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Opinion dynamics model with weighted influence: Exit probability and dynamics
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We introduce a stochastic model of binary opinion dynamics in which the opinions are determined by the size
of the neighboring domains. The exit probability here shows a step function behavior, indicating the existence
of a separatrix distinguishing two different regions of basin of attraction. This behavior, in one dimension, is
in contrast to other well known opinion dynamics models where no such behavior has been observed so far.
The coarsening study of the model also yields novel exponent values. A lower value of persistence exponent
is obtained in the present model, which involves stochastic dynamics, when compared to that in a similar type
of model with deterministic dynamics. This apparently counterintuitive result is justified using further analysis.
Based on these results, it is concluded that the proposed model belongs to a unique dynamical class.
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I. INTRODUCTION

Nonequilibrium dynamics has been a topic of intensive
research over the past few decades. The fact that models
displaying identical equilibrium behavior can be differen-
tiated on the basis of critical relaxation, coarsening, and
persistence behavior has enhanced the interest in this field.
Traditionally, critical and off-critical dynamical behavior were
studied for magnetic systems with different dynamical rules
and constraints [1,2]. More recently, physicists have been
able to construct dynamical models in problems that are
interdisciplinary in nature, where one can investigate how such
models can be classified into different dynamical classes.

One very popular interdisciplinary topic is opinion dynam-
ics, where a number of models [3–6] have been proposed and
studied by physicists, many of which can also be regarded
as spin models. The dynamical rules in all the well-studied
opinion dynamics models with binary opinions (±1) in one
dimension lead to the consensus state. The question as to
whether the intrinsic dynamics for ordering are equivalent
has been asked in context of the generalized q state voter
model [4], generalized Glauber models [5], and Sznajd models
[6,7]. One of the quantities that is computed to resolve this
important question is the exit probability (EP), which denotes
the probability fup(x) that one ends up in a configuration
with all opinions equal to 1 starting from x fraction of
opinions equal to 1. EP has been shown to be identical [5]
in the generalized Glauber model and the Sznajd model; the
latter was originally claimed to have a different dynamical
scenario. In the voter model (or Ising Glauber model) in one
dimension, fup(x) is simply equal to x, corresponding to the
conservation in the dynamics [8]. In the nonlinear voter model,
long-ranged Sznajd model, and long-ranged Glauber model,
it is a nonlinear continuous function of x [5,7,9]. In all these
cases, the results are also independent of finite-system sizes,
indicating there is no scaling behavior. However, the claim
that the exit probability for the Sznajd model is a continuous
function has been questioned in Ref. [10]. But analytical
and numerical study of q-state nonlinear voter model (Sznajd
model corresponds to nonlinear voter model with q = 2) show
that EP is a continuous function of x [11]. Interestingly, the
mean-field result was shown to be exact in the nonlinear q voter

model, which includes the Sznajd model and independent of
the range [5,11]. On the other hand, in two dimensions or on
networks, the exit probability shows a step function behavior in
many models, which has been interpreted as a phase transition.
fup(x) also shows finite-size dependence in that case [12,13].
However, strictly speaking, one should interpret this as the
existence of a separatrix between two different regions of
basin of attraction—where the attractors are the states with
all opinions equal to 1 or −1.

In this paper, we have proposed a model, the weighted
influence model (WI model), which shows completely differ-
ent behavior, as the EP has a step function behavior even in
one dimension. The result also shows clear deviation from
mean-field theory, although the latter provides a reasonable
first-order estimate. The model includes one parameter, which
allows one to obtain a relevant “phase diagram” and also show
the presence of universal behavior.

Apart from studying the exit probability, we also investigate
the dynamical behavior of the WI model by studying the
density of domain walls D(t) and persistence probability P(t)
as functions of time t starting from an initial disordered state.
The latter is the probability that a spin has not flipped till time
t [14]. It is known that in conventional coarsening processes,
D(t) ∝ t−1/z and P(t) shows a scaling behavior P(t) ∝ t−θ in
many systems [2] where z and θ are the dynamic (growth) and
persistence exponents, respectively. By calculating z and θ , the
dynamical class of the model can be identified and compared
to models for which these exponents are known, for example,
for the zero temperature Ising model in one dimension, z = 2
and θ = 0.375 are exactly known results.

The rest of the paper is arranged as follows: Sec. II describes
the model. Section III discusses the mean-field theory in the
context of the present work. Numerical results obtained from
extensive simulations are presented in Sec. IV. Dynamical
properties of the model are given in Sec. V, and finally, in
Sec. VI, concluding remarks are made.

II. DESCRIPTION OF THE MODEL

The WI model is a stochastic model with opinions taking
values ±1, and there is a bias toward one type of opinion
controlled by a relative weight factor. It cannot be true that an
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initial majority always wins (in that case the same candidate
and/or party will go on winning elections every time) [15] and
a huge majority of people may give up to an initial minority
view [16,17]. The relative weight factor included in the model
takes care of this idea. This weight factor represents the relative
strength that may arise due to monetary factors; local factors;
muscle power; larger accountability; traditional, religious, or
cultural influence; recent incidents, which has a great impact
on the population, etc. The model is described in the following
way. Let there be two groups of people with opposing opinion
in the immediate spatial neighborhood of an individual. Under
the influence of these two groups, she or he will be under
pressure to follow one group. The pressure is proportional to
the size of the group. Denoting the two neighboring opposing
group sizes as S1 and S−1 for opinion = ±1, respectively, an
individual takes up opinion 1 with probability

P1 = S1

S1 + δS−1
, (1)

where δ is the relative influencing ability of the two groups
and can vary from zero to ∞. Probability to take opinion
value −1 is P−1 = 1 − P1. The model is considered in one
dimension. In case an individual with opinion 1 (−1) has
both nearest neighbors with opinion −1 (+1), her opinion will
change deterministically. The unweighted model corresponds
to δ = 1 [18].

In this model, the dynamics is completely stochastic. A
quasideterministic model in which the neighboring domain
sizes determine the state of a spin had been proposed earlier
(BS model) [19]. The BS model takes into consideration the
sizes of neighboring domains in the dynamics and the larger
neighboring domain always dictates the opinion, irrespective
of its size. Only in the case when the neighboring domains
are of equal size (which occurs rarely) is the dynamical rule
stochastic. In the BS model, z � 1 and θ � 0.235 (both the
exponents are different from the Ising model). We find some
interesting effects of the nature of the stochasticity in the WI
model, especially regarding the persistence behavior, which
is revealed when compared to the BS model and Ising model
dynamical results.

Regarding the binary opinion values as Ising spin states
(up and down), the absorbing states are the all-up and all-
down states in the WI model. Probability of attaining these
consensus states, however, depends on the value of δ instead
of being simply 1/2 (as in the Ising or voter model), even
when one starts from a completely random initial configuration
(x = 1/2). In the limit δ = 0, all spins will be up as P1 = 1 for
any initial value of x, while for δ → ∞, the final state will be
all down for any value of x �= 1. Thus, the threshold values xc

for which the final state will be all up is zero for δ = 0 and 1
for δ → ∞. The exit probability is trivially a step function in
these extreme limits. The question is what happens for other
values of δ, including δ = 1.

III. MEAN-FIELD THEORY

The dynamics can be studied in terms of the motion of
domain walls as only the spins adjacent to domain walls can
flip. In a Glauber-like process, one considers the flipping of
a random spin in time �t with the time unit being such that

�tL = 1, where L is the total number of spins. Initially, there
will be many domains of size one, but they will quickly vanish
as it is a deterministic process. Assuming no domain of size one
remains in the system and using a mean-field approximation,
one can write down a microscopic equation for the (average)
fraction of up spins at time t + �t given that there was a
fraction x at t . It may be noted that in this approximation,
the fluctuations in the flipping probabilities P1 and P−1 can
be ignored and they can be taken to be site-independent. The
equation for x(t + �t) is then given by

x(t + �t) = r(t){[x(t) − 1/L]P−1 + x(t)P1}
+ r(t){[x(t) + 1/L]P1 + x(t)P−1}
+ [1 − 2r(t)]x(t). (2)

Here r(t) is the density of domain walls, r(t) � 1/2 when
domains have length at least 2. P1,P−1 are also in general
time dependent. The first two terms on the right-hand side
correspond to cases where the up and down spin at the
boundary are chosen for flipping, respectively, while the last
term is for the case when a spin within a domain is selected (x
remains same in the last case obviously). Thus, one gets

dx

dt
= r(t)[P1 − P−1]. (3)

This equation cannot be solved without knowing the dynamical
equation for r(t), which is again expected to involve x(t) in a
complicated manner. However, the fixed points of the equation,
in which we are actually interested, are easily obtained; a
trivial fixed point r(t) = 0 and the other one is [P1 − P−1] =
0. For the Ising or voter model, P1 is equal to P−1, which
corresponds to the result that dx/dt = 0 independent of x.
This leads to the known result that the exit probability is simply
equal to x. All points are fixed points here. In case one gets a
single fixed point xc from Eq. (3), it will indicate the existence
of the step function like behavior associated with the exit
probability. The mean-field approximation, of course, neglects
all correlations and fluctuations. In the WI model, P−1 and P1

in mean-field approximation can be estimated by taking S1 and
S−1 proportional to x and (1 − x), respectively (at the fixed
point), in Eq. (1). There is no reason to take the constant of
proportionality to be different (i.e., there is no bias to either
type of domain) such that P1 = x/[x + δ(1 − x)], and we get

xc = δ/(1 + δ). (4)

Although the mean-field result involves many assumptions,
it is tempting to accept this result as it coincides with the
limiting results that xc = 0 for δ = 0, xc = 1.0 for δ → ∞.
The mean-field result also predicts xc = 1/2 for δ = 1. δ = 1
corresponds to the model with unweighted influence, and here
if one starts with x = 1/2, the system will go to +1 state with
50% probability (by the argument of symmetry). If there is any
initial bias (x �= 1/2) in the system, then it will win at the end.
EP will be zero for x < 1/2 and equal to 1 for x > 1/2. Hence,
one expects that at δ = 1, xc = 1/2, as given by Eq. (4).

Having obtained the evidence of a single value of xc

from mean-field approximation, our next job is to find out
numerically whether there exists a separatrix and whether
finite-size effects exist. Also, the deviation from mean-field
theory, if any, will be investigated in the following section.
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IV. EXIT PROBABILITY: NUMERICAL RESULTS

We calculate the exit probability fup for system sizes rang-
ing from L = 5000 to L = 50000 and repeat the simulations
for over at least 3000 configurations for each system size. fup

against initial concentration x is shown in Fig. 1 for two values
of δ. It indeed shows a sharp rise close to a value of x � xc,
henceforth called the separatrix point. The shape of the exit
probability fup plotted against x immediately shows that it is
nonlinear; moreover, fup(x) curves show strong system-size
dependence and intersect at a single point xc for different
values of L. The behavior of EP indicates that it shows a
step function behavior in the thermodynamic limit. Finite-size
scaling analysis can be made using the scaling form (when δ

is constant):

fup(x,L) = f1

[
(x − xc)

xc

L1/ν

]
, (5)

where f1(y) → 0 for y � 0 and equal to 1 for y � 0 (i.e., a
step function in the thermodynamic limit). f c

up gives the value
of EP at the separatrix point. The data collapse, shown in
Fig. 1, takes place with ν = 2.50 ± 0.02 for all values of δ.
For fixed x, the finite-size scaling form for exit probability can
be written as

fup(δ,L) = f2

[
(δ − δc)

δc

L1/ν

]
, (6)

where f2(y) → 0 for y � 0, equal to 1 for y << 0. Both
the scaling forms [Eqs. (5) and (6)] give ν = 2.50 ± 0.02
independent of the exact location of the separatrix point. xc as
a function of δ denotes the trajectory of the separatrix point as
δ is varied and for convenience we call it the “phase boundary.”
So one can conclude that universal behavior exists along the
entire phase boundary.

Estimating xc for different values of δ, we plot the phase
boundary in Fig. 2.

The phase boundary is not exactly given by the mean-field
estimate Eq. (4) but shows systematic deviation from this
equation (except at δ = 0,1.0 and δ → ∞) as shown in
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FIG. 1. (Color online) The data for the exit probability against
initial concentration x (left panel) and the data collapse (right panel)
using ν = 2.50 ± 0.02 [Eq. (5)] for different system sizes are shown.

T

FIG. 2. (Color online) Main plot: The phase boundary in the x-δ
plane obtained from simulation and its theoretical fitting [Eq. (7)]
separating the all-up and all-down phases. Inset shows variation of
f c

up with δ.

Fig. 3. There is a systematic difference from the mean-field
results away from δ = 1 that vanishes at δ = 0 and also as
δ → ∞. However, the difference is mostly less than 10% for
other values of δ and therefore the mean-field result can be
taken as a first-order estimate. In principle, one may consider
an expression of xc given by a polynomial in δ/(1 + δ) as
obviously it deviates from a simple linear form. However,
introducing only a second-order term is not sufficient, and we
therefore attempt to fit the numerically obtained values of xc

accurately by a single correction term, the form of which is
conjectured by the known values of xc at δ = 0,1 and δ → ∞.
We assume the following form for xc:

xc = δ/(δ + 1) + aδ(δ − 1)/(δ + b)c. (7)

Here, δ(δ − 1) in the correction term [second term on right-
hand side of Eq. (7)] takes care that the term vanishes for
δ = 0,1. If one compares the numerical data with the mean
field result (Fig. 3), the former gives larger values of xc for
δ > 1 (and lower values of xc for δ < 1). So (δ − 1) will
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FIG. 3. (Color online) The values of xc obtained by simulations
and the mean-field theory result (dashed line), Eq. (4), are compared.
There is appreciable difference away from δ = 1; the difference
vanishes as δ → 0 and δ → ∞.
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be there in the correction term instead of (1 − δ). One also
needs a factor proportional to a power of δ in the denominator
of the correction term, which should be nonzero for δ = 0
and make the term vanish in the limit δ → ∞. Such a term
is chosen as (δ + b)c, where c should be greater than 2 and
b �= 0. We indeed find that Eq. (7) fits the curve quite nicely
with a = 0.18 ± 0.02, b = 0.67 ± 0.04, and c = 2.59 ± 0.06.

We also investigate the behavior of f c
up ≡ fup(xc) as a

function of δ; although a monotonic increase is found, no
obvious functional form appears to fit the data.

V. DYNAMICAL PROPERTIES

Next we consider the dynamical behavior by studying the
density of domain walls D(t) and persistence probability P(t)
as functions of time t . In this context, comparison with the
zero-temperature dynamics in the Ising model and the BS
model [19] will be interesting.

Coarsening study for x = 0.5: We start with a completely
disordered state where δ = 1 is the estimated separatrix point.
The scaling behavior of D(t) is compatible with a value of
z = 1 at δ = 1. As δ deviates from 1, the coarsening process
becomes very fast: obviously, in the extreme limit δ = 0 or ∞,
the system goes to the all-up or all-down configuration almost
instantaneously. In fact, for any value of δ �= 1, the power law
behavior for D(t) is no longer valid. This is not surprising,
it is known that power law scalings are valid only on the
transition point (e.g., in the Ising model, the order parameter
shows exponential decay to its equilibrium value away from
the critical temperature).

The growth exponent z in coarsening phenomena in spin
systems can be found out by studying several quantities apart
from the domain density D(t), which varies as t−1/z. These
include the variations of the absolute magnetization with time,
total time to reach equilibrium as a function of system size,
and the fraction of spin flips again as a function of time t . The
last quantity, Pf (t), is expected to follow the same behavior
as D(t) since spins at the domain boundary can flip only [it
will be less than D(t) in magnitude though]. This is true for
all models. For x = 1/2 and δ = 1, in the WI model Pf (t)
thus varies with time as ∼ t−1/z with z � 1. We have shown
in Fig. 4 the scaling behavior of the flipping probability as this
quantity is useful in understanding the persistence behavior.

The following dynamical scaling form for the persistence
probability is used [20,21] to obtain both z and θ :

P(t,L) ∝ t−θf (L/t1/z). (8)

The persistence probability saturates at a value ∝Lα at large
times in finite systems where α is related to the spatial
correlation of the persistent spins at t → ∞. So the scaling
function f (y) ∼ y−α with α = zθ for y << 1 and f (y) →
constant at large y. We have estimated the exponents θ

and z from the above scaling relation for δ = 1, giving
θ = 0.20 ± 0.002 and z = 1.0 ± 0.002. The raw data as well
as the scaled data are shown in Fig. 5. These exponents are
universal in the sense that if one starts at any point on the
phase boundary [i.e., with the initial fraction of up spins equal
to xc(δ)], one gets the same values.

In the WI model, z � 1 as in the BS model but the
persistence exponent is different (by more than ten percent

FIG. 4. (Color online) Decay of average flipping probability
Pf (t) with time for both the WI model (with δ = 1) and the BS model
with initial fraction of up spins x = 1/2. The results are shown for
system sizes L = 10 000 and 50 000. Finite-size effects appear only
at very large times where an exponential cutoff appears due to the
finite size. Slope of the dashed line is −1. Inset shows the decay of
Pf (t) with time for the nearest-neighbor Ising model. Slope of the
dashed line is −0.5.

numerically). In fact, θ ∼ 0.20 obtained here is less than the
BS model value (∼0.235), which is a bit counterintuitive as the
WI model is completely stochastic while the BS model is not.
In the BS model, there is a ballistic motion of the surviving
domain walls, which in the course of their motion will flip
all the spins that appear on one of their boundaries. With high
probability, these spins will flip once only so that if any flipping
occurs it is more likely to affect the persistence probability. In
the WI model, there will be motion of the domain walls in
both directions (though less in comparison to the Ising model
where pure random walk is executed before the domain walls
are annihilated), such that the same spin may flip more than
once with higher probability and obviously persistence will
not be affected when a spin flips more than once. To check
this, we have computed the distribution g(n) of the number (n)
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FIG. 5. (Color online) The collapse of the scaled persistence
probability against scaled time using θ = 0.20 ± 0.002 and z =
1.0 ± 0.002 for different system sizes. Initial fraction of up-spin
x = 1/2. Inset shows the unscaled data.
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plotted against n for both the BS model and the WI model (with
δ = 1). Inset shows the same for the nearest-neighbor Ising model.

of times a spin flips in both the models. The results, shown in
Fig. 6, exhibit indeed that in the BS model, g(1) is much higher
compared to the WI model while probability that a spin flips
a large number of times (n > 4) is much less. [Roughly, for
n > 3, log g(n)∝−n for the BS model and ∝ −√

n for the WI
model with δ = 1.] We have already seen that the probability
of flipping Pf (t) shows the same scaling behavior in the two
models and this shows why the persistence decays in a slower
manner in the present model.

In comparison, in the Ising model, the persistence prob-
ability decays fastest although the domain walls perform
pure random walk. Here, Pf (t) ∝ t−1/2 implies that domains
survive much longer and as a result a larger number of spins
are flipping at every step. So although g(n) has a much slower
decay, the persistence probability decays much faster showing
that the effect of the slower decay in the number of domain
walls is more important than the unbiased random walk motion
of each.

Stochasticity in the BS model has been introduced in several
ways earlier by incorporating a parameter in the model [22,23].
In fact, in Ref. [22], the domain sizes had been considered
in the dynamics in a different manner. However, even such
stochasticity in the BS model could not lead to any new
dynamical behavior (z and θ were found to be equal to ∼1
and ∼0.235, respectively). On the other hand, the stochastic
model considered here shows a different result for θ even for
the unweighted model (δ = 1).

VI. CONCLUDING REMARKS

We have presented a stochastic binary opinion dynamics
model with one parameter where the exit probability has a step-
function-like behavior even in one dimension, in contrast to
other familiar models. One obtains a separatrix which is similar
to that appearing in magnetic systems at zero field, separating
regions of positive and negative magnetization, although in
the latter one considers strictly the equilibrium behavior. The
results show finite-size scaling where the scaling argument is
|x − xc|L1/ν , indicating that the width of the region where fup

is not equal to unity or zero decreases as L−1/ν .
The unique behavior of the exit probability may be present

due to the effective long-range interactions in the WI model.
However, it has been shown previously for the generalized
voter and Sznajd models that the exit probability does not
change its nature even if one makes the range of interaction
infinite [5,11]. This indicates that the dynamical rule of WI
model, which handles the range of interaction in a subtly
different manner, could be responsible for the behavior of
the exit probability. A thorough study of similar models with
domain-size-dependent dynamics is in progress to check this
[24]. One may also attempt to check the dependence of ν

when the problem is considered in higher dimensions. It is
also observed that there is a deviation from the mean field
result unlike other models in one dimension. This deviation
is attributed to the fact that the fluctuations that have been
ignored (e.g., by taking P1,P−1 independent of location and
replacing all domain sizes by an average value) are indeed
relevant. However, the deviation from mean-field estimates is
still small enough that the mean-field result can be considered
as a first-order calculation.

The other important and interesting result is that the
persistence exponent of WI model is not only different but
lowest among the well-known models, including those where
domain-size-dependent dynamics have been used. Thus, the
WI model is claimed to belong to a unique dynamical class in
opinion dynamics models.
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