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Free-energy functionals of the electrostatic potential for Poisson-Boltzmann theory
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In simulating charged systems, it is often useful to treat some ionic components of the system at the mean-field
level and solve the Poisson-Boltzmann (PB) equation to get their respective density profiles. The numerically
intensive task of solving the PB equation at each step of the simulation can be bypassed using variational
methods that treat the electrostatic potential as a dynamic variable. But such approaches require the access to
a true free-energy functional: a functional that not only provides the correct solution of the PB equation upon
extremization, but also evaluates to the true free energy of the system at its minimum. Moreover, the numerical
efficiency of such procedures is further enhanced if the free-energy functional is local and is expressed in terms
of the electrostatic potential. Existing PB functionals of the electrostatic potential, while possessing the local
structure, are not free-energy functionals. We present a variational formulation with a local free-energy functional
of the potential. In addition, we also construct a nonlocal free-energy functional of the electrostatic potential.
These functionals are suited for employment in simulation schemes based on the ideas of dynamical optimization.
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I. INTRODUCTION

Electrostatic interactions are important in determining the
structure and physical properties of charged biological systems
such as proteins, DNA, and cell membranes [1–3]. These
interactions also play a crucial role in the realization and
stabilization of the self-assembly of soft materials, such as
colloidal dispersions in solution [4], and the formation of many
synthetic materials, such as patterned nanostructures [5] and
faceted shells [6]. Along with the charged macromolecules,
a typical biological or synthetic system is inhabited by other
charged entities, such as counterions, salt ions, and bound
charges induced in the molecules of the solvent, leading to
an enormous number of degrees of freedom (DOF) in the
associated theoretical model. Direct simulation of such a
model is challenging even for current computers, and therefore
approximations are introduced in the model with the motive of
capturing the effects generated by certain elements of the sys-
tem without explicitly including those elements in the model
system, thus reducing the DOF required to simulate. One
such approximation is the implicit solvent model, where the
molecular structure of the solvent is ignored and the solvent is
treated as a dielectric continuum. Subsequently, one introduces
the concept of dielectric permittivity in the model to replace the
effects of discrete bound charges associated with the molecules
of the solvent, resulting in a tremendous reduction in the
number of DOF.

However, in many cases, the number of ions present in
the solution can be very large, proliferating the number of
DOF constituting the model system, and thus limiting the
size of the systems that can be simulated. Thus, in addition
to the approximation of an implicit solvent, one proceeds
to reduce the DOF in the model by ignoring the discrete
nature of some ionic species of the charged system and
replacing their effects by a smeared-out, smoothly varying
density distribution. Generally, such an approximation works
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very well when applied to the relatively mobile and weakly
charged components of the system, such as the monovalent
ions among a mixture of monovalent and multivalent salt near
an oil-water emulsion, or counterions in the case of highly
charge-asymmetric colloidal self-assembly [7]. Accordingly,
one partitions the overall charged system into the following:
strongly charged species that are modeled as finite-sized, fixed
discrete charges represented by a charge density ρf , and
weakly charged mobile components modeled by appropriately
chosen continuum distributions.

Suppose the system has N charged components that are
treated via a continuum approach, and let cj be the density
of the j th component. Often, a mean-field formalism suffices
to describe the distributions of the N components and one
such widely used approach is the Poisson-Boltzmann (PB)
theory [8]. Under this formalism, the density of the mobile
components is assumed to follow a Boltzmann distribution
determined by the local electrostatic potential ψ ,

cj = Cj e−βqj ψ , (1)

where β is the inverse thermal energy, and qj and Cj are,
respectively, the charge and the bulk (reservoir) concentration
of the j th component, with the bulk being the region where the
mean electrostatic potential vanishes. The total charge density
in the system thus becomes ρ = ρf + ∑N

j=1 qj cj , where cj is
given by Eq. (1). Realizing that the electrostatic potential ψ ,
which determines the component densities via Eq. (1), must
itself obey the Poisson equation corresponding to the charge
density ρ, we arrive at the well-known Poisson-Boltzmann
equation (PBE):

∇ ·
(

ε∇ψ

4π

)
+ ρf +

N∑
j=1

qjCje
−βqj ψ = 0, (2)

where ε(r) is the dielectric permittivity.
The PBE clearly reflects the model used to represent the

complicated charged system: ρf contains the charged entities
that are treated as discrete, finite-sized objects; ε(r) encodes, in

022305-11539-3755/2013/88(2)/022305(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.022305


JADHAO, SOLIS, AND DE LA CRUZ PHYSICAL REVIEW E 88, 022305 (2013)

an approximate way, the information about the bound charges
present on the solvent molecules; and the third term on the
left-hand side is the result of treating the ions belonging to
some species as point particles, with their smeared-out density
being approximated by the PB theory. The solution of the PBE
gives the equilibrium electrostatic potential. In general, for the
simulation of systems represented via the above model, we
are required to solve the PBE at each simulation step in order
to obtain the forces required to propagate the configurational
degrees of freedom. This leads to simulations that are very
slow and costly as, at each step, a very accurate solution of the
PBE is needed to ensure proper energy conservation.

Instead of solving the PBE, the electrostatic potential at
equilibrium can also be obtained by appealing to the universal
physical principle that the true equilibrium potential is the one
that minimizes the system’s free energy. Accordingly, the PB
theory is often recast as a variational problem where a suitable
functional of the electrostatic potential is extremized to obtain
the equilibrium potential. In this alternative picture, the earlier
assumption that mobile ions obey Boltzmann distribution
translates into approximating the entropy of these ions to
be that of an ideal gas. With regards to the simulations of
charged systems, the variational treatment opens the possibility
of performing a simultaneous optimization of electrostatic
and conformational degrees of freedom, offering a huge
advantage over directly solving the above differential equation
at each step of the simulation. However, these benefits are
only accessible if the variational principle is based on a true
free-energy functional of the electrostatic potential, that is, a
functional that evaluates to the true free energy of the system
at its minimum.

Unfortunately, a free-energy functional of the electrostatic
potential whose minimizer satisfies the PBE does not exist
in the literature. The standard PB functional of the potential
[9,10], as correctly noted by several authors [11–13], is not a
free-energy functional; it maximizes to the true free energy of
the system. Existing PB free-energy functionals employ either
expensive vector variables [13,14], such as the electric field E
or the displacement field D, which require a three-dimensional
vectorial specification, or charge densities [11,12,15], which
end up producing functionals involving nonlocal (long-range)
interactions making the associated numerical minimization
inefficient. We note the existence of similar free-energy
functionals for the case of linearized PBE [16,17]. In view
of this, we seek a local PB free-energy functional of the
electrostatic potential, thus combining the desirable features
of locality, convexity, true equilibrium free energy, and the use
of a scalar field variable.

In this article, we present a variational formulation that
produces two PB free-energy functionals employing the
electrostatic potential as their sole variational field. One of
these functionals is a local functional. While both of our
functionals are suited for employment in simulations carried
out using dynamical optimization methods [7,18,19], we
envision the local functional in particular to be an excellent
candidate to realize the possibility of simultaneous propagation
of electrostatic and conformational degrees of freedom via the
aforementioned optimization schemes.

This paper is organized as follows. In Sec. II, we present
the free-energy functionals of the electrostatic potential whose

minimizers satisfy the PBE. Section III presents the variational
formulation that produces these functionals. In Sec. IV, we
compare our local functional with the standard PB functional
and use an example of a symmetric electrolyte to highlight the
differences. Some concluding remarks are made in Sec. V and
we end by providing proofs related to the extremal properties
of our functionals in the Appendix.

II. POISSON-BOLTZMANN FREE-ENERGY
FUNCTIONALS OF POTENTIAL

The PB free-energy functionals of potential that we produce
have the following basic form: each functional represents
the free energy of the charged system constrained by the
fundamental equation that the model system must obey,
namely, the PBE. The key aspect that separates our functionals
from other PB functionals of potential [9–11] is the form of the
constraint that is enforced by means of Lagrange multipliers.
Our constraint expressions endow the functionals with the
desired features of true equilibrium free energy and convexity.
These constraint forms arise naturally out of our variational
formulation which involves, as a key step, the recasting of
the PBE into a recursive relation for the potential. A similar
variational formulation was introduced by us recently [20,21],
wherein we recast the Poisson equation in a recursive form to
construct a family of true energy functionals for electrostatics
in heterogeneous media.

We begin by introducing some notations. Gaussian units
will be used throughout. We define the function h as

h(ψ) =
N∑

j=1

qjCje
−βqj ψ , (3)

and also define its inverse h−1 via the following equation:

h−1[h(ψ)] = ψ. (4)

The Green’s function in free space is denoted by Gr,r′ and we
recall that it satisfies the relation

∇2Gr,r′ = −4πδr,r′ , (5)

where δr,r′ is the Dirac delta function.
Our local PB free-energy functional reads

KL[ψ] =
∫ [

ε |∇ψ |2
8π

− 1

β

N∑
j=1

Cje
−βqj ψ (βqjψ + 1)

]
dr

+
∫

�L

[
∇ · ε

4π
∇ψ + ρf + h (ψ)

]
dr, (6)

where �L is given by

�L = h−1

(
− ∇ · ε

4π
∇ψ − ρf

)
. (7)

Our nonlocal PB free-energy functional is

KNL[ψ] =
∫ ⎡

⎣ε |∇ψ |2
8π

− 1

β

N∑
j=1

Cje
−βqj ψ (βqjψ + 1)

⎤
⎦ dr

+
∫

�NL

[
∇ · ε

4π
∇ψ + ρf + h (ψ)

]
dr, (8)
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where �NL is given by

�NL =
∫

Gr,r′ [∇ · (χr′∇ψr′ ) + ρf (r′) + h(ψr′)]dr′, (9)

and χ is the susceptibility related to the permittivity ε by the
relation ε = 1 + 4πχ .

Extremizing either KL or KNL with respect to ψ leads to
Eq. (2), the Poisson-Boltzmann equation. Also, both KNL and
KL retain a simple interpretation at equilibrium, as owing
to this extremum condition, the constraint term in either
functional vanishes and the leftover term becomes the equi-
librium free energy. Furthermore, either functional becomes a
minimum at its extremum (see the Appendix for the proofs of
the minimum property). As is evident from Eqs. (6) and (8),
the only part where the functionals KL and KNL differ is in the
form of the Lagrange multiplier that enforces the constraint of
PBE. While �L endows the functional KL with the feature
of locality, the functional KNL is nonlocal due to the form of
the Lagrange multiplier �NL. It is important to note that the
functional KL combines all of the desired features of locality,
convexity, true free energy, and the use of a scalar field variable.

The construction of KL[ψ] hinges on the fact that the
inverse function h−1 is known, which in some cases will only
be available numerically. We point out that the functional
produced by Maggs in Ref. [13] also requires a similar
reciprocal transform. In many interesting cases, h−1 is an-
alytically available; examples include the important system
of the symmetric two-component electrolyte, for which the
specific expression of the functional KL will be provided in
Sec. IV. We note that our variational formulation also produces
local free-energy functionals that do not require any inverse
or reciprocal transforms, but we discard these functionals in
favor of KL[ψ] due to the more symmetric structure of the
latter. We elaborate more on this last point in Sec. III B.

It is clear from Eqs. (6) and (7) that for the functional
KL to be well defined, �L and hence the inverse function
h−1(−∇ · ε

4π
∇ψ − ρf ) must not assume infinite or imaginary

values, and therefore care must be taken that the argument of
h−1 lies within the set of values for which the inverse function
is well behaved. In the case of a potential ψ that satisfies the
PBE, −∇ · ε

4π
∇ψ − ρf = h(ψ), implying that the Lagrange

multiplier �L = h−1(−∇ · ε
4π

∇ψ − ρf ) = ψ is always well
behaved at equilibrium configurations. During the course of
the simulation, wherein KL is optimized on the fly, the electro-
static potential that results via the optimization is expected to
fluctuate around the instantaneous exact solution of the PBE.
Thus, care must be taken that only those deviations from the
exact solution which keep the function h−1 well behaved are
allowed. In other words, the optimization (fictitious) dynamics
which “moves” the function ψ in conjunction with the update
of the charge configuration must ensure that the potential has
not sprung much ahead or lagged way behind the exact solution
of the PBE. Accordingly, one chooses the simulation time step
and the constituents of the fictitious subsystem that form the
representation of the potential [19,20,22].

III. VARIATIONAL FORMULATION

In the first part of this section, we present the variational
formulation that produces the functionals KL and KNL. In

the second part of this section, we show how PB free-energy
functionals, different from KL and KNL, can be derived using
our variational principle.

A. Derivation of KL and KNL

We begin by writing the free energy of the charged system
in the form of the functional:

K [E,cj ] = 1

8π

∫
ε |E|2 dr + 1

β

∫ N∑
j=1

[
cj ln

(
cj


3
j

) − cj

]
dr

−
∫ N∑

j=1

μjcjdr, (10)

where 
j and μj are, respectively, the de Broglie wavelength
and chemical potential associated with the mobile ions of the
j th component. In the above equation, the first term on the
right-hand side is the electrostatic energy and the next two
terms summarize the thermodynamic contribution to the free
energy, where the approximation that the entropy of the mobile
ions is equal to that of ideal gas particles is employed to write
the second term. We now introduce Gauss’s law as a constraint
to the above free-energy functional [14,23,24]:

K [E,cj ,ψ]

= 1

8π

∫
ε |E|2 dr + 1

β

∫ N∑
j=1

[
cj ln

(
cj


3
j

) − cj

]
dr

−
∫ N∑

j=1

μjcjdr −
∫

ψ

[
∇ ·

(
εE
4π

)
− ρf −

∑
j

qj cj

]
dr.

(11)

We note that the Lagrange multiplier ψ used to enforce the
constraint in the above equation will turn out to be the mean-
field electrostatic potential at equilibrium. Also, we treat the
fixed charge density ρf as a parameter field and so we consider
the above expression to be a functional of three variable fields:
E, cj , and ψ . Moving forward, our goal is to eliminate all
variables in favor of ψ , the desired variational field.

Taking variations of K [E,cj ,ψ] with respect to E and cj

leads to the following set of equations:

δE : E = −∇ψ, (12)

δcj : cj = eβμj


3
j

e−βqj ψ = Cje
−βqj ψ . (13)

In Eq. (13), we arrive at the second equality by absorbing
the terms containing 
j and μj into Cj , with the latter
becoming the bulk concentration, where the bulk is defined
as the region where the potential ψ vanishes. From Eq. (12),
we recover that the curl of the electric field must vanish
(Maxwell’s second equation). Equation (13) implies that
the concentration of the j th mobile component assumes a
Boltzmann distribution corresponding to energy qjψ . At this
stage, employing Eqs. (12) and (13), we can eliminate E
and cj from Eq. (11) in favor of ψ and obtain a functional
of the desired variational field. While this functional does
produce the correct mean-field potential upon extremization,
it becomes a maximum, not a minimum, at its extremum. In
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fact, this functional is the standard PB functional found in
the literature [9–11,13]. We elaborate more on the comparison
between the standard PB functional and functionals produced
by us in Sec. IV.

To arrive at the true free-energy functional of the electro-
static potential, as a first step, we resist substitution at this
stage and instead take the unutilized variation of K [E,cj ,ψ]
with respect to ψ , obtaining

δψ : ∇ ·
(

εE
4π

)
− ρf −

∑
j

qj cj = 0. (14)

In the above equation, we can substitute E and cj in terms of
ψ using Eqs. (12) and (13), respectively, to obtain

∇ ·
(

ε∇ψ

4π

)
+ ρf + h(ψ) = 0, (15)

where we have deployed the notation h defined in Eq. (3).
Equation (15) is identical to Eq. (2), which is the PB equation.
We are now at the key step of the derivation where, in
addition to eliminating E and cj from Eq. (11), we employ
the above equation to construct a different functional of ψ .
The first step in this process involves recasting Eq. (15) as
a recursive relation for ψ [see Eq. (17) below]. There are
obviously many different ways to recast the above equation
into a recursive relation for ψ and, depending on the particular
recursive relation employed, we obtain the local or the nonlocal
functional.

We begin with the manipulation of Eq. (15) that leads to the
local functional KL. This particular recasting begins by first
writing Eq. (15) as

h(ψ) = −∇ ·
(

ε∇ψ

4π

)
− ρf . (16)

Using the definition of the inverse function h−1 given in Eq. (4),
the above equation can be transformed into

ψ = h−1

[
− ∇ ·

(
ε∇ψ

4π

)
− ρf

]
. (17)

Equation (17) is a recursive relation involving ψ and, following
Eq. (7), we identify the right-hand side of this equation to be
the Lagrange multiplier �L. Substituting E, cj , and ψ from
Eqs. (12), (13), and (17), respectively, back into Eq. (11) leads
to the local functional KL. We note that instead of employing
the inverse function h−1, Maggs [13] uses another reciprocal
form, namely, the Legendre transform of a function g(ψ),
related to the function h(ψ) via dg/dψ = −h, to construct his
functional with the vector displacement D as the basic variable.

As alluded to earlier, Eq. (15) can be recast in another form
suitable for the construction of the nonlocal PB free-energy
functional KNL. This particular recasting begins by using the
relation ε = 1 + 4πχ to split the first term on the left-hand
side of Eq. (15) and rearranging terms, which leads to

∇2ψ

4π
= −∇ · (

χ∇ψ
) − ρf − h

(
ψ

)
. (18)

By employing the basic property of Green’s function, namely,
Eq. (5), we can transform the above differential equation into

an “inverse” integral form,

ψ =
∫

Gr,r′ {∇ · (χr′∇ψr′ ) + ρf (r′) + h(ψr′)}dr′. (19)

Equation (19) is a recursive relation involving ψ and we
promptly identify the right-hand side of this equation to be
the Lagrange multiplier �NL. Finally, the substitution of E, cj ,
and ψ from Eqs. (12), (13), and (19), respectively, back in the
functional of Eq. (11) leads to the nonlocal functional KNL.

B. Other Poisson-Boltzmann free-energy functionals

We note that KL and KNL are not the only two free-energy
functionals that can be constructed via the above described
variational formulation. By recasting Eq. (15) into alternative
recursive relations, functionals that differ from those derived
above can be constructed. For example, recalling that h is a
sum of charge densities for all mobile components present
in the system, we consider splitting this function as h(ψ) =
h−(ψ) + h+(ψ), where h− includes the sum over only those
component densities that describe negatively charged ions and
h+ is the sum over the component densities that represent
only positively charged ions. Employing this splitting, we can
transform Eq. (15) into a relation,

ψ = h−1
+

[
− ∇ ·

(
ε∇ψ

4π

)
− ρf − h−(ψ)

]
, (20)

where h−1
+ is the inverse function defined by the relation

h−1
+ [h+(ψ)] = ψ . The above equation provides a recursive

relation involving ψ that is clearly different from the previous
two relations expressed in Eqs. (17) and (19). Substituting
E, cj , and ψ from Eqs. (12), (13), and (20), respectively,
back into Eq. (11) leads to a local PB free-energy functional
of ψ . Similarly, a different recursive relation is obtained by
switching the + and − subscripts on h in Eq. (20), which
leads to yet another local PB free-energy functional. Proofs
that the functionals obtained using these alternate substitutions
are free-energy functionals are similar to the ones that appear
in the Appendix A at the end of this paper.

We can construct more local PB free-energy functionals by
using other ways to morph Eq. (15) into recursive relations
for ψ . As another example, we show a set of free-energy
functionals that do not involve any inverse functions (such as
h−1 or h−1

+ ). Such functionals can be constructed by noting that
the splitting of the charge density h discussed in the previous
paragraph can be envisioned at the level of a single component.
Accordingly, in Eq. (15), we separate out the charge density
term corresponding to the kth mobile component from the
h(ψ) term, and rearrange, thus obtaining

qkCke
−βqkψ = −∇ ·

(
ε∇ψ

4π

)
− ρf − (h − qkCke

−βqkψ ).

(21)

Dividing both sides of Eq. (21) by qkCk and taking the
logarithm of each side leads to the relation

ψ = −1

βqk

ln

[−∇ · ε
4π

∇ψ − ρf − h(ψ) + qkCke
−βqkψ

qkCk

]
.

(22)
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Equation (22) is yet another recast of Eq. (15) which, unlike
the previous recursive relations, does not involve the use of the
inverse function. Once again, substituting E, cj , and ψ from
Eqs. (12), (13), and (22), respectively, in Eq. (11) leads to a
PB free-energy functional of ψ .

We also note that nonlocal PB free-energy functionals
different from KNL can be constructed by using recursive
relations different from the one in Eq. (19). Beginning with the
recursive relation in Eq. (19) and using a procedure analogous
to the one introduced by us in Ref. [21], a whole family of
nonlocal free-energy functionals can be obtained. Finally, it is
natural to ponder if there exist recursive relations that do not
lead to a free-energy functional. In order to answer this specific
question and other related ones, a deeper understanding of the
underlying variational principle is needed, which includes a
general analysis of the process of constructing functionals con-
strained by a fundamental equation via a Lagrange multiplier.
We postpone such an analysis to a future paper.

IV. COMPARISON WITH THE STANDARD
POISSON-BOLTZMANN FUNCTIONAL

We noted in Sec. III A that not all substitutions to eliminate
field variables from Eq. (11) in favor of ψ lead to a free-
energy functional. We observed that E and cj can be eliminated
from Eq. (11) using Eqs. (12) and (13), thus leading to a
functional with ψ as the sole variable. This process results in
the functional

I [ψ] =
∫ [

ε |∇ψ |2
8π

− 1

β

N∑
j=1

Cje
−βqj ψ (βqjψ + 1)

]
dr

+
∫

ψ

[
∇ · ε

4π
∇ψ + ρf + h (ψ)

]
dr, (23)

which, upon extremization, singles out the correct potential
but becomes a maximum at equilibrium [11]. I [ψ] is, in
fact, the standard PB functional [9,10], although in literature
one generally finds this functional expressed in the following
equivalent form [11,13]:

I [ψ] =
∫ (

− ε|∇ψ |2
8π

+ ρf ψ − 1

β

N∑
j=1

Cje
−βqj ψ

)
dr,

(24)

which can be derived from the functional in Eq. (23) by
integration by parts and using the definition of h.

It is clear from Eq. (23) that I , like KL, is a local functional.
From Eqs. (6) and (23), we note that functionals KL and I

share a common structure: the expression for the free energy
(the first term in either functional) is constrained by the PBE.
The only, but crucial, difference between these functionals
is the choice of the constraint that is enforced by means
of Lagrange multipliers. While I employs the function ψ

for enforcing the PBE constraint, KL uses �L, obtained as
a result of interpreting PBE as a recursive relation, for the
same purpose. Employment of �L removes the defect of
nonconvexity present in the functional I , while retaining other
desirable features.

It is useful to continue this comparison by using the specific
example of a symmetric two-component electrolyte. For this

system, q1 = q, q2 = −q, and C1 = C2 = C. It is easy to show
from Eq. (3) that the function h for this problem becomes

h(ψ) = −2qC sinh(βqψ). (25)

Also, it follows from the above equation that the function h−1

can be obtained analytically, and we find it to be

h−1(y) = 1

βq
sinh−1 [y/ (−2qC)] . (26)

Using Eq. (24), we find the standard PB functional for this
system to be

I [ψ] =
∫ [

− ε |∇ψ |2
8π

+ ρf ψ − 2C

β
cosh(βqψ)

]
dr. (27)

Judging by the (negative) signs that precede the |∇ψ |2 and
cosh(βqψ) terms in the above functional (and noting that
ε,β, and C are all positive quantities), it is evident that this
functional is unbounded from below. It takes little effort to
show that the second variation of the above functional at its
extremum is

δ2I = −
∫

ε

4π
|∇δψr′ |2 dr′

− 2βq2C

∫
cosh(βqψ) (δψr′ )2 dr′, (28)

which by inspection is a strictly negative number, implying that
I becomes a maximum at equilibrium. One might promptly
suggest multiplying an overall negative sign to I [ψ] in Eq. (27)
to remove the defect of concavity. However, doing so, as can
be readily checked, leads to the wrong value of the equilibrium
free energy for the system. In fact, considering the form of our
local functional for this system as given below, it will be very
hard to guess how I [ψ] of Eq. (27) must be modified in order
to convert it into a free-energy functional. It is, therefore, not
a surprise that previous attempts at constructing free-energy
functionals for PB theory have instead ended up changing the
field variable from ψ to either the vector variables such as D
or E [13,14] or the charge densities [11,12,15].

We now obtain the expression for the functional KL in the
case of the symmetric two-component electrolyte. Employing
Eqs. (25) and (26) in Eq. (6), we find KL to be

KL[ψ] =
∫

ε |∇ψ |2
8π

dr

−
∫ [

2C

β
cosh(βqψ) − 2qCψsinh(βqψ)

]
dr

+
∫

1

βq
sinh−1

[
1

2qC

(
∇ · ε∇ψ

4π
+ ρf

)]

×
[
∇ · ε

4π
∇ψ + ρf − 2qCsinh(βqψ)

]
dr. (29)

Unlike the standard PB functional for this system, it is not
immediately obvious if the above functional is convex or
concave. So we turn to Eq. (A18) in the Appendix, which
provides the general expression for the second variation of KL

at its extremum. By evaluating this variation for the parameters
associated with the symmetric two-component electrolyte, we
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obtain

δ2KL[ψ] = 3
∫

ε

4π
|∇δψr′ |2 dr′

+ 2βq2C

∫
cosh(βqψ) (δψr′ )2 dr′

+
∫

[∇ · (ε/4π )∇δψr′ ]2

βq2Ccosh(βqψ)
dr′. (30)

It is clear that the right-hand side of the above equation is
a strictly positive number, thus implying that KL becomes a
minimum at its extremum. As the comparison of Eqs. (28) and
(30) reveals, the use of a recursive form �L (in place of ψ) in
the constraint term in Eq. (29) flips the signs associated with
the integrals involving |∇δψr′ |2 and cosh(βqψ) terms from
negative to positive and, in addition, leads to a term which is
strictly non-negative.

Judging by the complicated form of the functional KL in
Eq. (29), we believe that this functional cannot be obtained via
a trivial manipulation of the functional I [ψ] of Eq. (27). We
do not, however, claim that one cannot arrive at free-energy
functionals with simpler forms as compared to the functional
appearing in Eq. (29). It would indeed be useful to find
such functionals via the variational principle presented here
or otherwise. Finally, we note that in spite of some similarities
between the functional in Eq. (29) and the functional of
variable D derived by Maggs in Ref. [13] [for example, both
functionals contain the term sinh−1(ξ ), where ξ = (∇ · ε∇ψ

4π
+

ρf )/2qC = (ρf − ∇ · D
4π

)/2qC], these two functionals are
different functionals and it is not possible to obtain one from
the other by a simple transformation such as D → −ε∇ψ .

V. CONCLUSION

In this article, we presented a variational formulation
that produces true free-energy functionals of the electrostatic
potential whose minimizers satisfy the Poisson-Boltzmann
equation. With the construction of a local PB free-energy
functional of potential, we have shown that the advantages
of convexity, true equilibrium free energy, and locality can
all be embedded in a functional of a scalar field, without the
need to move to the more expensive vector field variables.
While both PB functionals that we produce are strong
candidates for simulation techniques aimed at solving the PB
equation on the fly in conjunction with the update of other
conformational degrees of freedom, we envision our local
functional in particular to be an ideal choice for the powerful
local optimization procedures [18].

We have also shown the versatile nature of our variational
formulation which, in addition to producing the functionals KL

and KNL, is capable of constructing many other PB free-energy
functionals. Our formulation also reveals that functionals, such
as the standard PB functional of potential, which are not true
free-energy functionals, can be understood as arising from
deficient forms of the constraint of PBE applied to the free
energy of the system. In this light, we believe our formulation
and the associated free-energy functionals provide a fresh look
at the PB theory. The central feature of our formulation, which
is to recast the fundamental equation (in the present case, the
PBE) in a suitable recursive form for the construction of a true

energy functional, appears to be a very general idea, and it is
our goal in the future to investigate if this idea can be employed
for the construction of similar functionals for other theories,
such as classical electrostatics [25,26] or classical mechanics.
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APPENDIX: EXTREMAL BEHAVIOR OF KL AND KNL

In this appendix, we examine the functionals KL and KNL

at the point of their extremum. Specifically, we prove that
these functionals become a minimum at their extremum. In
this regard, we will show that the second variation of either
functional is strictly positive at the extremum point.

We begin by introducing some notations. We define a
function B(ψ) as

B(ψ) = ∇ · ε

4π
∇ψ + ρf + h(ψ), (A1)

and use the functional F [ψ] to denote

F [ψ] =
∫ ⎡

⎣ε|∇ψ |2
8π

− 1

β

N∑
j=1

Cje
−βqj ψ (βqjψ + 1)

⎤
⎦ dr

+
∫

ψB(ψ)dr. (A2)

Also, from here on, unless otherwise stated explicitly, K
denotes either of our PB functionals (KL or KNL) and �

denotes either multiplier (�L or �NL).
To make the derivations smoother, when employing inte-

gration by parts we will quietly render the resulting surface
integrals void by invoking the Dirichlet boundary condition.
Also, dummy variables are used in abundance and they will
appear (disappear) without notice. To make equations less
congested, we often omit the position variable dependence of
functions such as ψ , and trust the reader to figure the associated
variable from the context. However, when the context is not
conclusive, we will explicitly show the variable dependence.
We frequently employ the identity

δψ(r′)
δψ(r)

= δr,r′ . (A3)

And, finally, using the definition of B, we recognize that the
Poisson-Boltzmann equation is simply written as

B(ψ) = 0, (A4)

which, as can be readily verified, is identical to the relation
ψ = �. This observation is used often in our proofs, to which
we turn next.
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Using Eq. (A1), we can write our functional K as

K [ψ] =
∫ ⎡

⎣ε|∇ψ |2
8π

− 1

β

N∑
j=1

Cje
−βqj ψ (βqjψ + 1)

⎤
⎦ dr

+
∫

�B(ψ)dr. (A5)

We add and subtract ψ from the multiplier � in the above
equation and employ the definition of F given in Eq. (A2) to
obtain

K [ψ] = F [ψ] +
∫

(� − ψ)B(ψ)dr. (A6)

The above expression serves as the starting point to compute
the first derivative of K , which is

δK [ψ]

δψ
= δF [ψ]

δψ
+

∫
(� − ψ)

δB(ψ)

δψ
dr′

+
∫

B(ψ)
δ(� − ψ)

δψ
dr′. (A7)

Using Eq. (A2) and employing integration by parts and making
abundant use of Eq. (A3), we compute the functional derivative
of F to be

δF [ψ]

δψ
=

∫
B(ψr′ )δr,r′dr′. (A8)

Substituting δF [ψ]
δψ

from the above equation into Eq. (A7) and
simplifying leads to our final expression for the first derivative
of K :

δK [ψ]

δψ
=

∫
(� − ψ)

δB(ψ)

δψ
dr′ +

∫
B(ψ)

δ�

δψ
dr′. (A9)

It is clear from the above equation that when B(ψ) = 0, which
is identical to ψ = � as observed before, δK [ψ]

δψ
vanishes.

But, as argued above, B(ψ) = 0 is precisely the PBE. In other
words, the potential that satisfies the PBE also extremizes the
functional K .

We now compute the second derivative of K and examine
its value at the point of extremum. Carrying out the derivative
of δK

δψ
given in Eq. (A9), we obtain

δ2K [ψ]

δψ2
=

∫
(� − ψ)

δ2B(ψ)

δψ2
dr′ +

∫
δ(� − ψ)

δψr

δB(ψ)

δψr′′
dr′

+
∫

δB(ψ)

δψr

δ�

δψr′′
dr′ +

∫
B(ψ)

δ2�

δψ2
dr′,

(A10)

where we employ δ2

δψ2 to denote δ2

δψ(r)δψ(r′′) for the sake of
brevity.

Recalling that at the extremum point, B(ψ) = 0, and,
equivalently, ψ − � = 0, we find that the first and last terms
in Eq. (A10) vanish upon using these equalities, and the above
expression for the second derivative reduces at the point of
extremum to

δ2K [ψ]

δψ2

∣∣∣∣
e

=
∫

δ(� − ψ)

δψr

δB(ψ)

δψr′′
dr′ +

∫
δB(ψ)

δψr

δ�

δψr′′
dr′,

(A11)

which, upon further simplification and subsequent integration
against the variations δψ(r) and δψ(r′′), leads to the following
expression for the second variation of the functional:

δ2K [ψ]|e = 2
∫

δ�δB(ψ)dr′ −
∫

δψr′δB(ψ)dr′, (A12)

where we employ the shorthand notations δ� =∫
δ�

δψ(r)δψ(r)dr and δB = ∫
δB

δψ(r′′)δψ(r′′)dr′′. The subscript
“e” used in Eqs. (A11) and (A12) indicates that the second
derivative and variation are being evaluated at the point of
extremum.

Equation (A12) provides the expression for the second
variation of the functional K evaluated at its extremum. We
will now examine the value of this variation for the local and
the nonlocal functional separately. We begin with the local
functional. To compute δ2KL[ψ] using Eq. (A12), we require
the derivative of �L[ψ(r′)] with respect to ψ(r). Remembering
the definition of �L from Eq. (7), we have

δ�L(r′)
δψr

= δh−1 (y)

δψr

= δh−1(y)

δy
· δy

δψr

=
(

δh

δψr′

∣∣∣∣
ψr′=h−1(y)

)−1

· δy

δψr
, (A13)

where the function y stands for

y = −∇ · ε

4π
∇ψr′ − ρf (r′). (A14)

Employing the definitions of h and y given by Eqs. (3) and
(A14), respectively, Eq. (A13) becomes

δ�L

δψr
= 1

−β
∑N

j=1 Cjq
2
j e

−βqj h−1(y)

(
− ∇ · ε

4π
∇δr,r′

)

= 1

β
∑N

j=1 Cjq
2
j e

−βqj �L(r′)
∇ · ε

4π
∇δr,r′ , (A15)

where we have used Eq. (A3) and remembered that �L =
h−1(y) to obtain the second equality above. Since the above
derivative needs to be evaluated at equilibrium, for which
ψ(r′) = �L(r′), we obtain

δ�L

δψr

∣∣∣∣
e

= 1

β
∑N

j=1 Cjq
2
j e

−βqj ψr′
∇ · ε

4π
∇δr,r′ . (A16)

From Eq. (A1), and using Eq. (A3), we readily derive

δB(ψr′ )

δψr′′
= ∇ · ε

4π
∇δr′′,r′ − β

N∑
j=1

Cjq
2
j e

−βqj ψr′ δr′′,r′ .

(A17)

Using Eqs. (A16) and (A17) in Eq. (A12), followed by
integrating by parts and some simple algebra, leads to the
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following equation:

δ2KL[ψ]|e = 3
∫

ε

4π
|∇δψr′ |2 dr′

+
∫

β

N∑
j=1

Cjq
2
j e

−βqj ψr′ (δψr′ )2 dr′

+ 2
∫

[∇ · (ε/4π )∇δψr′ ]2

β
∑N

j=1 Cjq
2
j e

−βqj ψr′
dr′. (A18)

Since ε � 1 and bulk concentrations are positive quantities,
we find that each of the three integrals in Eq. (A18) is non-
negative. Moreover, the first integral in the above equation is
strictly greater than zero. Therefore, we have

δ2KL[ψ]|e > 0, (A19)

which completes the proof that the local functional KL

becomes a minimum when extremized.
We now turn to the case of the nonlocal functional KNL.

Using Eq. (A12), we now evaluate δ2KNL[ψ] at the extremum
point, with the latter being again given by B(ψ) = 0 or,
equivalently, ψ − �NL = 0. As is evident from Eq. (A12), to
proceed with this evaluation, we require the derivative of �NL

with respect to ψ . Note that in Eq. (A12), �NL is a function of
r′ and its derivative is with respect to ψ(r). Remembering the
definition of �NL from Eq. (9), we have

δ�NL

δψr
= δ

δψr

∫
Gr′,r′′

[
B(ψr′′ ) − 1

4π
∇2ψr′′

]
dr′′, (A20)

where we have employed the definition of B to simplify the
expression for �NL. Taking the derivative inside the integral
and employing Eq. (A3), we obtain

δ�NL

δψr
=

∫
Gr′,r′′

[
δB(ψr′′ )

δψr
− 1

4π
∇2δr,r′′

]
dr′′. (A21)

Using Eq. (A21), the integral in the first term on the right-hand
side of Eq. (A12) becomes∫

δ�NL(ψr′ )δB(ψr′)dr′

=
∫∫

δB(ψr′ )Gr′,r′′

[
δB(ψr′′ ) − 1

4π
∇2δψr′′

]
dr′′dr′.

(A22)

Before proceeding further, we introduce a shorthand f (r′)
which stands for

fr′ = δB(ψr′ ) − 1

4π
∇2δψr′ . (A23)

Adding and subtracting ∇2δψr′/4π from δB[ψ(r′)] in
Eq. (A22) and using the shorthand f , we can write Eq. (A22)
as∫

δ�NL(ψr′)δB(ψr′)dr′ =
∫∫

fr′Gr′,r′′fr′′ dr′′dr′

+
∫∫

1

4π
∇2δψr′Gr′,r′′fr′′ dr′′dr′.

(A24)

We refer to the first and second double integrals in the above
equation as I1 and I2, respectively. By inserting a δ function in

the first double integral of Eq. (A24), and employing Eq. (5),
followed by a series of integration by parts, I1 can be written
as

I1 =
∫ ∣∣∣∣

∫
∇r′′Gr′,r′′fr′′ dr′′

∣∣∣∣
2

dr′. (A25)

In the second double integral of Eq. (A24), by employing
integration by parts, we can transfer the action of Laplacian
from δψr′ on to Gr′,r′′ and further simplify to obtain

I2 =
∫∫

δψr′
∇2Gr′,r′′

4π
fr′′ dr′′dr′

= −
∫∫

δψr′δr′,r′′fr′′ dr′′dr′

= −
∫

δψr′fr′ dr′, (A26)

where we have used Eq. (5) to get the second equality in the
above equation and the final equality follows by carrying out
the integral over r′′. Substituting I1 and I2 from Eqs. (A25)
and (A26), respectively, into Eq. (A24) gives

∫
δ�NL(ψr′)δB(ψr′)dr′ =

∫ ∣∣∣∣
∫

∇Gr′,r′′fr′′ dr′′
∣∣∣∣
2

dr′

−
∫

δψr′fr′ dr′. (A27)

Using Eq. (A27) in Eq. (A12), we obtain the following
expression for the second variation of KNL at its extremum:

δ2KNL[ψ]|e = 2
∫ ∣∣∣∣

∫
∇Gr′,r′′fr′′dr′′

∣∣∣∣
2

dr′

− 2
∫

δψr′fr′dr′ −
∫

δψr′δB(ψr′)dr′.

(A28)

We will now simplify the right-hand side of Eq. (A28) and,
in this regard, expand the notation f using Eq. (A23) in the
single integral above, to obtain

δ2KNL[ψ]|e = 2
∫ ∣∣∣∣

∫
∇Gr′,r′′fr′′ dr′′

∣∣∣∣
2

dr′

− 2
∫

δψr′

[
δB(ψr′) − 1

4π
∇2δψr′

]
dr′

−
∫

δψr′δB(ψr′ )dr′, (A29)

which further simplifies to

δ2KNL[ψ]|e = 2
∫ ∣∣∣∣

∫
∇Gr′,r′′fr′′ dr′′

∣∣∣∣
2

dr′

− 3
∫

δψr′

[
δB(ψr′ ) − 2

3

∇2δψr′

4π

]
dr′.

(A30)
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Using Eq. (A17) in Eq. (A30) and employing integration by
parts leads to

δ2KNL[ψ]|e = 2
∫ ∣∣∣∣

∫
∇Gr′,r′′fr′′ dr′′

∣∣∣∣
2

dr′

+ 3
∫

ε − 2/3

4π
|∇δψr′ |2 dr′

+ 3
∫

β

N∑
j=1

Cjq
2
j e

−βqj ψr′ (δψr′ )2 dr′. (A31)

By inspecting each integral in the above equation and noticing
that concentrations are positive quantities and ε − 2/3 > 0, it
is clear that all three integrals in Eq. (A31) are non-negative.
Moreover, since ε � 1, the second integral in Eq. (A31) is
strictly positive, implying

δ2KNL[ψ]|e > 0. (A32)

The above inequality completes the proof that KNL becomes
a minimum at its extremum.
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[7] H. Löwen, P. A. Madden, and J.-P. Hansen, Phys. Rev. Lett. 68,

1081 (1992).
[8] D. Andelman, Handbook Biol. Phys. 1, 603 (1995).
[9] K. A. Sharp and B. Honig, J. Phys. Chem. 94, 7684

(1990).
[10] E. S. Reiner and C. J. Radke, J. Chem. Soc., Faraday Trans. 86,

3901 (1990).
[11] F. Fogolari and J. M. Briggs, Chem. Phys. Lett. 281, 135

(1997).
[12] J. Che, J. Dzubiella, B. Li, and J. A. McCammon, J. Phys. Chem.

B 112, 3058 (2008).
[13] A. C. Maggs, Europhys. Lett. 98, 16012 (2012).

[14] W. Kung, F. J. Solis, and M. Olvera de la Cruz, J. Chem. Phys.
130, 044502 (2009).

[15] P. K. Jha, F. J. Solis, J. J. de Pablo, and M. Olvera de la Cruz,
Macromolecules 42, 6284 (2009).

[16] R. van Roij and J.-P. Hansen, Phys. Rev. Lett. 79, 3082 (1997).
[17] M. Knott and I. J. Ford, Phys. Rev. E 63, 031403 (2001).
[18] J. Rottler and A. C. Maggs, Phys. Rev. Lett. 93, 170201 (2004).
[19] R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).
[20] V. Jadhao, F. J. Solis, and M. Olvera de la Cruz, Phys. Rev. Lett.

109, 223905 (2012).
[21] V. Jadhao, F. J. Solis, and M. Olvera de la Cruz, J. Chem. Phys.

138, 054119 (2013).
[22] D. Remler and P. Madden, Mol. Phys. 70, 921 (1990).
[23] M. Baptista, R. Schmitz, and B. Dünweg, Phys. Rev. E 80,

016705 (2009).
[24] A. C. Maggs, J. Chem. Phys. 120, 3108 (2004).
[25] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New

York, 1999).
[26] J. Schwinger, L. Deraad, K. Milton, W. Tsai, and J. Norton,

Classical Electrodynamics (Westview, Boulder, CO, 1998).

022305-9

http://dx.doi.org/10.1126/science.694508
http://dx.doi.org/10.1126/science.7761829
http://dx.doi.org/10.1016/j.cell.2007.11.028
http://dx.doi.org/10.1016/j.physa.2004.12.033
http://dx.doi.org/10.1039/c0sm00706d
http://dx.doi.org/10.1039/c0sm00706d
http://dx.doi.org/10.1073/pnas.0703431104
http://dx.doi.org/10.1073/pnas.0703431104
http://dx.doi.org/10.1103/PhysRevLett.68.1081
http://dx.doi.org/10.1103/PhysRevLett.68.1081
http://dx.doi.org/10.1016/S1383-8121(06)80005-9
http://dx.doi.org/10.1021/j100382a068
http://dx.doi.org/10.1021/j100382a068
http://dx.doi.org/10.1039/ft9908603901
http://dx.doi.org/10.1039/ft9908603901
http://dx.doi.org/10.1016/S0009-2614(97)01193-7
http://dx.doi.org/10.1016/S0009-2614(97)01193-7
http://dx.doi.org/10.1021/jp7101012
http://dx.doi.org/10.1021/jp7101012
http://dx.doi.org/10.1209/0295-5075/98/16012
http://dx.doi.org/10.1063/1.3065071
http://dx.doi.org/10.1063/1.3065071
http://dx.doi.org/10.1021/ma901035e
http://dx.doi.org/10.1103/PhysRevLett.79.3082
http://dx.doi.org/10.1103/PhysRevE.63.031403
http://dx.doi.org/10.1103/PhysRevLett.93.170201
http://dx.doi.org/10.1103/PhysRevLett.55.2471
http://dx.doi.org/10.1103/PhysRevLett.109.223905
http://dx.doi.org/10.1103/PhysRevLett.109.223905
http://dx.doi.org/10.1063/1.4789955
http://dx.doi.org/10.1063/1.4789955
http://dx.doi.org/10.1080/00268979000101451
http://dx.doi.org/10.1103/PhysRevE.80.016705
http://dx.doi.org/10.1103/PhysRevE.80.016705
http://dx.doi.org/10.1063/1.1642587



