximation (MSA) for all correlation functions, they obtain
an analytical expression of the same general Yukawa form
as Eq. (5). The effective pair potentials derived from the
MSA [Eqs. (2.15) and (2.16) in Ref. [16]] differ, however,
from ours [Eq. (37)] in two respects. First, the prefactors are
different, the MSA result reducing to our Amn only in the dilute
limit. Second, the MSA expression for the screening constant
[Eq. (2.7) in Ref. [16]], like that in the DLVO theory, does not
incorporate the macroion excluded volume.

Beyond effective pair potentials, the linear response ap-
proach also consistently yields a one-body volume energy.
By substituting Eqs. (34)–(36) into Eq. (25), we arrive at an
explicit result for the volume energy of a colloidal mixture:

βE0 = βFp − λB

2

∑
m

NmZ2
m

am + κ−1
− 1

2

(∑
m ZmNm

)2∑
μ z2

μNμ

. (39)

Assuming a weakly coupled microion plasma, the first term
on the right-hand side can be approximated as the free energy
of an ideal gas of microions

βFp �
∑

μ

Nμ[ln
(
nμ�3

μ

) − 1], (40)

�μ being the thermal wavelength of microion species μ. The
second term on the right-hand side of Eq. (39) represents
the self-energy of the macroions embedded in the microion
plasma. A similar expression for the volume energy of colloidal
mixtures can been derived from the DFT approach to effective
interactions [30]. Our result for E0 differs, however, in the
manner in which macroion excluded volume is incorporated
via the screening constant.

V. STRUCTURE AND THERMODYNAMICS

A. Pair structure of binary mixtures

To validate the linear response theory and assess the accu-
racy of the predicted effective pair potentials, we performed
molecular dynamics (MD) simulations of the coarse-grained
model (with implicit microions). Using the LAMMPS pack-
age [82], we computed macroion-macroion radial distribution
functions (RDFs) gij (r) and compared with available results
from Monte Carlo (MC) simulations [28] of a binary mixture
of oppositely charged, equally sized macroions in the primitive
model (with explicit counterions) in a salt-free aqueous
suspension. For a direct comparison, we chose the same
system parameters as in Ref. [28]: hard-sphere diameters
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FIG. 2. (Color online) Radial distribution functions from molec-
ular dynamics simulations of the coarse-grained model (curves) com-
pared with corresponding results from Monte Carlo simulations [28]
of the primitive model (symbols) for a salt-free binary mixture
of oppositely charged (Z+ = −Z− = 5), equally sized (σ+ = σ− =
3 nm) colloids at equal volume fractions (η+ = η− = 0.005 319).

σ+ = σ− = 3 nm, valences Z+ = −Z− = 5, and volume
fractions η+ = η− = 0.005 319.

For convenience, in our MD simulations, we replaced
the hard-sphere interactions between macroions with the
repulsive part of the Lennard-Jones pair potential vLJ(r) =
4εLJ[(σLJ/r)12 − (σLJ/r)6], cut and shifted to zero at its
minimum, which we matched to the diameter of the colloids:
σc = 21/6σLJ. We set εLJ = 5000 kcal/mol, checking that
higher values did not significantly affect the RDFs, and cut and
shifted to zero the effective pair potentials [Eq. (37)] at rcut =
20/κ , beyond which range the interactions are negligible.

Starting from initial configurations of 4000 particles on
a face-centered-cubic lattice, with appropriate concentrations
of each species, we performed simulations in the canonical
ensemble at fixed temperature (T = 298 K) with periodic
boundary conditions in a cubic simulation box of side length
L chosen to ensure that L/2 > rcut. Following an initial
equilibration phase, we sampled configurations and collected
statistics at regular intervals over 106 time steps.

As seen in Fig. 2, the macroion-macroion RDFs calculated
for this system from our simulations of the coarse-grained
model are in excellent agreement with those obtained from
MC simulations of the primitive model. We caution, however,
that the electrostatic coupling in this system, characterized by
ZλB/σ = 1.2, is relatively weak. Preliminary comparisons
indicate that more strongly coupled systems (ZλB/σ > 3)
must be modeled using effective macroion charges consistently
derived from charge renormalization theory [83].

To demonstrate an application to a mixture that is bidisperse
in both size and charge and to explore the influence of
nanoparticles on the structure of colloids, we performed an MD
simulation of a mixture with relatively large size and charge
asymmetries. Specifically, we simulated the coarse-grained
model of a salt-free aqueous suspension of N1 = 500 colloids,
of radius a1 = 50 nm and valence Z1 = 100, and N2 = 1500
nanoparticles, of radius a2 = 5 nm and valence Z2 = 10,
at volume fractions η1 = 0.2 and η2 = 0.0006. Figures 3
and 4 show, respectively, the effective pair potentials [from
Eqs. (37) and (38)] and the corresponding RDFs from our
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FIG. 3. (Color online) Effective pair potentials of a salt-free
aqueous suspension of macroions with radii a1 = 50 nm and a2 =
5 nm, valences Z1 = 100 and Z2 = 10, concentration N1/N2 = 1/3,
and volume fractions η1 = 0.2 and η2 = 0.0006 [from Eqs. (37)
and (38)]. Curves represent (left to right) βv22,eff (r) (dot-dashed)
βv12,eff (r) (dashed), and βv11,eff (r) (solid). The dotted curve is the
effective pair potential of the one-component model (OCM) of the
same suspension in the absence of the smaller macroions (species 2).

simulations of this model colloid-nanoparticle mixture. For
comparison, results are shown both for the mixture and
for a one-component suspension of type-1 macroions only.
Evidently, the smaller (nano) particles act to soften the pair
interactions, and correspondingly weaken pair correlations,
between the larger particles. We interpret the role of the
nanoparticles as enhancing screening of the charged colloids.

To assess the significance of the excluded-volume cor-
rection to the inverse Debye screening constant κ , and
hence to the effective pair potentials, we performed a test
simulation using uncorrected pair potentials for the same
colloid-nanoparticle mixture. Even for such a concentrated
suspension, the excluded-volume correction only slightly
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FIG. 4. (Color online) Radial distribution functions from molec-
ular dynamics simulations of the coarse-grained model of a salt-free
aqueous suspension of macroions with radii a1 = 50 nm and a2 =
5 nm, valences Z1 = 100 and Z2 = 10, concentration N1/N2 = 1/3,
and volume fractions η1 = 0.2 and η2 = 0.0006. Curves represent
(main peaks, left to right) g22(r) (dot-dashed), g12(r) (dashed), and
g11(r) (solid). The dotted curve is the RDF of the one-component
model of the same suspension in the absence of the smaller macroions.
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reduces the amplitude and range of the effective pair potentials.
The resulting RDFs are consequently barely distinguishable
from those shown in Fig. 4. The excluded-volume correction
thus has a relatively minor impact on macroion pair structure.
However, the same correction alters the density dependence
of the effective interactions—both the effective pair potentials
and the one-body volume energy—which can significantly
modify bulk thermodynamic properties, such as osmotic
pressure, as shown in Sec. V B.

B. Pressure and equation of state

The pressure of a colloidal mixture can be computed
from the Helmholtz free energy F via p = −(∂F/∂V )Nm,Ns

,
where the subscripts denote fixing of all macroion and
salt ion numbers (fixed T is implied). Equivalently, p =
n2(∂(F/N)/∂n)xm,xs

, where N and n = N/V are the total
macroion number and number density, xm = Nm/N is the
concentration of macroion species m, and xs = Ns/N is the
salt concentration.

The Helmholtz free energy of the system naturally divides
into two parts F = E0 + Fm, where E0 is the volume energy
arising from tracing out the microion degrees of freedom and
Fm is the free energy associated with effective interactions
between macroions. Correspondingly, the pressure can be sep-
arated as p = p0 + pm, where the volume energy contribution
[Eq. (39)] is given by

βp0 = n2β

(
∂(E0/N)

∂n

)
xm,xs

=
∑

μ

nμ − κλB

4(1 − η)

∑
m

nmZ2
m

(1 + κam)2
(41)

and the macroion contribution is given by

βpm =
∑
m

nm − β

〈(
∂U

∂V

)
xm,xs

〉
. (42)

Here nm = Nm/V denotes the number density of macroion
species m and

U =
∑
m

Nm∑
i<j

vmm,eff(rij ) +
∑
m<n

Nm∑
i=1

Nn∑
j=1

vmn,eff(rij ) (43)

is the potential energy associated with macroion pair interac-
tions. The ensemble average of ∂U/∂V can be approximated
by either a perturbation theory or molecular simulations,
taking into account the dependence of the effective pair
potentials on the macroion and salt densities [84–86]. As
shown in the Appendix, this density dependence results in
extra terms in addition to the usual virial term. Taken together,
Eqs. (41) and (42) can be used to calculate the pressure
of a polydisperse colloidal suspension or polyelectrolyte
solution.

Finally, to illustrate the significance for thermodynamic
properties of the excluded-volume correction to the effective
interactions, we examine the volume energy contribution
p0 [Eq. (41)] to the total osmotic pressure of the colloid-
nanoparticle mixture described in Sec. V A (see caption to
Fig. 4). Figure 5 shows the concentration dependence of
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FIG. 5. Contribution to the osmotic pressure from the one-body
volume energy [calculated from Eq. (41)] for the suspension whose
parameters are specified in the caption to Fig. 4. Solid and dashed
curves represent, respectively, predictions with and without excluded
volume accounted for in the volume energy.

p0, both with and without excluded volume taken into ac-
count. Evidently, with increasing macroion concentration, the
excluded-volume correction increasingly affects the osmotic
pressure, which in turn can influence thermodynamic phase
behavior.

VI. CONCLUSION

In summary, we have presented a theory of effective
electrostatic interactions for polydisperse suspensions of
charged macroions, thus generalizing to mixtures a theory
previously developed for monodisperse suspensions. Within
a coarse-graining framework that integrates out microion
degrees of freedom, we derived general expressions for
effective macroion-macroion pair potentials and a one-body
volume energy. The theory is based on a linear response
approximation for the microion densities and a mean-
field random-phase approximation for microion structure
that neglects all but long-range microion correlations. For
model mixtures of charged hard-sphere colloids, we have
presented explicit analytical expressions for the effective
interactions. These expressions should be accurate for sus-
pensions of weakly correlated (monovalent) microions and
macroions whose charges are sufficiently low that electro-
static coupling strengths are below the threshold for charge
renormalization.

The resulting effective pair potentials have the same
Yukawa form as predicted by linearized Poisson-Boltzmann
theory and integral-equation theories. Our expressions are
somewhat more general, however, by incorporating macroion
density and excluded volume via the Debye screening con-
stant. As a quantitative test of accuracy, we have calculated
structural properties from molecular dynamics simulations of
the coarse-grained model, taking the effective pair potentials
as input. Radial distribution functions of binary mixtures
of oppositely charged colloidal macroions are found to
agree closely with corresponding results from Monte Carlo
simulations of the primitive model. For a highly asymmetric
(colloid-nanoparticle) mixture, our results demonstrate that
nanoparticles can enhance electrostatic screening, thus weak-
ening pair correlations, in suspensions of charged colloids.
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Assessing the range of validity of the theory will require
further comparisons with primitive model simulations and
experiments.

The one-body volume energy, which depends on the
average density of the macroions, can influence the phase
behavior and other thermodynamic properties, especially
in deionized suspensions. For binary colloidal mixtures,
our analytical expression for the volume energy is sim-
ilar to that derived from density-functional theory [30],
but incorporates macroion excluded volume in a different
manner. The volume energy also is an essential element
required to extend to mixtures the charge renormaliza-
tion theory previously developed for monodisperse colloidal
suspensions [73,74].

The application of the effective interaction theory devel-
oped here to explore the structure and thermodynamic phase
behavior of macroion mixtures, including colloid-nanoparticle
mixtures, distinguished by extreme size and charge asymme-
tries, is a subject for future work [83]. Particularly interesting
would be an investigation of the possibility of electrostatically
driven bulk phase separation in deionized suspensions and
a generalization to mixtures of a previously proposed charge
renormalization theory [73,74], which can significantly extend
the range of validity of coarse-grained models to mixtures of
highly charged macroions.
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APPENDIX: PRESSURE CALCULATION

For our coarse-grained model of colloidal mixtures, the
virial theorem for the pressure must be generalized to account
for the density dependence of the effective pair potentials [74].
To this end, the ensemble average in Eq. (42) can be written

more explicitly as〈(
∂U

∂V

)
xm,xs

〉
= −

〈Vint

3V

〉
+

〈(
∂U

∂V

)
xm,xs ,{r}

〉
, (A1)

where the first term on the right-hand side involves the usual
internal virial Vint and the partial derivative in the last term is
taken for a fixed configuration of macroions {r}. For a mixture,
the internal virial is

Vint =
∑
m

Nm∑
i<j

(1 + κrij )vmm,eff(rij )

+
∑
m<n

Nm∑
i=1

Nn∑
j=1

(1 + κrij )vmn,eff(rij ). (A2)

Noting that U depends implicitly on the volume through κ , we
can write (

∂U

∂V

)
xm,xs ,{r}

=
(

∂U

∂κ

)
{r}

(
∂κ

∂V

)
Nm,Ns

, (A3)

where (
∂κ

∂V

)
Nm,Ns

= − κ

2V (1 − η)
(A4)

and (
∂U

∂κ

)
{r}

=
∑
m

Nm∑
i<j

fm(rij )vmm,eff(rij )

+
∑
m<n

Nm∑
i=1

Nn∑
j=1

fmn(rij )vmn,eff(rij ) (A5)

with

fm(rij ) = 2κa2
m

1 + κam

− rij (A6)

and

fmn(rij ) = κ
[
a2

m + a2
n + κ(am + an)aman

]
(1 + κam)(1 + κan)

− rij . (A7)
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