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Dynamics of multiphase systems with complex microstructure. II. Particle-stabilized interfaces
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In this paper we use the GENERIC (general equation for nonequilibrium reversible-irreversible coupling)
nonequilibrium thermodynamics framework to derive constitutive equations for the surface extra stress tensor
of an interface stabilized by a two-dimensional suspension of anisotropic colloidal particles. The dependence of
the surface stress tensor on the microstructure of the interface is incorporated through a dependence on a single
tensorial structural variable, characterizing the average orientation of the particles. The constitutive equation for
the stress tensor is combined with a time-evolution equation describing the changes in the orientation tensor as
a result of the applied deformation field. We examine the predictions of the model in in-plane steady shear flow,
in-plane oscillatory shear flow, and oscillatory dilatational flow. The model is able to predict the experimentally
observed shear thinning behavior in surface shear flow, and also the experimentally observed emergence of even
harmonics in the frequency spectrum of the surface stress in oscillatory dilatational flow. Our results show that
the highly nonlinear stress-deformation behavior of interfaces with a complex microstructure can be modeled
well using simple structural models like the one presented here.
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I. INTRODUCTION

In a previous paper we presented a general model for the
dynamic behavior of multiphase systems with microstructured
bulk phases and interfaces, using the GENERIC (general
equation for nonequilibrium reversible-irreversible coupling)
nonequilibrium thermodynamics framework. Examples of
such complex multiphase systems are immiscible polymer
blends with compatibilizers adsorbed at the interface, and
polymer or particle stabilized emulsions with thickening
agents dispersed in the continuous phase. In this paper
we present an application of this general model to a spe-
cific example: a system with interfaces stabilized by a
two-dimensional (2D) suspension of anisotropic colloidal
particles.

When nano- or micron-sized particles are used for the
stabilization of emulsions and foam, we generally refer to
these systems as Pickering emulsions [1] or Pickering foam [2].
Compared to emulsions or foam stabilized by low molecular
weight surfactants, particle stabilized systems have a much
higher stability against coalescence [3]. The increase in
stability is thought to be the result of an increase in the
rheological properties of the interfaces (the surface shear and
dilatational modulus) [3]. Surface rheological experiments on
interfaces stabilized by spherical colloidal particles [4–9],
and anisotropic particles [10], confirm the increase in surface
rheological properties, compared to interfaces stabilized with
low molecular weight surfactants.

At equal surface coverage, interfaces with adsorbed
anisotropic colloidal particles tend to have higher values
for their surface rheological properties than interfaces with
spherical ones [11,12], and for interfaces with anisotropic
particles these properties also tend to have a more complex
dependence on surface loading than those of interfaces with
spherical particles [12]. This more complex dependence of
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the rheological response on surface concentration is the result
of an increase in complexity of the microstructure of the
interface, and the response of that microstructure to applied
deformations.

With the analysis presented in this paper we show that
the complex rheological behavior of this type of system
can be modeled well using structural models that link the
response of a system to an applied deformation directly to the
time evolution of its microstructure. Microstructural modeling
has been applied extensively to single phase materials with
microstructured bulk phases, such as polymer melts, polymer
solutions, colloidal suspensions, or nematic phases [13,14]. In
surface rheology this type of modeling has not yet received
much attention [15].

Most Pickering stabilized systems tend to have relatively
high surface loadings, close to the 2D dense packing limit.
For the sake of simplicity we will focus here on interfaces in
the dilute particle concentration regime. This means that we
cannot compare our predictions quantitatively to experimental
data, since the stresses in dilute particle stabilized interfaces
tend to be in the range 10−9–10−7 Pa m, well below the range
of available surface shear and dilatational rheometers. But
we can still compare our predictions in a qualitative manner.
We will show that the GENERIC model we present here
can predict the shear thinning behavior typically observed
experimentally for particle stabilized interfaces in steady and
oscillatory shear flow. Our model also predicts the emergence
of even harmonics in the frequency spectrum in dilatational
deformations, a phenomenon recently observed in Langmuir
trough experiments on polymer stabilized interfaces [16,17].
We will show that all these phenomena can be linked directly to
changes of the orientation of the anisotropic particles as a result
of the applied deformation field. Combining structural models
like the one we will present here, with advanced experimental
techniques such as FT rheology and optical methods for
structure evaluation (surface rheo-optics), will enable us to
make significant progress in the study of the dynamics of
complex interfaces.
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II. INTERFACES WITH ANISOTROPIC
COLLOIDAL PARTICLES

We will now discuss specific forms of the GENERIC model
presented in the previous paper, for a multiphase system
with interfaces stabilized by a 2D suspension of anisotropic
colloidal particles. We will consider a flat fluid-fluid interface,
between two isotropic bulk fluids, which do not contain
any microstructural elements. The interface is perturbed by
either a steady shear flow, an oscillatory shear flow, or an
oscillatory dilatational flow field. We will assume that the
particle concentration in the interface is in the dilute regime,
and the interactions between the particles are such that the
dilute 2D dispersion formed by the particles is stable against
aggregation. The surface area not covered by the particles
can be either free of surfactant or may have a low molecular
weight surfactant adsorbed to it, which does not immobilize
the interface or impart any elasticity to it. We will assume that
the particles have adsorbed irreversibly, so the total adsorbed
mass of particles is constant in time. This particular system was
recently described in the context of the classical irreversible
thermodynamics formalism [18], and we will compare the
expressions derived in that study quantitatively with results
derived using our GENERIC model.

The first step in describing this particular example is
the selection of the appropriate structural variables. This
system is adequately described with a single scalar surface
variable, which we choose to be the surface particle density
ρs

P , and a single surface tensorial variable, representing the
orientation of the particles. For the tensorial variable we
have several possibilities, all involving the second moment
of the distribution of the particle orientation vector ns , a
unit vector representing the direction of the long axis of
the particles. Since we have assumed that we are in the
dilute particle concentration regime it is reasonable to assume
that the particles on average will be oriented parallel to the
interface. If we assume that fluctuations in the component of
ns perpendicular to the interface around an average value of
zero are negligible, we may use a tangential surface tensor to
describe the microstructure of the interface. One of the possible
choices for the tensorial variable is

Qs = 〈
nsns − 1

2 P
〉
s
, (1)

where 〈· · · 〉s denotes a local average over a portion of the
interface, and P is the surface projection tensor (this tensor
transforms every tangential surface vector field into itself,
and every nontangential surface vector field into its tangential
component [19]). The tensor Qs is a symmetric traceless
tangential surface tensor. At equilibrium the particles are
oriented randomly, and the value of the components of this
tensor are identical to zero. When the interface is perturbed
by a simple shear flow, the particles will start to orient in the
direction of the flow field, and the components will attain
nonzero values. Alternatively, we can choose the tensorial
variable to equal

Cs = 2〈nsns〉s . (2)

This tensor is normalized such that at equilibrium Cs
eq = P,

and trCs = 2. This tensor gives slightly less complicated
expressions for the evolution equations than the tensor in (1),

and therefore we proceed with this particular form. The CIT
model in Ref. [18] used (1) as a tensorial variable. But we can
easily convert results for this tensor to the tensor used here.
For a flat interface in a Cartesian surface coordinate system
(x,y), the components of these tensors are related by

Qs
xx = 1

2Cs
xx − 1

2 , Qs
xy = 1

2Cs
xy. (3)

The next step in modeling this system is to choose an
expression for the configurational surface Helmholtz free
energy in terms of the structural parameters. We will assume
that there is no contribution to the free energy from the
configurational internal energy Ū s

c , so the contributions to F̄ s
c

are purely entropic. For small departures from equilibrium this
free energy is often simply expanded in terms of the structural
variables. But here we want our equations to be valid also far
from equilibrium. We therefore choose [14,20]

F̄ s
c = kBT sρsωs

P

m

(
ln ωs

P − 1

2
[tr(P − Cs) + ln det Cs]

)
, (4)

where kB is the Boltzmann constant, ωs
(P ) is the surface mass

fraction of the particles (equal to ρs
(P )/ρ

s), and m is the mass
of a single colloidal particle. This expression gives us the
following equation for the surface extra stress tensor [using
Eq. (47) from the previous paper]:

σ s
tot = (εd − εs) [∇s · vs]P + 2εsDs + kBT sρsωs

P

m
(Cs − P),

(5)

where εs is the surface shear viscosity of the bare interface, εd

is the surface dilatational viscosity of the bare interface, ∇s

denotes the surface gradient operator, vs is the surface velocity
field, and Ds is the surface rate of deformation tensor [19]. The
first two terms in this expression represent the contributions
to the surface stress induced by the bare interface. For these
contributions we have assumed a linear Boussinesq model
[21–23]. The last term in (5) represents the contributions from
the microstructure to the total surface stress.

We will assume that the flow field does not induce in-plane
spatial gradients in the particle concentration and particle
orientation. Hence the diffusive terms in (56) and (60) in
the previous paper [24] are identical to zero. Since we have
assumed that the structural elements are confined to the
interface, and their concentration in the bulk is zero, we may
also drop the boldface jump terms in these expressions, since
these describe the transfer of particles between the interface
and the adjoining bulk phases. In view of these assumptions,
(56) from the previous paper is satisfied identically, and (60)
reduces to

∂Cs

∂t
− Cs · (∇svs)T − (∇svs) · Cs − 4Hvs · Csξ

+kBρsωs
P

m
Rs

2 : (P − [Cs]−1) = 0, (6)

where H is the curvature of the interface, ξ denotes the unit
vector normal to the interface, and R2 is a fourth order surface
tensor describing relaxation effects for the orientation of the
particles. To complete the model, we need to specify the tensor
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Rs
2. We will assume this tensor is given by

Rs
2 = m

kBρsωs
P

1

τ

(
aαμCs

βν + aανC
s
βμ

+β
[
Cs

αμCs
βν + Cs

ανC
s
βμ

])
aαaβaμaν, (7)

where τ is a characteristic time associated with the relaxation
of the orientation tensor, aαβ denotes the surface metric [19],
and the unit vectors aα (α = 1,2) denote the dual basis for
the tangential vector fields [19]. For rigid anisotropic particles
the relaxation time τ is inversely proportional to the rotational
diffusion coefficient of the particles in the interface. The ro-
tational diffusion coefficient is a function of the characteristic
dimensions of the particles, and particle concentration, so τ

is completely determined by the same parameters. When the
interface is still close to an isotropic state, the linear terms in
(6) are sufficient to describe the relaxation processes. The
coefficient β characterizes the magnitude of the nonlinear
corrections for the linear relaxation behavior, which become
important when the system is highly anisotropic [14]. With
this particular expression for the tensor Rs

2, Eq. (6) reduces to

∂Cs

∂t
− Cs · (∇svs)T − (∇svs) · Cs − 4Hvs · Csξ

+ 1

τ
([1 − β]Cs − P + βCs · Cs) = 0. (8)

We see that this particular choice for Rs
2 results in a two

parameter model for the evolution of the surface orientation
tensor, in which τ is determined by the particle dimensions
and particle concentration, and β is an adjustable parameter.
In the next sections we will examine the predictions of this
model in steady in-plane shear flow, oscillatory in-plane shear,
and oscillatory dilatational flow.

III. STEADY IN-PLANE SHEAR

We will now consider some specific results for this model,
for a flat interface, perturbed by a simple shear flow, with
constant shear rate. We will use a Cartesian coordinate system,
in which (x,y) denote the surface coordinates, and z is the
coordinate in the direction perpendicular to the interface. For
a simple in-plane shear flow, with (∇svs)xy = γ̇ , where γ̇

denotes the shear rate (constant in time), and (∇svs)xx =
(∇svs)yy = 0, the xy component of the surface extra stress
tensor will take the form

σ s
tot,xy = εs γ̇ +

(
kBT sρsωs

P

m

)
Cs

xy (9)

and from this we obtain the following expression for the
effective surface shear viscosity εeff

s = σ s
tot,xy/γ̇ :

εeff
s = εs +

(
kBT sρsωs

P

m

)
Cs

xy

γ̇
. (10)

For the xx and xy components of (8) we obtain

∂Cs
xx

∂t
= 2γ̇ Cs

xy − 1

τ

(
[1 − β]Cs

xx − 1

+β
[(

Cs
xx

)2 + (
Cs

xy

)2])
, (11)

∂Cs
xy

∂t
= γ̇

(
2 − Cs

xx

) − 1

τ
[1 + β]Cs

xy. (12)

t (s)

FIG. 1. Cs
xx (solid lines) and Cs

xy (dashed lines) as a function of
time, for a relaxation time τ equal to 10 s, calculated using (13), and
(14). The label next to the lines represents the applied shear rate γ̇ .

For β = 0 this reduces to a system of linear equations with an
analytical solution of the form

Cs
xx = 1

1 + 2γ̇ 2τ 2
[1 + 4γ̇ 2τ 2 − 2γ̇ 2τ 2 cos(

√
2γ̇ t)e−t/τ

−
√

2γ̇ τ sin(
√

2γ̇ t)e−t/τ ], (13)

Cs
xy = γ̇ τ

1 + 2γ̇ 2τ 2
[1 − cos(

√
2γ̇ t)e−t/τ

+
√

2γ̇ τ sin(
√

2γ̇ t)e−t/τ ]. (14)

In Fig. 1 we plot the time evolution of Cs
xx and Cs

xy as a
function of time, calculated using (13) and (14), for a value
of the relaxation time τ equal to 10 s, and two values for the
applied shear rate γ̇ (0.1 and 0.5 s−1). We see that for τ γ̇ � 1,
both components evolve smoothly to their steady state value,
whereas for τ γ̇ � 1 significant oscillations can be observed
in the evolution of both components. In the latter case we see
that although the steady state value for Cxx is less than 2,
the first oscillations exceed this value significantly, which is
nonphysical. So for β = 0, which corresponds to a linearized
version of (11) and (12), the model clearly gives realistic
predictions only for τ γ̇ � 1. For τ γ̇ � 1 the full version of
(11) and (12) should be used.

The steady state values for (13) and (14), obtained in the
limit t → ∞, equal

Cs
xx = 1 + 4γ̇ 2τ 2

1 + 2γ̇ 2τ 2
, (15)

Cs
xy = γ̇ τ

1 + 2γ̇ 2τ 2
. (16)

From this we find

lim
γ̇→0

Cs
xy

γ̇
= τ (17)

and combining this with (10), we find that the zero surface
shear viscosity of the 2D dispersion of anisotropic particles is
equal to

ε0 = εs +
(

kBT sρsωs
P

m

)
τ. (18)

So our model predicts a zero surface shear viscosity which
depends on concentration and dimensions of the particle
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(     )

(     )

FIG. 2. (a) Cs
xx (solid lines) and Cs

xy (dashed lines) as a function
of shear rate, for a relaxation time τ equal to 5 or 10 s, calculated
using (13), and (14); (b) εeff

s /ε0 as a function of shear rate, for
relaxation times equal to (top to bottom) 0.2, 0.5, 1.0, 5.0, and 10 s
(T s = 290 K, ρs = 1 × 10−6 kg/m2, ωs

P = 0.01, m = 1 × 10−20 kg,
εs = 1 × 10−9 Pa m s−1).

(through τ ). In Fig. 2 we have plotted Cs
xx , Cs

xy , and εeff
s /ε0,

calculated using (10), (13), and (14), as a function of the
applied shear rate γ̇ , for several values of the relaxation time τ

(0.2, 0.5, 1.0, 5.0, and 10 s). We see that the single-parameter
version of our model is able to describe the shear thinning
behavior typically observed for this type of interface [10–12].
In the region of the plots in Fig. 1(b), where the effective
surface shear viscosity is decreasing with an almost linear
slope (on a log-log plot), we have analyzed that decrease
with a power-law dependence, εeff

s /ε0 ∼ γ̇ n. The parameter
n is plotted as a function of τ in Fig. 3. We see that for
large values of τ the exponent n takes on nonphysical values
(<−1.0). In this regime the model overestimates the shear
thinning behavior and we will have to take nonlinear relaxation
contributions into account (β �= 0).

We have solved the full equations (11) and (12) numerically,
using a simple forward Euler scheme, with a time step �t =
5 × 10−5 s, for several values of β (equal to 0, 0.3, 0.5, 1.0,
3.0, 5.0), and a value of τ equal to 10 s. In Fig. 4(a) we have
plotted εeff

s /εs
0 as a function of shear rate, for these values of

β, and we see that for increasing values of this parameter the
degree of shear thinning is reduced. The exponent n for these
curves is plotted in Fig. 4(b) and we see that this exponent
increases from a value of about −1.3 for β equal to 0, to a
value of about −0.8 for β = 5. So the parameter β allows us
to extend the range where the model gives physical predictions
to much higher values for τ γ̇ (of the order of 100).

(s)

FIG. 3. (Color online) The exponent n as a function of relaxation
time τ ; n was determined by fitting the results in Fig. 2(b) with the
relation εeff

s /ε0 ∼ γ̇ n.

An important feature of our model is that the effective
surface shear viscosity remains positive, even for large values
of the shear rate (since in the limit γ̇ → ∞, εeff

s → εs). This
is in contrast to the values obtained for this parameter with the
CIT model developed in Ref. [18]. The latter model severely
overestimates the shear thinning effect, and may produce
nonphysical negative values for the effective surface shear

(     )

FIG. 4. (a) εeff
s /ε0 as a function of shear rate, for a relaxation time

equal to 10 s, and values for β equal to (bottom to top) 0, 0.3, 0.5,
1.0, 3.0, and 5.0. Squares denote the analytical solution for β = 0
(T s = 290 K, ρs = 1 × 10−6 kg/m2, ωs

P = 0.01, m = 1 × 10−20 kg,
εs = 1 × 10−9 Pa m s−1). (b) Exponent n as a function of β, where
n was determined by fitting the results in Fig. 4(a) with the relation
εeff

s /ε0 ∼ γ̇ n.
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(     )

FIG. 5. Cs
xx (top two curves) and Cs

xy (bottom two curves) as a
function of shear rate, for a relaxation time τ equal to 5 s, calculated
using (13) and (14) (solid curves) or the CIT model (dashed curves)
described in Ref. [18].

viscosity, when shear rates exceed 0.1 s−1. In Fig. 5 we have
plotted Cs

xx and Cs
xy as a function of the applied shear rate,

calculated with our single-parameter model (solid curves), and
a linearized version of the CIT model from Ref. [18] (setting
the parameters in this model equal to L̃s

1 = 1, L̃s
2 = 2/3,

L̃s
3 = ν̃3 = 0, and Ds

r = 1/2τ ). We see that up to shear rates
of approximately 0.05 s−1 both models give good agreement
for the time evolution of the orientation tensor. But above a
shear rate of 0.1 s−1 the CIT model deviates significantly, and
gives nonphysical values for both Cs

xx and Cs
xy .

Another interesting feature of our single-parameter model
is that in steady in-plane shear it predicts the existence of
nonzero surface normal stresses. These stresses are not to be
confused with stresses normal to the interface (in this case
the z direction). They are normal to the direction of flow, i.e.,
the are pointing in the y direction. From (5) we find that the
surface normal stress difference equals

σ s
tot,xx − σ s

tot,yy =
(

2kBT sρsωs
P

m

) (
Cs

xx − 1
)

(19)

and this allows us to express the surface normal stress
coefficient s = (σ s

tot,xx − σ s
tot,yy)/γ̇ 2 as

s =
(

2kBT sρsωs
P

m

)
Cs

xx − 1

γ̇ 2
. (20)

From this expression, and (15), we find that the zero shear
normal stress coefficient is given by

0 =
(

4kBT sρsωs
P

m

)
τ 2. (21)

In Fig. 6 we have plotted s/0, calculated using (15) and
(20), as a function of the applied shear rate, for five values of the
relaxation time τ (from top to bottom 0.1, 0.5, 1, 5, and 10 s).
We see that the surface normal stress coefficient decreases
with shear rate as s/0 ∼ γ̇ −2. At the present time the
existence of in-plane normal forces has not yet been confirmed
experimentally. But by analogy with microstructured bulk
phases, we would expect such normal forces to exist. In a
surface shear experiment using a bicone geometry [25,26],
they would be directed towards the axis of the geometry, and

(     )

FIG. 6. Steady state value of s/0, as a function of shear rate,
for relaxation times τ equal to (top to bottom) 0.1, 0.5, 1, 5, and 10 s
(T s = 290 K, ρs = 1 × 10−6 kg/m2, ωs

P = 0.01, m = 1 × 10−20 kg,
εs = 1 × 10−9 Pa m s−1).

could cause “cone climbing,” an effect similar to rod climbing
observed in 3D rheology.

IV. OSCILLATORY IN-PLANE SHEAR

We will now explore the predictions of our GENERIC
model in oscillatory in-plane shear. We will assume that the
applied surface strain is given by γ (t) = γ0 sin(2πωt), where
γ0 is the strain amplitude, and ω is the frequency of oscillation.
The resulting shear rate is given by (∇svs)xy = γ̇ (t) =
2πωγ0 cos(2πωt). The stress response to such a deformation is
given by σ s

tot,xy = σ0 sin(2πωt + δ), where σ0 is the amplitude
of the surface shear stress, and δ is a phase shift [15,19,27]. We
solved (11) and (12) numerically, again using a forward Euler
scheme, and adjusting the time step to a value such that we
obtain 1024 data points per cycle. We simulated for a total of
30 cycles, and to eliminate start-up effects from the analysis,
the first ten strain cycles are omitted from the analysis. We
fixed β to zero, and the frequency was kept fixed at 0.1 Hz.
Simulations were performed for two values of τ , 1.0 and 10 s
respectively, which corresponds to values for ωτ equal to 0.1
and 1.0. The stress response was analyzed using a fast Fourier
transform (FFT) to determine the amplitude σ0, the phase shift
δ, and the intensities of the higher harmonics in the frequency
spectrum of the stress response. The latter were used to study
the nonlinearity of the response (FT rheology [28–30]).

Figure 7(a) shows typical results for the surface shear
stress as a function of time, for strain amplitudes γ0 equal
to 0.1, 0.5, 1.0, and 3.0. For the highest amplitudes we see
a clearly nonlinear response, induced by the changes in the
microstructure of the interface. Figures 7(b) and 7(c) show
Lissajous plots for ωτ equal to 0.1 and 1.0 respectively. The
response is typical for a viscoelastic interface. At low values for
the strain amplitude, the interface displays a viscous behavior
at low values for ωτ , and a more elastic behavior for high
values of ωτ . For ωτ = 1.0 the interface shows a transition
from elastic behavior to viscous behavior as the amplitude is
increased.

This behavior can also be seen in the strain sweeps
presented in Fig. 8. This figure gives the results for the
surface storage modulus G′

s and surface loss modulus G′′
s

as a function of the applied strain, for ωτ equal to 0.1 and
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FIG. 7. (a) Shear stress for an oscillatory in-plane shear deforma-
tion as a function of time (ω = 0.1, τ = 1.0); (b) Lissajous plots for
ωτ = 0.1; (c) Lissajous plots for ωτ = 1.0. Labels indicate the strain
amplitude γ0. Other parameters: T s = 290 K, ρs = 1 × 10−6 kg/m2,
ωs

P = 0.01, m = 1 × 10−20 kg, εs = 1 × 10−9 Pa m s−1.

(
)

FIG. 8. G′
s (solid curves) and G′′

s (dashed curves) vs strain γ for
two values of ωτ , equal to 0.1 and 1 (see labels).

(
)

( )

FIG. 9. (a) FT spectrum of the surface stress response to an
oscillatory deformation with applied frequency ω, equal to 0.1; τ

is equal to 1.0; for the grey curve γ0 = 4.0, and for the black curve
γ0 = 1.0. (b) Normalized intensities In/I1 as a function of strain
amplitude for (from top to bottom) n = 3, 5, 7, 9, 11, 13, and 15.

1.0. These moduli were calculated using G′
s = (σ0/γ0) cos δ

and G′′
s = (σ0/γ0) sin δ. For ωτ = 1.0 we see that in the linear

response regime G′
s > G′′

s , which implies tan δ < 1, and the
interface displays solid elastic behavior. At a strain amplitude
of about 0.2 both the surface storage and loss modulus start
to decrease significantly with increasing amplitudes, and at
a strain slightly above 1.0 a crossover from elastic to more
viscous behavior occurs. At low values for ωτ we see that
G′

s < G′′
s and tan δ > 1 for the entire range of amplitudes.

To study the nonlinear response of the interface more accu-
rately, we determined the intensities of the higher harmonics in
the stress response. Figure 9(a) shows a typical spectrum of the
stress, for ωτ = 0.1, and two values of the strain amplitude (1.0
and 4.0 respectively). The spectrum shows only odd harmonics
(odd multiples of the applied frequency), and this indicates that
the response of the microstructure is identical for clockwise
and counterclockwise motion. In the spectrum of γ0 = 4.0 the
highest harmonic we could detect was I15. In Fig. 9(b) we
have plotted the normalized intensity of the harmonics, In/I1

(n = 3,5,7,9,11,13,15), as a function of the applied strain
amplitude. We see that even at strains as low as 0.01 there is
already a small contribution of the third harmonic to the stress
response, showing that systems such as the one we are studying
here display nonlinear behavior at very low strains. At a strain
as low as about 0.1, the fifth harmonic starts to contribute to
the stress response, and at strains slightly above 1, we can
detect contributions from the 7th through the 15th harmonic.
An analysis like the one presented in Fig. 9(b) illustrates
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the usefulness of FT rheology for studying the rheology of
interfaces with a complex microstructure.

V. OSCILLATORY DILATATIONAL FLOW

We will now examine the predictions of our model for
an interface perturbed by an oscillatory dilatational flow. We
will choose a flow pattern similar to that encountered in a
Langmuir trough, so we assume a strain in the x direction given
by γxx(t) = γ0 sin(2πωt). The components of the velocity
gradient tensor are therefore given by

(∇svs)xx(t) = γ̇xx = 2πωγ0 cos(2πωt) (22)

and (∇svs)xy = (∇svs)yx = (∇svs)yy = 0. For this type of
flow the xx component of the surface extra stress tensor is
given by [using Eq. (9)]

σ s
tot,xx = (εd + εs) γ̇xx +

(
kBT sρsωs

P

m

) (
Cs

xx − 1
)
. (23)

Using (8) we obtain for the xx and xy components of Cs

(setting β = 0)

∂Cs
xx

∂t
= 2γ̇xx(t)Cs

xx − 1

τ

(
Cs

xx − 1
)
, (24)

∂Cs
xy

∂t
= γ̇xx(t)Cs

xy − 1

τ
Cs

xy. (25)

With initial condition Cs(0) = P, the solution of (25) is of
course Cs

xy(t) = 0, and we only have to solve (24) numerically.
This equation was solved with the same scheme we used for
the oscillatory shear calculations discussed in the previous
section. Figure 10 shows Lissajous plots for oscillations with
an applied frequency of 0.1 Hz, and a relaxation time τ equal
to 1.0 s. Strain amplitudes γ0 range 0.1–0.5. Note that these
strains are much smaller than the ones we applied in the shear
simulations. The strain in this type of flow is defined as γxx =
�A/A0, where �A denotes the change in surface area, and
A0 is the initial surface area. In compression at a strain close
to 1.0 we would approach the 2D close packing limit of the
particles (since we have assumed the particles are adsorbed
irreversibly at the interface). At such high strains interfaces
tend to show buckling, and parameters like the bending rigidity

(
)

FIG. 10. Lissajous plot for an oscillatory dilatational deformation
with ω equal to 0.1 Hz, and τ equal to 1 s; labels indicate the strain
amplitude γ0. Other parameters: T s = 290 K, ρs = 1 × 10−6 kg/m2,
ωs

P = 0.01, m = 1 × 10−20 kg, εs = εd = 1 × 10−9 Pa m s−1.

( )

FIG. 11. Cs
xx as a function of time for a frequency ω equal to

0.1 Hz, and τ equal to 1 s; labels indicate the strain amplitude γ0.
Other parameters: T s = 290 K, ρs = 1 × 10−6 kg/m2, ωs

P = 0.01,
m = 1 × 10−20 kg, εs = εd = 1 × 10−9 Pa m s−1.

of the interface become important. This is not only true for
particle stabilized interfaces but also for many other types
of interfaces with a complex microstructure [31–37]. Since
effects like these are not accounted for in our model we have
limited the maximum strain in our simulations to 0.5.

When looking at Fig. 10 not only do we see the onset of
nonlinear behavior at very low strains, but we also see an
asymmetry develop in the stress cycle: the maximum stress in
the extension part of the cycle is significantly higher than the
absolute value of the maximum stress in the compression part
of the cycle.

Of course, since we have assumed that the particles are irre-
versibly adsorbed at the interface, their concentration changes
as we deform the interface: the concentration increases in the
compression part of the cycle, and decreases in the extension
part of the cycle. This however would amplify the stress in
the compression phase, whereas we see in Fig. 10 that the
extension phase is amplified with respect to the compression
part of the cycle.

In Fig. 11 we can clearly see that the asymmetry in the cycle
is caused by a difference in the orientation of the particles in the
extension and compression parts of the cycle. At a strain of 0.5
the maximum in Cxx in the extension part of the cycle is about
1.8, which means the particles are predominantly aligned in the
x direction. In the compression part of the cycle the minimum
value for Cxx is about 0.6, and since Cxx + Cyy = 2, we find
Cyy ≈ 1.4 > Cxx . So, in this part of the cycle the particles
are aligned predominantly in the y direction. When particles
are aligned in the x direction, they are aligned parallel to the
velocity gradient direction, whereas when they are aligned in
the y direction, they are aligned perpendicular to the velocity
gradient direction. When particles are aligned perpendicular to
the velocity gradient direction their contribution to the stress
is much smaller than when they are oriented parallel to the
velocity gradient direction. This example clearly illustrates
the benefits of analyzing the nonlinear behavior of complex
interfaces using structural parameters.

In Fig. 12 we see that the asymmetry in the stress cycle leads
to the emergence of even harmonics in the frequency spectrum
of the surface stress. These even harmonics have been detected
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( )

(
)

FIG. 12. FT spectrum for an oscillatory dilatational deformation
with applied frequency ω equal to 0.1 Hz, and strain amplitude γ0

equal to 0.5.

experimentally in oscillatory dilatational measurements on
polymer stabilized interfaces [16,17]. The explanation for the
occurrence of even harmonics in polymer stabilized interfaces
is similar to what we have observed for anisotropic colloidal
particles: upon compression of the interface polymer segments
are predominantly oriented in the y direction, whereas upon
extension of the interface polymer segments are predominantly
oriented in the x direction.

Figure 13 shows the normalized intensity In/I1 of even
and odd harmonics, as a function of the applied strain
amplitude. We see that at strains as low as 0.001 there is
already a detectable second harmonic in the stress response.
At a strain of 0.01 the third harmonic starts to contribute,
and at strains around 0.1 we have a highly nonlinear re-
sponse with contributions from the 4th through the 16th
harmonic.

In Fig. 14 we have plotted the dilatational storage mod-
ulus E′

d = (σ0/γ0) cos δ, the dilatational loss modulus E′′
d =

(σ0/γ0) sin δ, and the dilatational loss tangent tan δ = E′′
d /E′

d .
In contrast to the surface shear experiments we see a mild
shear thickening behavior as a function of increasing strain
amplitude. The difference between the response in dilatational
flow and surface shear flow, where we saw shear thinning
behavior, can again be explained in terms of differences in
particle orientation, induced by these flow types. In oscillatory

FIG. 13. Normalized intensities In/I1 as a function of applied
strain amplitude, at a frequency ω equal to 0.1 Hz.

(
)

FIG. 14. Oscillatory dilatational strain sweep at a frequency ω

equal to 0.1 Hz, and τ equal to 1 s. Dashed curve: E′′
d ; solid curve:

E′
d ; dash-dotted curve: tan δ.

shear deformations the particles were aligned perpendicular
to the velocity gradient direction, leading to a decrease of the
contribution of the particles to the surface shear stress, and
hence to shear thinning behavior. In dilatational deformations
the particles are oriented by the flow in a direction parallel to
the velocity gradient (at least in the extension part of the cycle,
which clearly dominates the stress response), and this leads to
shear thickening.

VI. CONCLUSIONS

In this paper we have presented a GENERIC model for the
rheological behavior of an interface stabilized by a dilute 2D
dispersion of anisotropic colloidal particles. The dependence
of the surface stress on the microstructure of the interface
was incorporated through a single tensorial structural variable,
describing the average of the orientation of the particles. We
have examined the predictions of this model in steady in-plane
shear, oscillatory in-plane shear, and oscillatory dilatational
flow. In both steady and oscillatory shear flow the model
predicts shear thinning behavior, which has also been observed
experimentally for this type of interface. This behavior is the
result of an increasing orientation of the particles perpendicular
to the velocity gradient direction, for increasing shear rate (or
strain amplitude). FT analysis showed us that this type of
interface starts to display nonlinear behavior at strains as low
as 0.01. In shear the frequency spectrum displays only odd
multiples of the applied frequency.

For dilatational deformations we observed a mild strain
thickening behavior for increasing strain. The FT spectrum of
the stress response displays even as well as odd harmonics.
The even harmonics are the result of an asymmetry in the
stress response between the compression and extension part
of the deformation cycle. Particles tend to orient parallel to
the velocity gradient direction in the extension part of the
cycle, and perpendicular to the velocity gradient direction in
the compression part of the cycle. As a result of this difference
in orientation the stresses in the extension cycle are higher than
the stresses generated in compression.

Our analysis shows the benefits of analyzing the highly
nonlinear rheological response of interfaces with a complex
microstructure using structural models. In bulk rheology this
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type of modeling has been applied successfully to a wide
range of systems, such as polymer melts and solutions,
or liquid crystalline phases [13,14]. Structural models have
found only limited application in the analysis of nonlinear
rheological data for complex interfaces [15]. Rey [38–40]
used structural variables to model the surface rheology of
nematic polymer-viscous fluid interfaces, and Oh et al. [41]

used a structural model to describe the interfacial behavior
in single wall carbon nanotubes. We envision that structural
models like the one we have presented here, combined with
advanced experimental techniques such as FT rheology and
optical methods for structure evaluation (surface rheo-optics),
will allow us to make significant progress in the study of the
dynamics of complex interfaces.
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