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Fractional fluctuation effects on the light scattered by a viscoelastic suspension

R. F. Rodrı́guez,1,* J. Fujioka,1 and E. Salinas-Rodrı́guez2

1Instituto de Fı́sica, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000 México, D.F., México,
and FENOMEC, UNAM, México
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We generalize fluctuating hydrodynamics to study the effect of fractional time derivatives on the light-scattering
spectrum of a suspension in a viscoelastic solvent under an external density gradient. Viscoelasticity introduces
additional memory effects into the fluctuating hydrodynamic equations, causing the time scales associated with
the mesoscopic variables and those of the microscopic events to be no longer well separated. This situation is
taken into account by introducing Caputo’s fractional time derivative into the description. The structure factor of
the suspension is calculated, and we find that its nonequilibrium correction is an odd function of the frequency. It
exhibits a shift towards negative frequencies proportional to the magnitude of the imposed gradient. We consider
solvents that are described by Maxwell’s or power-law rheological equations of state. The fractional structure
factor is compared with the nonfractional one, and it is found that the ratio of the former to the latter may
be positive and up to two orders of magnitude for both types of viscoelasticity. This prediction of our model
calculation suggests that this relative change might be measurable.
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I. INTRODUCTION

In classical statistical physics the separation of the mi-
croscopic and macroscopic time scales is manifest in the
central limit theorem, and this separation implies that the
macroscopic dynamics can be described by the ordinary
stochastic differential calculus, even if the microscopic dynam-
ics is incompatible with the methods of ordinary calculus [1].
Perhaps the most familiar situation where this issue arises
is Brownian motion, where the classical Langevin equation
successfully describes the motion of the Brownian particle [2].
In this equation the Langevin force acting on the particle is
a zero-centered Gaussian random force with instantaneous
correlation C(t). However, when the particle moves through a
stationary environment like a dense fluid or fluids with internal
degrees of freedom [3], the motion of the particle should be
described instead with the generalized Langevin equation [4]

·
V +

∫ t

0
γ (t − t ′)V (t ′) dt ′ + f (V ) = F (t), (1)

where now the effect of the environment is encoded in a
retarded friction kernel γ (t) and in a noise term F (t). In
this case the correlation C(t − t ′) is arbitrary, and, due to the
presence of the memory kernel γ (t), the time scales associated
with the time evolution of V , and the microscopic events
giving rise to it, are no longer well separated. It has been
widely discussed in the literature that, strictly speaking, when
this separation of time scales does not exist, the formalism
of ordinary statistical physics is no longer adequate to
describe the phenomenon, and the use of fractional, stochastic
differential equations on the mesoscopic level should replace
the conventional Langevin equation [5–7]. Actually, fractional
Brownian motion has been widely used in the modeling of
various physical phenomena which exhibit anomalous (non-
Gaussian) diffusion and has given rise to a huge literature [8,9].
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This lack of separation of time scales may also occur in the
description of transport dynamics in complex systems which
are governed by anomalous diffusion and nonexponential
relaxation patterns. For these systems fractional equations
are derived asymptotically from basic random walk models
and from generalized master equations [9]. However, although
these effects have been well studied for Brownian motion and
diffusive systems, much less is known of their implications
for hydrodynamic systems. As will be seen in this paper,
this lack of separation of time scales also occurs in the
description of the dynamics of fluctuations of a hydrodynamic
system. Indeed, a fluctuating hydrodynamics description may
comprise equations for the time evolution of velocity or density
fluctuations which are governed by generalized Langevin
equations with a time-dependent friction coefficient exhibiting
dissipative memory due to viscoelasticity.

The Landau and Lifshitz theory of hydrodynamic fluc-
tuations [10] close to equilibrium has been put on a firm
basis within the framework of the general theory of stationary
Gaussian Markov processes by Fox and Uhlenbeck [11,12]. In
fluctuating hydrodynamics the usual deterministic hydrody-
namic equations are supplemented with random dissipative
fluxes of thermal origin, obeying a fluctuation-dissipation
relation. This approach has matched the theory of Onsager
and Machlup with the approach of Landau and Lifshitz, for
systems where the basic state variables do not posses a definite
time reversal symmetry [13–15], leading to Langevin-like
stochastic equations for the evolution of the fluctuations of
the state variables. In this way fluctuating hydrodynamics
provides a systematic method for assessing the nature of
spontaneous fluctuations induced by intrinsic thermal noise.
Fox and Uhlenbeck’s scheme has been applied to simple fluids
and their binary mixtures [16,17]; more recently it has been
also verified that fluctuating hydrodynamics can be extended to
deal with thermally excited fluctuations in fluids in stationary
nonequilibrium states [18–21]. In spite of the fact that the
theory of fluctuations in nonequilibrium fluids was initiated in
the late 1970s [22–26], and pursued by many authors [27,28],
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still nowadays several questions concerning the nature of
hydrodynamic fluctuations in nonequilibrium stationary states
(NESSs) are of current active interest. One of these issues is
the long-range character of these fluctuations even far away
from instability points. It has been shown theoretically that the
existence of the so-called generic scale invariance is the origin
of the long-range nature of the correlation functions [18,29].
However, in spite of the considerable interest in fluctuations
around dissipative steady states of simple fluids during the last
two decades, there are few similar studies for equilibrium or
nonequilibrium stationary states of complex fluids [30–35].

On the other hand, models where fractional differential
equations have been obtained by formally replacing first-order
time derivatives by fractional ones have been proposed for
several definitions of fractional derivatives, such as those of
Riemann-Liouville, Grünwald-Letnikov, and Caputo [36–38].
These models describe relaxation processes occurring in the
behavior of complex systems like viscoelastic fluids, glassy
materials, synthetic polymers, or biopolymers. All these
systems have in common that their relaxation function is
nonexponential due to the large number of highly coupled ele-
mentary units responsible for the relaxation. The requirement
of high cooperation among these elements leads to slower
decays often modeled by empirical power laws [39–41]. In
particular, fractional models have been developed to describe
relaxation processes whose solutions can be represented by
Fox functions [42]. Besides the relaxation function, other
viscoelastic functions, such as the retardation function, the
storage, and loss modulus, the relaxation time spectrum, and
the retardation time spectrum, have been studied and are
expressed by analytical functions. This wide class of functions
offers a framework within which nonstandard relaxation
processes can be discussed [43,44].

The main aim of the present paper is to consider some of
these questions within the context of a simple hydrodynamic
model of a viscoelastic suspension. Fractional time derivatives
are introduced into the hydrodynamic equations to study
their effect on the light-scattering properties of a viscoelastic
suspension in a NESS. More precisely, the purpose of doing
this is to investigate the effects of fractional fluctuations on
a measurable property, the light-scattering dynamic structure
factor of the suspension. To our knowledge, the study of
the effects of fractional derivatives on the behavior of this
property has not been considered in the literature so far,
where the interest in fractional effects has been focused on
Brownian motion, random walk, and anomalous diffusion.
In this work we will use the Caputo fractional derivative,
which, according to Ref. [45], has the following intuitive
interpretation: it takes into account the past behavior of
the fluctuations themselves, implying that apart from the
usual dissipative memories associated with viscoelasticity, an
additional memory is constructed by adding to their stationary
values the successive weighted increments over time. In
this sense its presence gives rise to fractional fluctuations
in addition to the usual thermal fluctuations existing in the
system. To assess the effect of these two different memories
(fluctuations), we calculate the relative change of a quantity
that is affected by them, namely, the light-scattering dynamic
structure factor of the suspension. We evaluate this quantity
when fractional fluctuations are present and compare it

with its value due only to thermal fluctuations. For this
purpose we consider two different viscoelastic solvents, those
obeying Maxwell’s and a power-law rheological equations
of state.

The plan of the paper is as follows. In Sec. II we
recall the relevant aspects of a model, introduced in our
previous work [46], for a dilute Brownian suspension under an
externally imposed constant concentration gradient. Then in
Sec. III we derive the fluctuating linearized hydrodynamic
equations for the particles and the solvent. We define the
NESSs to be considered and show that they are a solution
of those equations. After introducing the Caputo fractional
time derivative, we show that its presence affects only the
Green functions of the ensuing fractional stochastic equations
for the velocity and concentration fluctuation, arguing that
the corresponding fractional fluctuation-dissipation relations
may be the same as for a NESS with integer-valued time
derivatives. These equations are then solved analytically by
using Fourier transforms. In Sec. IV we calculate the fractional
correlation function of concentration fluctuations and derive
a general explicit formal expression for the equilibrium and
nonequlibrium components of the fractional dynamic structure
factor. This expression is valid up to first order in the external
gradient, but for an arbitrary form of the frequency-dependent
generalized viscosity and diffusion coefficients, as long as they
have a well-defined Fourier transform. For the chosen NESS,
in Sec. V we consider two specific rheological solvents, salol
(S) which is a glass-forming liquid, and a power-law fluid, a
solution of separan in glucose (E1), which is an exceedingly
elastic fluid. In Sec. VI we calculate the corresponding
fractional dynamic structure factors. To quantify the difference
observed in the structure factor for both fluids, we calculate
the ratio of the fractional to the nonfractional spectra for
frequencies and wave numbers typical of a light-scattering
experiment. We find that for derivatives of fractional order
α in 0 < α < 1 this ratio can be significantly large, up to
two orders of magnitude. In marked contrast, we find for
the range 1 < α < 2, the fractional fluctuations contribute
much less to the structure factor, indicating that the former
fractional fluctuations are the dominant ones. The size of this
relative change suggests that these fractional effects might be
measurable. However, we are not aware of any experimental
results to compare with the predictions of our model, and
therefore it is not possible to conclude from our analysis if
this (significant) enhancement is measurable. This is an open
issue that remains to be assessed. Finally, in Sec. VII we
summarize the main results of our work and make some further
remarks.

II. BASIC EQUATIONS

A. Model

Consider a dilute suspension of noninteracting identical
spherical particles of mass m and radius a moving through
a linear, viscoelastic solvent with spatially homogeneous vis-
coelastic moduli, and which may flow with velocity −→v (−→r ,t)
[46]. Following Ref. [47], the most general constitutive
equation for the linear stress-strain relation of this solvent
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is of the form

σij (t) = −pδij +
∫ t

0
dt ′

{
K(t − t ′)

·
γ kk(−→r ,t ′)δij

+ 2G(t − t ′)
[

·
γ ij (−→r ,t ′) − 1

3
·
γ kk(−→r ,t ′)δij

]}
, (2)

where Einstein’s summation convention for repeated indices
is implied. Here σij (−→r ,t) is the symmetric stress tensor,

p(−→r ) is the hydrostatic pressure, and
·
γ ij (−→r ,t) is the rate of

strain tensor defined in terms of the velocity gradient tensor,
·
γ ij ≡ ∂vi/∂xj . −→r stands for the position vector with Cartesian
components xi , i = x,y,z. The scalar functions G (t) and K (t)
denote the shear and the bulk (compressional) components
of the stress modulus, respectively, and are assumed to be
independent of −→

r .
Since at the temperatures of interest in a photon correlation

experiment the thermal contribution to the density fluctuation
spectrum is outside the range that can be monitored by this
technique, in a first approximation the effects of thermal
diffusion will be neglected and temperature fluctuations may
be considered to be sufficiently small [10]. Hence, under
isothermal conditions the solvent may be regarded as incom-
pressible, and if the suspension is so diluted that the presence
of the particles does not appreciable perturb the motion of the
fluid, the dynamics of the solvent is described by the continuity
equation

−→∇ · −→v = 0 (3)

and the equation of motion

ρ(−→r ,t)
∂

∂t

−→v (−→r ,t)

= −−→∇ p(−→r ,t) − ρ(−→r ,t)−→v (−→r ,t) · −→∇ −→v (−→r ,t)

+
∫ t

−∞
dt ′G(t − t ′)∇2−→v (−→r ,t ′), (4)

where ρ(�r,t) is the mass density. In writing this equation we
have assumed that the fluid has been put in a stationary state
(to be defined below) in the remote past, as indicated by the
lower integration limit −∞ in the retarded modulus.

Let us now consider the suspended particles. If no chemical
reactions occur, the total mass of the solute is conserved, and
their local number density n(�r,t) obeys the generalized Fick’s
law

∂

∂t
n(−→r ,t) + −→∇ · −→

J (−→r ,t) = 0, (5)

where the flux of particles displays memory effects due to the
viscoelasticity of the solvent

−→
J (−→r ,t) = −

∫ t

−∞
D(t − t ′)

−→∇ n(−→r ,t ′) dt ′

+ n(−→r ,t)−→v (−→
r ,t

)
. (6)

This time memory allows the diffusion coefficient D(t) to
depend on times t ′ previous to the observation time t . The
second term on the r.h.s. is the convective flux of particles
arising from the flow of the solvent. Thus, the generalized

diffusion equation governing the time evolution of n(−→r ,t) is

∂

∂t
n(−→r ,t) + −→v (−→r ,t) · −→∇ n(−→r ,t)

=
∫ t

−∞
dt ′D(t − t ′)∇2n(−→r ,t ′). (7)

Clearly, if K(t), G(t), and D(t) are known, Eqs. (3), (4), and (7)
form a complete system of hydrodynamic equations for the
hydrodynamic state variables vi(

−→
r ,t) and n(−→r ,t).

B. Fractional derivatives

We now generalize the hydrodynamic model described by
Eq. (3), (4), and (7) by replacing formally the first-order time
derivatives on the l.h.s. of these equations by fractional order
derivatives. As is well known, there are many definitions for
the fractional derivatives, such as those of Riemann-Liouville,
Grünwald-Letnikov, and Caputo. Here we choose the left-
handed Caputo fractional derivative of order α defined by
[37,38],

C
0 Dα

t f (t) = 1

� (n − α)

∫ t

0

f (n)(τ )

(t − τ )α+1−n
dτ, (8)

where f (n) ≡ dnf/dtndenotes the conventional n order time-
derivative, being n the smallest integer greater than α, i.e.,
the one that satisfies n − 1 � α < n, and � (n − α) is the
Euler gamma function. It should be noted that when α = 1,
the operator C

0 Dα
t f (t) reduces to the conventional derivative

df (t)/dt , so that C
0 Dα=1

t
−→v (−→r ,t) and C

0 Dα=1
t n(−→r ,t) reduce

to ∂−→v (−→r ,t)/∂t and ∂n(−→r ,t)/∂t , respectively. The operator
Dα

t then converts Eqs. (4) and (7) into fractional equations.
Following Ref. [45], we stress that as can be seen from
Eq. (8), “the fractional derivative takes into account the past
behavior of −→v (−→r ,t) and n(−→r ,t), implying that these fields
are constructed by adding to their initial values the successive
weighted increments over time. Therefore, the values of
∂−→v (−→r ,τ )/∂τ at a time τ far apart from t , have smaller weights
than those at times τ closer to t . These increments per unit time
are represented by f (n)(τ ) under the integral sign in Eq. (8),
while the weights are indicated by the factors 1/ (t − τ )α+1−n,
whose value decreases with increasing time separation from
time t .” In this sense the memory contained in the fractional
derivative is different from the memory described by the
dissipative kernels like K(t − t ′), G(t − t ′) and D(t − t ′). The
value of a variable is actually a weighted average of its past
values, and the fractional derivative represents a different type
of additional memory. Since Eqs. (4) and (7) have conventional
first order time derivatives (α = 1), it is to be expected that their
fractional generalizations should have α ≈ 1, either α < 1,
(i.e., 0 < α < 1), or α > 1 (i.e., 1 < α < 2). For the interval
0 < α < 1 Eq. (8) reduces to

C
0 Dα<1

t f (t) = 1

� (1 − α)

∫ t

0

f (1)(τ )

(t − τ )α
dτ, (9)

and it describes the cumulative effect of the first derivative
f (1)(τ ) over past times. On the other hand, in the case where
1 < α < 2, the fractional derivative involves f (2)(τ ), but it is
still an approximation to the first derivative f (1). However,
as will be shown later, the dominant contribution to the
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dynamic structure factor will arise from the values of α in
the interval 0 < α < 1. In the next section we will write
fractional equations for the fluctuations of the state variables
which represent fractional fluctuations, in addition to the usual
thermal fluctuations.

Therefore, the hydrodynamic equations of the system are
now the incompressibility condition Eq. (3), the equation of
motion

ρ(−→r ,t)C0 Dα
t
−→v (−→r ,t)

= −−→∇ p(−→r ,t) − ρ(−→r ,t)−→v (−→r ,t) · −→∇ −→v (−→r ,t)

+
∫ t

−∞
dt ′G(t − t ′)∇2−→v (−→r ,t ′) (10)

and the generalized diffusion equation

C
0 Dα

t n(−→r ,t) = −−→v (−→r ,t) · −→∇ n(−→r ,t)

+
∫ t

−∞
D(t − t ′)∇2n(−→r ,t ′) dt ′. (11)

If G(t) and D(t) are known, Eqs. (3), (10), and (11)
form a complete system of hydrodynamic equations for the
hydrodynamic state variables vi(

−→
r ,t) and n(−→r ,t).

C. Stationary states

The stationary solutions of Eqs. (3), (10), and (11) define
nonequilibrium steady states determined by the boundary
conditions imposed on the system. Here we shall consider
only the stationary solution corresponding to a constant con-
centration gradient

−→∇ ns in the direction of −→
r corresponding

to a quiescent solvent for which

ns(
−→
r ) = n0 + −→

r · −→∇ ns, (12)

−→v s(
−→
r ) = 0, (13)

with constant density ρ0 and pressure

ps(
−→
r ,t) = const. (14)

For later convenience we rewrite the stationary solution (12)
in the form

ns(
−→
r ) = n0 + n sin(−→q · −→

r ), (15)

with

−→
q n ≡ −→∇ ns. (16)

Of course, Eq. (15) reduces to Eq. (12) to first order in −→
q , but

it is easier to perform the calculations using (15) and taking
the limit −→

q → 0 at the end.
To be consistent with linear response theory, Eqs. (3), (10),

and (11) should be linearized in the small deviations
of the state variables with respect their steady-state val-
ues (12). These quantities are defined by δn(−→r ,t) ≡ n(−→r ,t) −
ns(

−→
r ),δp(−→r ,t) ≡ p(−→r ,t) − p0, and δ−→v (−→r ,t) ≡ −→v (−→r ,t)

due to Galilei invariance. Moreover, since due to causality,
G(t) and D(t) contain the Heaviside step function 
(t − t ′) =
1, for t > t ′ and zero otherwise, we arrive at the following
linearized continuity equation:

−→∇ · −→v = 0, (17)

the equation of motion
C
0 Dα

t
−→v (−→r ,t)

= −ρ−1
0

−→∇ δp + ρ−1
0

∫ t

0
dt ′G(t − t ′)∇2−→v (−→r ,t ′), (18)

and the generalized linear diffusion equation

C
0 Dα

t δn(−→r ,t) + −→v · −→∇ ns =
∫ t

0
D(t − t ′)∇2δn(−→r ,t ′) dt ′.

(19)

III. FRACTIONAL FLUCTUATING HYDRODYNAMICS

We now introduce thermal fluctuations into Eqs. (18)
and (19) on the basis of Landau’s fluctuating hydrodynamics
[10–12]. This is accomplished by adding a random current,−→
J R(−→r ,t), to the mass flux Eq. (6) and random stress tensor←→
� R(−→r ,t) into Eq. (18); they have their origin in the stochastic

nature of molecular collisions and lead to

C
0 Dα

t
−→v (−→r ,t) = −ρ−1

0
−→∇ δp + ρ−1

0

∫ t

0
dt ′G(t − t ′)

×∇2−→v (−→r ,t ′) + −→∇ · ←→
� R(−→r ,t), (20)

C
0 Dα

t δn(−→r ,t) + −→v · −→∇ ns

=
∫ t

0
dt ′D(t − t ′)∇2δn(−→r ,t ′) − −→∇ · −→

J R(−→r ,t). (21)

These random terms
−→
J R(−→r ,t) and

←→
� R(−→r ,t) are modeled

by Gaussian, stationary, non-Markovian stochastic processes
with zero mean

〈←→� R(−→r ,t)〉 = 0, (22)

〈−→J R(−→r ,t)〉 = 0, (23)

and correlations given by the following fluctuation-dissipation
theorems (FDTs)〈
�R

ij (−→r ,t)�R
lm(

−→
r ′ ,t ′)

〉 = 2kT G(|t − t ′|)δ(−→r − −→
r ′ )�ijlm,

(24)〈
JR

i (−→r ,t)JR
j (

−→
r ′ ,t ′)

〉 = 2ns(
−→
r )D(|t − t ′|)δ(−→r − −→

r ′ )δij .

(25)

Here k is Boltzmann’s constant, T is the temperature of the
solvent,

←→
1 is the unit tensor, �ijlm is defined by

�ijlm ≡ δilδjm + δimδjl − 2
3δij δlm, (26)

and δ denotes the Kronecker’s delta. These relations are
derived from the expression for the rate of change of the
total entropy of the liquid and by following the general rules
of fluctuation theory [48]. In Eqs. (24) and (25) the angular
brackets denote an average over the NESS and actually imply
that we have assumed fractional FFDTs which have the same
form as those valid in generalized hydrodynamics for NESS.
Admittedly, this is a strong assumption which has to be
justified. We discuss the plausibility of this assumption below,
after deriving Eqs. (39) and (40).

Again, if G(t) and D(t) are given, Eqs. (20) and (21),
together with (22)–(26), constitute a closed set of linear
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stochastic equations, or generalized Langevin equations, de-
scribing the dynamics of the thermal fluctuations of the system.
Equation (20) can be further simplified by eliminating the
gradient term by applying the operator

−→∇ × −→∇ × and using
the incompressibility condition (17), with the result

C
0 Dα

t
−→v (−→r ,t) = ρ−1

0

∫ t

0
dt ′G(t − t ′)∇2−→v (−→r ,t ′)

+−→∇ · ←→
� R(−→r ,t). (27)

Thus, the generalized Langevin equations (27) and (21) de-
scribe the dynamics of both fractional and thermal fluctuations.

We now define the time-space Fourier transform of an
arbitrary field A(−→r ,t) by

Ã(
−→
k ,s) ≡ F{A(−→r ,t)}

=
∫

d
−→
r

∫ +∞

−∞
dtei

−→
k ·−→r e−iωtA(−→r ,t). (28)

In what follows the caret Â will denote the Fourier transform
of A with respect to one of its variables and the tilde Ã with
respect to both. To this end it will be necessary to Fourier
transform the fractional derivative C

0 Dα
t f (t) in Eq. (8). It can

be proven that this transform is given by

F
{

C
0 Dα

t f (t)
} = (iω)α f̂ (ω), (29)

which has the same form as for conventional derivatives.
Although this result could have been expected, it is worth
pointing out that the proof of the validity of Eq. (29) is not as
straightforward as that of the well-known identity

F
{

C
−∞Dα

t f (t)
} = (iω)α f̂ (ω), (30)

valid when the fractional derivative C
−∞Dα

t f (t) has minus
infinity in the lower limit of the integral [36,38],

C
−∞Dα

t f (t) = 1

� (n − α)

∫ t

−∞

f (n)(τ ) dτ

(t − τ )α+1−n
dτ. (31)

Note that since we have a description in terms of the
diffusion coefficient which is expected to be valid only at times
much longer than a molecular time, the upper limit in Eqs. (21)
and (27) may be extended to +∞, and definition (28) can
be used. Then the fluctuating linearized equations (17), (21),
and (27) in (

−→
k ,ω) space read

−→
k · −̃→v (

−→
k ,ω) = 0, (32)

δn(
−→
k ,ω) = −g̃n(

−→
k ,ω)[

−→∇ ns(
−→
k ) · −̃→v (

−→
k ,ω)

+ i
−→
k · −̃→

J R(
−→
k ,ω)], (33)

−̃→v (
−→
k ,ω)

= −g̃v(
−→
k ,ω){(

←→
1 − k̂k̂) · [i

−→
k · ←̃→

� R(
−→
k ,ω)]}, (34)

with 0 < α < 1, where k̂ is the unit vector along the direction
of

−→
k and

g̃v(
−→
k ,ω) = [(iω)α + k2Ĝ(ω)]−1, (35)

g̃n(
−→
k ,ω) = [(iω)α + k2D̂(ω)]−1 (36)

are the fractional Green functions in (
−→
k ,ω) space associated

with Eqs. (34) and (33), respectively. Note that Eq. (33)
shows that out of equilibrium the concentration fluctuations

are coupled to the velocity fluctuations through the density
gradient

−→∇ ns .
In Fourier space the fluctuation-dissipation relations (24)

and (25) become〈
�̃R

ij (
−→
k ,ω)�̃R

lm(
−→
k′ ,ω′)

〉
= 2(2π ) Re[Ĝ(ω)]δ(ω + ω′)δ(

−→
k + −→

k′ )�̂ij lm(
−→
k ), (37)

〈−̃→J
R

(
−→
k ,ω)

−̃→
J

R

(
−→
k′ ,ω′)〉

= 2(2π ) Re[D̂(ω)]̂ns(
−→
k )δ(

−→
k + −→

k′ )
←→
1 , (38)

where n̂s(
−→
k ) is

n̂s(
−→
k ) = (2π )3

{
n0δ(

−→
k ) + n

2i
[δ(

−→
k − −→

q ) − δ(
−→
k + −→

q )]

}
.

(39)

Intuitively, it may be expected the validity of the FFDTs (37)
and (38) with the same structure as for a NESS. This is
suggested by the fact that the fractional character of the
solutions (33) and (34) shows up only in the Green functions
(propagators), Eqs. (35) and (36), through their dependence
on the exponent α (0 < α < 1), the order of the fractional
derivative. This in turn suggests that if after all the fractional
dynamics has evolved and the action of the propagators has
stopped, the final NESS is reached, it is likely that a FFDT
exists, and if this is the case, it should have the same structure
as the FDT in a NESS, since the fractional features of the dy-
namics are no longer present. This idea is further discussed in
the Appendix, where we follow, adapt, and extend the method
developed in Refs. [49,50] to sketch the validity of the FFDT.

IV. DYNAMIC STRUCTURE FACTOR

A. Equilibrium

When the concentration gradient vanishes (n = 0), the
system reaches thermodynamic equilibrium, and Eqs. (33)
and (38) reduce to

δñ(
−→
k ,ω) = −ig̃n(

−→
k ,ω)

−→
k · −̃→

J
R

(
−→
k ,ω), (40)

〈−̃→J
R

(
−→
k ,ω)

−̃→
J

R

(
−→
k′ ,ω′)〉

= 2(2π )4n0 Re[D̂(ω)]δ(
−→
k + −→

k′ )δ(ω + ω′)
←→
1 . (41)

The equilibrium density-density correlation function is then
given by

〈δñ(
−→
k ,ω)δñ(

−→
k′ ,ω′)〉eq

= 2(2π )4n0 Re[D̂(ω)](−−→
k · −→

k′ )

× g̃n(
−→
k ,ω)̃gn(

−→
k′ ,ω′)δ(

−→
k + −→

k′ )δ(ω + ω′). (42)

Since the only nonvanishing contribution to the structure factor

is given by
−→
k′ = −−→

k and ω′ = −ω, the equilibrium structure
factor Seq(

−→
k ,ω) is

Seq(
−→
k ,ω) ≡ 〈δñ(

−→
k ,ω)δñ(−−→

k , − ω)〉eq

= 2(2π )4n0δ
4(0)k2 Re[D̂(ω)]̃gn(

−→
k ,ω)̃g∗

n(
−→
k ,ω),

(43)

where the asterisk * denotes complex conjugation.
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B. Nonequilibrium

The density fluctuations are given by Eq. (28) when the
system is driven to a NESS by the presence of the density
gradient ns(

−→
k ). The fluctuation-dissipation theorem Eq. (36)

in this case turns out to be

〈−̃→J
R

(
−→
k ,ω)

−̃→
J

R

(
−→
k′ ,ω′)〉

= 2(2π )4 Re[D̂(ω)]δ(
−→
k + −→

k′ )
←→
1

{
n0δ(

−→
k + −→

k′ )

+ 1

2i
n̂(

−→
k )[δ(

−→
k + −→

k′ − −→
q ) − δ(

−→
k + −→

k′ + −→
q )]

}
.

(44)

The nonequilibrium density-density correlation function is
constructed using Eqs. (28), (40), and (42) and the fact that−→
J F (

−→
k ,ω) and −̃→v (

−→
k ,ω) are uncoupled. Up to first order in

the density gradient this yields

〈δñ(
−→
k ,ω)δñ(

−→
k′ ,ω′)〉neq

= −g̃n(
−→
k ,ω)̃gn(

−→
k′ ,ω′)

{
2(2π )4 Re[D̂(ω)]δ(ω + ω′)

−→
k · −→k′

×
[
n0δ(

−→
k + −→

k′ ) + n/2i
∑
ε=±1

εδ(
−→
k + −→

k′ − ε
−→
q )

]}
.

(45)

Since the first term on the r.h.s. yields the equilibrium
contribution to the density-density correlation function given
by Eq. (37), we calculate only the nonequilibrium contribution
proportional to ñ. If in the second term on the r.h.s. of (45) we

substitute
−→
k → −→

k + ε
−→
q /2 and

−→
k′ → −→

k′ + ε
−→
q /2, we get

〈δn(
−→
k ,ω)δn(

−→
k′ ,ω′)〉neq

= −
∑
ε=±1

ε2 (2π )4 Re[D̂(ω)]δ(ω + ω′)

× δ(
−→
k + −→

k′ )
n

2i
(
−→
k + ε

−→
q /2) · (

−→
k′ + ε

−→
q /2)

× g̃n(
−→
k + ε

−→
q /2,ω)̃gn(

−→
k′ + ε

−→
q /2,ω′). (46)

The dynamic structure factor S(
−→
k ,ω) of the suspension is

then obtained from Eqs. (45) and (46):

S(
−→
k ,ω)=Seq(

−→
k ,ω) + Sneq(

−→
k ,ω)

=〈δñ(
−→
k ,ω)δñ(

−→
k′ ,ω′)〉eq + 〈δñ(

−→
k ,ω)δñ(

−→
k′ ,ω′)〉neq

= 2(2π )4 Re[D̂(ω)]n0δ
4(0)k2

[(iω)α + D̂(ω)k2][(−iω)α + D̂∗(ω)k2]

−
{

1
2ω Re[D̂(ω)]

−→
k · −→∇ ns/n0

[(−iω)α + D̂(ω)k2][(iω)α + D̂∗(ω)k2]

}
.

(47)

This expression is general and valid for any form of D̂(ω),
but in the next section we consider explicit forms of D̂(ω)
which are determined by the specific viscoelasticity of the
solvent. At this point, we emphasize that although S(

−→
k ,ω)

is a real quantity, from Eq. (47) is not clear whether it is

an odd or even function of ω. However, its parity can be
established by recalling that the correlation of the stochastic
current

−→
J F (−→r ,t) in the FDT given by Eq. (25) should be an

even function in time. Consistently, D(|t − t ′|) should be such
that D̂(ω) = D̂(−ω) = D̂∗(ω) and Re[D̂(ω)] = Re[D̂(−ω)]
is also an even function of ω. Consequently, the quantity
φ̂(ω) ≡ [iω + D̂(ω)k2][−iω + D̂∗(ω)k2] is even in ω since
φ̂(ω) = φ̂(−ω). Thus, the nonequilibrium part of the structure
factor, Sneq(

−→
k ,ω), is an odd function of ω, and its shape

is asymmetric, shifting its maximum towards negative fre-
quencies. The magnitude of this shifting is proportional to the
magnitude of the density gradient,

−→∇ ns , and also depends on
the time scales involved in D̂(ω), which are in turn determined
by the time scales of the viscoelasticity of the solvent, as we
discuss below.

V. VISCOELASTICITY

To analyze quantitatively the behavior of the dynamic
structure factor S(

−→
k ,ω) it is necessary to specify first the

type of viscoelasticity, by determining the explicit form of the
frequency-dependent viscosity Ĝ(ω). One way to do this is by
recalling that since the suspended particles are Brownian, the
equation of motion of an isolated suspended particle of mass
m is given by the Langevin equation

m
d

dt

−→
u (t) = −→

F H (t) + −→
F R(t), (48)

or in the frequency representation

iωm
−̂→
u (ω) = −̂→

F H (ω) + −̂→
F R(ω).

Here
−→
F R(t) is the random force originating in the internal

fluctuations of the solvent described by a Gaussian stochastic
process of zero mean and satisfying the fluctuation-dissipation
relation

〈−→F R(t)
−→
F R(t ′)〉 = 2kT ξ (|t − t ′|)←→1 (49)

or in (
−→
k ,ω) space

〈−̃→F R(ω)
−̃→
F R(ω′)〉 = 2(2π )kT Re[̂ξ (ω)]δ(ω + ω′)

←→
1 .

(50)

These relations are obtained by finding the rate of change of
the total entropy of the solvent and by applying the general
rules of fluctuations [50,51]. The assumptions implicit in the
Langevin equation (48) have been well established [2,3].

On the other hand, the hydrodynamic force
−̂→
F H (ω) on

one of the suspended spherical particles of radius a moving
with velocity −→

u (ω), is determined by the frequency-dependent
viscosity η̂(ω) of the solvent, through a generalized Faxen
theorem valid when the sphere has a time-dependent velocity
and the fluid’s motion (solvent) is nonstationary [52]. When
the unperturbed solvent is at rest, as in the NESS defined by
Eqs. (12) and (13), the force exerted by the solvent on the
sphere is given by

−̂→
F H (ω) = ξ̂ (ω)−̂→u (ω), (51)
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where the frequency-dependent friction ξ̂ (ω) is given by

ξ̂ (ω) ≡ 6πaη̂(ω)
[
1 + α̂(ω)a + 1

9 α̂2(ω)a2
]
, (52)

where α(ω) is the inverse penetration length

α̂(ω) =
[−iωρ0

η̂(ω)

]1/2

. (53)

The time-dependent diffusion coefficient D(t) of the
suspended particles is related to η̂(ω) through ξ (ω) by the
Green-Kubo relation

D(t) = 1
3 Tr[〈−→u (t)−→u (0)〉]
(t), (54)

where 
(t) is the Heaviside step function and Tr denotes the
trace of the tensor. According to Eqs. (47)–(52) and making
use of causality, it follows that the relation between diffusion
and viscoelasticity is given by

D̂(ω) = kT

imω + ξ̂ (ω)
. (55)

It should be emphasized that the particle velocity correlation
function 〈−→u (t)−→u (0)〉 generally decays to zero in a short time
and the description in terms of the diffusion coefficient is
expected to be valid only at times much longer than a molecular
time.

A. Maxwell fluid

Equation (55) is valid for any η̂(ω) provided that it has
a well-defined Fourier transform. In previous work the case
where the solvent obeys Maxwell’s rheological equation of
state has been considered [46],

η(t) = η0

τ0
e−t/τ0
(t), (56)

τ0 being the relaxation time and η0 is the zero-frequency shear
viscosity. The frequency dependent shear stress modulus Ĝ(ω)
is then

Ĝ(ω) ≡ η̂(ω)

ω
= G0

(1/τ0)2 + ω2
(1/τ0 − iω) . (57)

Once we have defined the type of viscoelasticity of the
solvent, to determine the dependence of D̂(ω) one has to
take into account that for long-time scales (low frequencies)
of the order of the relaxation times of diffusion modes,
the leading contribution to the frequency dependent D̂(ω)
[Eq. (55)] is determined by the viscoelastic nature of the
solvent through Eq. (52). If the Maxwell fluid is chosen to be
liquid salol (S) for the material properties values used below
in the caption of Fig. 1, it can be explicitly verified that the
time scales introduced by the relaxation of the perturbations
of the solvent and the time scale due to the inertia of the
particle are both negligible compared to the diffusive scales,
and hence α̂(ω)a 
 1 in Eq. (52) and |imω| 
 |̂ξ (ω)| in
Eq. (55). Accordingly

D̂(ω) = kT

6πη0a
(1 + iωτ0) ≡ D0 (1 + iωτ0) . (58)

FIG. 1. (Color online) S̃(
−→
k ,ω; α) vs ω as calculated from

Eq. (65) for liquid salol assuming that it obeys Maxwell’s rheological
equation of state (56). We chose the following parameter values: T =
353.2 K, G0 = 1.154 kg/ms, τ = 89.9 × 10−6 s, ρ0 = 1.212 kg/m3

[53]. The different curves correspond to fractional S̃(
−→
k ,ω; α) versus

ω for α = 0.9, 0.95,0.99, 1.

B. Power-law viscoelasticity

Let us now consider the case when the viscoelasticity of
the solvent is described by a power-law rheological equation
of state

η(t) = η0t
−λ
(t), 0 < λ < 1, (59)

with the complex time-Fourier transform

η̂(ω) = η0�(1 − λ)

ω1−λ
{cos[(1 − λ)π/2]

− i sin[(1 − λ)π/2]}, (60)

where � (x) is the Gamma function. Under the same arguments
on the time scales as discussed above for a Maxwell fluid, for
the power-law behavior we get

ξ̂ (ω) = 6πaη̂(ω)

= 6πaη0�(1 − λ){cos[(1 − λ)π/2]

− i sin[(1 − λ)π/2]}ωλ−1, (61)

and Eq. (55) yields

D̂(ω)� kT

ξ̂ (ω)

= D0

�(1 − λ)
{cos[(1 − λ)π/2] − i sin[(1 − λ)π/2]}ω1−λ.

(62)

In the next section we shall use the material properties of
two specific power-law rheological fluids, namely, salol (S), a
glass-forming liquid, and E1, a solution of 0.02% separan
MG500 + 2% water in glucose MCY43N , which can be
classified as an exceedingly elastic fluid [54].

VI. RESULTS AND DISCUSSION

To examine the behavior of S(
−→
k ,ω) given by Eq. (47) as

a function of ω for different values of α, it is convenient to
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define the dimensionless fractional structure factor

S̃(
−→
k ,ω; α) ≡ S(

−→
k ,ω)

Seq(
−→
k )

, (63)

where Seq(
−→
k ) is

Seq(
−→
k ) ≡ S(

−→
k ,ω = 0)

= 2 (2π )4 D0n0δ
4 (0)

D2
0k

2
. (64)

Then

S̃(
−→
k ,ω; α)

S̃eq(
−→
k ,ω; α)

= 1 − 2ω∇̃ns

[(iω)α + D̂(ω)k2][(−iω)α +D̂∗(ω)k2]
,

(65)

where we have defined the dimensionless concentration
gradient ∇̃ns as

∇̃ns ≡
−→
k · −→∇ ns/n0

k2(1 + D0k2τ )
. (66)

We now plot S̃(
−→
k ,ω; α) versus ω parametrized by α,

assuming that it obeys Maxwell’s rheological equation of state.
The symmetric curve S̃eq(

−→
k ,ω; α = 1) is the nonfractional

equilibrium dimensionless structure factor. The asymmetric
curves result from the properties of S̃neq(

−→
k ,ω; α), defined by

Eqs. (47) and (63), which is an odd function of ω with its
maximum shifted towards negative frequencies; the size of
the shift is proportional to the magnitude of the dimensionless
density gradient, ∇̃ns , and also depends on the time scales
determined by the viscoelasticity of the solvent. It is clear
from these curves that for low frequencies (∼ω � ±15 Hz)
the nonfractional structure factor S̃(

−→
k ,ω; α = 1) is larger than

the fractional ones S̃(
−→
k ,ω; α �= 1). However, as ω increases

this behavior is inverted, and the fractional structure factors
become larger than the nonfractional ones.

FIG. 2. (Color online) The same as in Fig. 1 but for E1 when
it is described as a power-law fluid by Eq. (59) with λ = 0.2. The
following material and parameter values were used, T = 292 K,
G0 = 17.3 kg/ms, ρ0 = 1414 kg/m3, τ = 0.18 s.

FIG. 3. (Color online) The ratio R(
−→
k ,ω; α) as defined by

Eq. (67), for ω ∼ 1014 Hz and k ∼ 107 m−1. The discontinuous line
refers to S and the continuous one to E1 when both are considered to
be Maxwell fluids.

Now consider E1 assuming that it obeys the power-law
rheological equation of state [Eq. (59)]. The behavior of the
corresponding S̃(

−→
k ,ω; α) is shown in Fig. 2 and exhibits the

same trend as observed in Fig. 1 for S; i.e., for low frequencies
the nonfractional values S̃(

−→
k ,ω; α = 1) are larger than the

fractional ones S̃(
−→
k ,ω; α �= 1), but ranges of values of ω for

which the latter become larger than the former can be clearly
identified. These are shown in the two insets in Fig. 2.

This behavior clearly suggests that fractional effects may
be significant for S̃(

−→
k ,ω; α �= 1), which is a measurable

property; however, from Figs. 1 and 2 it is difficult to quantify
these differences. In order to do so we plot the ratio

R(
−→
k ,ω; α) ≡ S̃(

−→
k ,ω; α �= 1)

S̃eq(
−→
k ,ω; α = 1)

(67)

as a function of α for fixed values of
−→
k and ω. Note that since

we have an analytical expression for S̃(
−→
k ,ω; α) valid for any

value of
−→
k and ω, we calculate the value of R(

−→
k ,ω; α) for the

FIG. 4. (Color online) The same as in Fig. 3 when both S and
E1 obey the power-law rheological equation of state Eq. (59). Same
parameter values as in Figs. 1 and 2.
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FIG. 5. (Color online) The same as in Fig. 1 for α = 1, 1.05, 1.085.

values ω ∼ 1014 Hz and k ∼ 107, which are typical for a light-
scattering experiment [55]. This yields the curves shown in
Fig. 3 when both S and E1 are considered to be Maxwell fluids.

Note that for salol R(
−→
k ,ω; α) can be as large as two orders

of magnitude for α ∼ 0.9, indicating that the relative change
in S̃(

−→
k ,ω; α) due to the presence of fractional derivatives may

be quite significant even for Maxwell’s rheology. On the other
hand, if both fluids obey the power-law rheological equation
of state Eq. (59), the plot of R(

−→
k ,ω; α) versus α is shown in

Fig. 4, where the larger increment corresponds to E1.
Again, in this case the value of R(

−→
k ,ω; α) can also

be considerable large (∼500) for power-law rheology (E1),
indicating that fractional effects may be significant.

It is worth emphasizing that all the previous results were
obtained for 0 < α < 1, but since α can also take values
in 1 < α < 2, we now examine their effect on the same
quantities plotted in Figs. 1–3. If we plot S̃(

−→
k ,ω; α) versus

FIG. 6. (Color online) The same as in Fig. 5 for large fre-

quencies. Inset A shows a frequency range where S̃(
−→
k ,ω; α =

1.05) and S̃(
−→
k ,ω; α = 1.085) are below S̃eq(

−→
k ,ω; α = 1) and

above S̃(
−→
k ,ω; α = 1). Inset B shows a frequency range where

both fractional structure factors are below S̃(
−→
k ,ω; α = 1) and

S̃eq(
−→
k ,ω; α = 1).

FIG. 7. (Color online) The same as in Fig. 2 for α = 1, 1.05, 1.085.

ω parametrized by α = 1.05 and 1.085, considering salol as
a Maxwell fluid and for the same material properties as those
indicated in Fig. 1, we get the curves shown in Fig. 5.

Note that in contrast to Fig. 1, the maxima of the
curves S̃(

−→
k ,ω; α = 1.05) and S̃(

−→
k ,ω; α = 1.085) in Fig. 6

are located above the maximum value of S̃(
−→
k ,ω; α = 1).

These relative positions are maintained around ω ∼ 0, but
as ω increases this situation changes. For instance, inset
A shows a frequency range where S̃(

−→
k ,ω; α = 1.05) and

S̃(
−→
k ,ω; α = 1.085) are below S̃eq(

−→
k ,ω; α = 1) and above

S̃(
−→
k ,ω; α = 1), whereas inset B shows a frequency range

where both fractional structure factors are below S̃(
−→
k ,ω;

α = 1) and S̃eq(
−→
k ,ω; α = 1). Afterwards both fractional

curves are always below S̃eq(
−→
k ,ω; α = 1).

A similar behavior occurs for power law fluids as shown in
Fig. 7.

This behavior already indicates that contrary to the behavior
found for α < 1, for the interval 1 < α < 2 the fractional
effects on the structure factor are lower and less significant
than in the nonfractional case. This feature is quantified more

FIG. 8. (Color online) Equation (67), for ω ∼ 1014 Hz and k ∼
107 m−1. The discontinuous line refers to S and the continuous one to
E1 when both are considered to be power law fluids. The inset shows
the same behavior when S and E1 are Maxwell fluids.
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precisely in Fig. 8, where the ratio R(
−→
k ,ω; α) is plotted as a

function of α for the typically experimental values ω ∼ 1014 Hz
and k ∼ 107.

This figure shows that in marked contrast to the behavior
of Figs. 3 and 4, the ratio R(

−→
k ,ω; α) is always lower than 1 in

the interval 1 < α < 2, indicating that the effect of fractional
fluctuations is much less significant on S̃(

−→
k ,ω; α) than those

for the interval 0 < α < 1, which are the dominant ones. This
result is in accordance with the common use in the literature
of fractional derivatives, which usually replaces first-order
derivatives by fractional ones with a fractional order α in the
interval 0 < α < 1 [56].

VII. CONCLUDING REMARKS

We collect the following conclusions commenting briefly
on each one.

In this work we have proposed a model to analyze the effect
produced on the light-scattering properties of a nonequlibrium
dilute suspension of solid particles in a viscoelastic solvent,
when fractional time derivatives are introduced into the time
evolution equations for the density and velocity fluctuations.
The lack of separation of the time scales due to viscoelasticity
is taken into account by the inclusion of Caputo’s fractional
time derivative in the stochastic equations. We showed that
this operator does not change the basic structure of the usual
fluctuating hydrodynamic description, due to the fact that
the Fourier transform of this fractional time derivative is
well defined and the fractional character of the dynamics is
manifest in the propagators (35) and (36). In the Appendix
we discuss that it is reasonable to expect that the FFDTs
[Eqs. (37) and (38)] have the same structure as for a NESS.
These features allow to generalize the usual fluctuating
hydrodynamic description to the fractional case.

It should be pointed out that strictly speaking, not only
the conventional stochastic calculus should be replaced by
a fractional one, but also the white Gaussian noise of the
fluctuating currents has to be modified as well. This issue was
not considered in this work, but it deserves further attention. It
should be stressed as well, that our approach and conclusions
are applicable only to the model analyzed here and to the
class of nonequilibrium states we have considered in the
present work. Also, we did not addressed the issue of replacing
the spatial derivatives in the dynamic equations by fractional
derivatives; this is a difficult problem which to our knowledge
has not been explored.

We should stress that following Ref. [45], in this work we
have interpreted a fractional fluctuation as a superposition of
conventional thermal fluctuations with successive weighted
increments over time. As a consequence, the values of
∂−→v (−→r ,τ )/∂τ at a time τ far apart from t have smaller weights
than those at times τ closer to t . Although we do not have a
clear interpretation of the action of fractional fluctuations and
of their possible relation with the coherent or incoherent nature
of the solutions of the fractional equations, some features of
our results may be interpreted along this direction. Indeed, the
asymmetry, the size of the maximum, and the shift of the peak
of the spectrum (for conventional time derivatives) is a typical
nonequilibrium effect [46]. However, as α becomes less than

1, the presence of fractional fluctuations tend to decrease the
magnitude of the peak and the size of its width, as well as
the size of the shift. As a consequence, the spectrum becomes
slightly less asymmetric, but this occurs only for low frequen-
cies (left part of Fig. 1). As ω increases, there is a crossover,
and these fractional effects become larger than those for ω ∼ 0
(right part of Fig. 1). In contrast, if α < 1, the behavior near
ω ∼ 0 is the opposite, and there is also a crossover which as t

grows makes the fractional spectrum smaller than that for α =
1. This behavior has the implication that the ratio is positive and
considerably larger than 1 for α < 1 (Figs. 3 and 4) and almost
vanishes for α > 1 (Fig. 8). Since the spectrum is constructed
from the solutions (34) and (33), this behavior of the correla-
tions that produce the spectrum should reflect the behavior of
the solutions and the nature of the equations. If α > 1, accord-
ing to Ref. [45], the fractional fluctuations can be interpreted as
a superposition of normal derivatives of order higher than one;
therefore, the second time derivative in the equation becomes
more important, indicating that the the effect of second deriva-
tives appear in the equation (wave equation) with (coherent)
propagating wave solutions. When α < 1 the presence of frac-
tional fluctuations does not introduce higher order derivatives,
and the equation remains a relaxation (diffusive) equation.

However, a deeper explanation of the action of a fractional
fluctuation is necessary. In a recent publication [57] alternative
explanations of the extensions resulting from replacing integer-
valued derivatives by fractional derivatives are made [58]. This
interpretation makes use of the notion of fluctuating trajectory
and considers fractional models as averages over an ensemble
of these trajectories. The authors of this work propose a
physical interpretation of Caputo’s fractional derivative based
on the assumption that a single trajectory generated by the
ordinary fractional calculus moves according to operational
time, and that at a given time t there exists a distribution of
operational times, over which to evaluate an average over the
single trajectory, converted in this way into a Gibbs set of
trajectories. The essential issue that this interpretation arises
is that fractional calculus generates decorrelation rather than
friction, as is usually assumed. Moreover, what should be the
physical interpretation of the use of fractional calculus acting
on trajectories that have an (apparently) infinite memory, as
was assumed to arrive at Eqs. (34) and (33) is still lacking.
It should be emphasized though, that the lower and upper
limits in Eqs. (20) and (21) were extended to −∞ and
+∞, respectively, due to the assumption that the system
was prepared in the remote past in the given NESS and
assuming that it did not age and was preserved in this state
till the observation time interval. This assumption justifies the
existence of the Fourier transform (29); however, the same
result could have been reached by using Laplace transforms
with a finite memory and with vanishing initial conditions.

It should be mentioned that in the literature there have been
proposed other approaches involving fractional derivatives
for anomalous diffusion in systems of particles and clusters,
possessing a viscoelastic response describable by a power-law
memory function in the evolution equation for the probability
density [59]. This equation is constructed by using a thermoki-
netic approach in which the usual integer valued derivatives in
this equation are not replaced by fractional derivatives. Instead,
the assumed memory function leads to a scaling behavior
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describable by a fractional (Riemann-Liouville) derivative,
giving rise to a fractional diffusion equation for the probability
density. Whether this approach and the one used in the present
work may lead to similar results is an interesting question that
might be explored, perhaps, by calculating the structure factor
of the particles from the probability distribution function
obtained in Ref. [59] and by comparing the result with our
results. Also, an equivalent fractional Fokker-Planck equation
to our generalized Langevin equations could be constructed
and compared with the above mentioned kinetic equation.

Finally, from the time evolution equations for the
fluctuations, we calculated analytically the concentration
correlation function and the light-scattering dynamic structure
factor for the suspension, with and without the presence
of fractional fluctuations. We found that the fractional
fluctuations in the interval 0 < α < 1 enhance the value of the
structure factor of the suspension. The relative change in the
values of the structure factor when fractional effects are present
may be significantly larger, up to two orders of magnitude,
than its value with conventional thermal fluctuations only. In
contrast, we found that fractional fluctuations corresponding
to the interval 1 < α < 2 contribute much less to the structure
factor. However, we are not aware of any experimental results
to compare with the predictions of our model; therefore it is
not possible to conclude from our analysis if this (significant)
enhancement is measurable. This is an open question that
remains to be assessed.
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APPENDIX

The assumed validity of the FFDT, given by Eqs. (24)
and (25) or (37) and (38), when fractional time derivatives
are used is a strong assumption which requires justification.
To exhibit its plausibility, in this appendix we follow, adapt,
and extend the method developed in Refs. [48,49] to sketch
the validity of the FFDT.

To be specific and to simplify the notation used in the main
text, let A(t) denote one component of the fluctuations of
the velocity −→v (−→r ,t) whose time evolution is given by (20).
Taking the space-Fourier transform of the resulting equation
yields

C
0 Dα

t A(t) =
∫ t

0
dt ′�(t − t ′)A(k,t ′) + F (k,t), (A1)

where we have defined

�(t − t ′) ≡ −k2ρ−1
0 G(t − t ′), (A2)

F (k,t) ≡ [−i
−→
k · ←̂→

�
R

(
−→
k ,t)]component. (A3)

Since we have assumed a quiescent solvent with −→v s(
−→
r ) =

0, if we take the Laplace transform of (A1) with A(t = 0) = 0,

we arrive at

Af (z) = F (z)

zα + �(z)
≡ R(z)F (z), (A4)

where z ≡ iω is the Laplace transform variable. The upper
index f has been introduced to emphasize that it is a fractional
variable (fluctuation). From this definition of R(z) it follows
that

d

dt
R(t) = −

∫ t

0
�(t − t ′)R(t ′) dt ′. (A5)

On the other hand, when only conventional time derivatives
are considered for NESS, it is accepted in the literature that
the noise correlation CF (t − t ′) obeys the FDT of generalized
hydrodynamics, which has the same structure as that in
equilibrium, but with the local values of the corresponding
Onsager coefficients. For the random stresses this is expressed
by (24)

[CF (t − t ′)]ij lm ≡ 〈
�R

ij (−→r ,t)�R
lm(

−→
r ′ ,t ′)

〉
= 2kT G(|t − t ′|)δ(−→r − −→

r ′ )�ijlm

≡ 〈A2〉NESS�(|t − t ′|), (A6)

with

〈A2〉NESS ≡ �ijlm ≡ 2kT δ(−→r − −→
r ′ )�ijlm. (A7)

Since for our argument only the time dependence of CF is
relevant, we have further simplified the notation by omitting
the tensorial character, thus

CF (t − t ′) = ��(|t − t ′|). (A8)

Now, from (A4) it follows that

Af (t) =
∫ t

0
R(t − t ′)F (t ′) dt ′, (A9)

and therefore

〈Af 2(t)〉 = 2
∫ t

0
R(t ′)

∫ t ′

0
CF (t ′ − t ′′)R(t ′′) dt ′′ dt ′. (A10)

It should be stressed that the fractional character of this
expression is contained only in R(t) and not in CF (t ′ − t ′′).
Furthermore, since it is well known that around equilibrium
states the form of the FDT is the same as in (A6) but with
G(|t − t ′|) replaced by the zeroth frequency dependent shear
stress modulus G0, the explicit form of CF (t − t ′) will not
affect R(t) and, as a first approximation, CF (t − t ′) may be
expressed in terms of the the zero-frequency shear modulus
G0. This is equivalent to making a Taylor series expansion of
CF (t − t ′) around a reference time t0 and keeping only the first
term of the expansion. In this case (A10) may be rewritten as

〈Af 2(t)〉 = 2�

∫ t

0
R(t ′)

[∫ t ′

0
�(t ′ − t ′′)R(t ′′) dt ′′

]
dt ′

= −2�

∫ t

0
R(t ′)

d

dt ′
R(t ′) dt ′

= 〈A2〉NESS[1 − R2(t)]. (A11)

To arrive at this expression we have used that

R(t) ≡ 〈Af (t)Af (0)〉
〈Af 2(0)〉 ≡ CA(t)

CA(0)
, (A12)
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which follows from (A4), and the property

lim
t→∞ R(t) = 0, (A13)

which is a consequence of the Tauberian theorem

lim
t→∞ CA(t) = lim

z→0
zCA(z) = 0. (A14)

The result (A11) implies that in the limit of long times

lim
t→∞〈Af 2(t)〉 = 〈A2〉NESS, (A15)

which expresses that in this limit a fractional system may be
driven to a NESS, a result which is the essential content of the
fractional fluctuation-dissipation theorem.
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Computational Studies, Nanotechnology, and Solution Thermo-
dynamics of Polymer Systems, edited by M. D. Dandum et al.
(Kluwer Academic, New York, 2000), p. 37.

[31] H. R. Brand and H. Pleiner, Phys. Rev. A 35, 3122 (1987).
[32] H. Pleiner and H. R. Brand, J. Phys. Lett. 44, L-23 (1983).
[33] R. F. Rodrı́guez and J. F. Camacho, Rev. Mex. Fı́s. S48, 144

(2002).
[34] R. F. Rodrı́guez and J. F. Camacho, in Recent Developments in

Mathematical and Experimental Physics, edited by A. Macias,
E. Dı́az, and F. Uribe, Statistical Physics and Beyond, Vol. B
(Kluwer, New York, 2002), p. 209.

[35] J. M. Deutch and I. Oppenheim, J. Chem. Phys. 54, 3547
(1971).

[36] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional
Integrals and Derivatives (Gordon and Beach, Amsterdam,
1993).

[37] A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and
Applications of Fractional Differential Equations (Elsevier,
Amsterdam, 2006).

[38] L. Podlubny, Fractional Differential Equations (Academic
Press, New York, 1999).

[39] R. L. Bagley and P. J. Torvik, J. Rheol. 27, 201 (1983).
[40] W. Wyss, J. Math. Phys. 27, 2782 (1986).
[41] C. Friedrich, Rheol. Acta 30, 151 (1991).
[42] T. F. Nonnenmacher, in Rheological Modeling. Thermodynami-

cal and Statistical Approaches, edited by J. Casas-Vázquez and
D. Jou (Springer, Berlin, 1991).

[43] W. G. Glöckle and T. F. Nonnenmacher, J. Stat. Phys. 71, 741
(1993).
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