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Dynamics of multiphase systems with complex microstructure. I. Development of the governing
equations through nonequilibrium thermodynamics
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In this paper we present a general model for the dynamic behavior of multiphase systems in which the
bulk phases and interfaces have a complex microstructure (for example, immiscible polymer blends with added
compatibilizers, or polymer stabilized emulsions with thickening agents dispersed in the continuous phase).
The model is developed in the context of the GENERIC framework (general equation for the nonequilibrium
reversible irreversible coupling). We incorporate scalar and tensorial structural variables in the set of independent
bulk and surface excess variables, and these structural variables allow us to link the highly nonlinear rheological
response typically observed in complex multiphase systems, directly to the time evolution of the microstructure
of the bulk phases and phase interfaces. We present a general form of the Poisson and dissipative brackets for
the chosen set of bulk and surface excess variables, and show that to satisfy the entropy degeneracy property, we
need to add several contributions to the moving interface normal transfer term, involving the tensorial bulk and
interfacial structural variables. We present the full set of balance equations, constitutive equations, and boundary
conditions for the calculation of the time evolution of the bulk and interfacial variables, and this general set of
equations can be used to develop specific models for a wide range of complex multiphase systems.
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I. INTRODUCTION

Immiscible polymer blends with added compatibilizers,
dispersions of anisotropic particles in the two-phase co-
existence regime, and polymer or particle stabilized oil-
in-water emulsions with thickening agents added to the
aqueous phase are typical examples of multiphase systems
in which both the bulk phases and interfaces have a complex
microstructure. These complex systems tend to have highly
nonlinear responses to deformations, even when departures
from equilibrium are relatively small [1]. Deformations induce
changes in the microstructure of the bulk phases and interfaces,
and as a result, the bulk and surface rheological properties
depend strongly on the degree of deformation. Since these
systems tend to have high surface to volume ratios, the surface
rheological properties have a significant effect on the overall
dynamics, and need to be accounted for when constructing
models for the dynamics of these systems [1]. Currently there
are very few models available describing nonlinear stress
deformation behavior of interfaces [1–8], and those that exist
are generally valid only for small departures from equilibrium
[1,4,6,8].

The GENERIC framework (general equation for the non-
equilibrium reversible irreversible coupling) is an ideal tool
to develop continuum models for the dynamics of complex
multiphase systems. This framework derives all time evolution
equations and boundary conditions of a system from a single
equation [9–11], which contains all reversible and irreversible
contributions to the overall dynamics of a system. An im-
portant advantage of the GENERIC framework compared to
other nonequilibrium thermodynamic frameworks is that it is
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relatively straightforward to construct nonlinear constitutive
equations for the fluxes in a system, which are valid also far
from equilibrium [9–11].

Recently, the GENERIC framework was extended to simple
multiphase systems, with inviscid interfaces, in the context of
bubble growth by exsolution of a volatile component from
a solution [12]. Sagis extended this formalism to systems
with simple viscous interfaces [13], and multiphase systems
with viscoelastic interfaces with a complex microstructure
[14]. In the latter study the effect of the microstructure on
macroscopic dynamics was incorporated by including bulk and
surface excess structural variables in the set of independent
system variables. The microstructure of the bulk phase was
incorporated through a single scalar density �̄ and a single
tensorial density C̄ [14]. The scalar density can be a local
colloidal particle density, a local polymer segment density,
or a local degree of stretching of segments (multiplied by
the segment density). The tensorial density can for example
describe the orientation of anisotropic colloidal particles or
polymer segments. The effect of the microstructure of the
interface on macroscopic dynamics was incorporated through a
surface scalar excess density �̄s and a tangential surface tensor
density C̄s [14]. Examples of the former are the surface excess
density of adsorbed colloidal particles or adsorbed polymer
segments. The latter may represent the (in-plane) orientation
of adsorbed anisotropic particles, or (in-plane) orientation of
adsorbed polymer segments.

In this paper we will present a number of important
improvements of the model presented by Sagis [14], which
significantly extends the type of practical multiphase systems
we can describe with this model. For the sake of simplicity,
the tensorial surface variable in [14] was restricted to the
class of tangential surface tensors [2], i.e., tensors of the
form K = Kαβaαaβ , where aα (α = 1,2), are the tangential
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dual basis vectors for the interface [2]. The first modification
we introduce here is to eliminate this restriction, and allow
these tensors to be general surface tensors (with components
perpendicular to the interface). When anisotropic particles or
polymers are adsorbed at an interface at low concentrations
their orientations tend to remain parallel to the interface, and
the orientation can be described adequately with a tangential
surface tensor field. But at high concentrations the long axis
of colloidal particles may also be oriented perpendicular
to the interface. Similarly, when polymers adsorb at high
concentrations, parts of the chain may form loops and dangling
ends, and segments in those parts have an orientation which
is no longer purely parallel to the interface. Tangential surface
tensors are then no longer sufficient to describe the orientation,
and we must assume that the surface tensorial structural
variables belong to the class of general surface tensors. With
respect to a basis formed by the tangential surface dual basis
vectors, and the unit normal vector ξ , these tensors take the
form

K = Kαβaαaβ + Kαξ aαξ + Kξαξaα + Kξξ ξξ . (1)

Removing the restriction to tangential surface tensor may seem
a rather trivial extension of the model. But we will show that
allowing the surface tensorial variables to belong to the class
of general surface tensors requires us to introduce several ad-
ditional contributions to the GENERIC to satisfy conservation
of momentum and the entropy degeneracy property. These
contributions are all part of a term referred to as the moving
interface normal transfer term, or MINT term, introduced by
Öttinger et al. [12] in their study of inviscid interfaces. For
interfaces with a complex microstructure the MINT bracket
contains several additional terms, and the meaning of these
terms will be discussed.

Another substantial improvement over the model presented
in [14] involves a modification of the dissipative bracket, in
particular the parts describing the transfer of mass, momentum,
energy, and the structural variables, between the bulk phases
and interfaces. In [14] the transfer of the scalar and tensorial
densities is described by two separate terms. In the version
presented here we have introduced a coupling between the
transfer of these two variables. When anisotropic particles
are adsorbing at an interface, this adsorption is likely to be
affected by the orientation of the particles in the immediate
neighborhood of the interface. Before a particle can adsorb it
may have to rotate into a preferred orientation (for example,
completely parallel to the interface in a low density scenario,
or completely perpendicular to the interface, when surface
loadings are high). So the scalar structural variable (in this case
a particle density) is affected by the tensorial variable, and vice
versa. The coupling introduced in our new model allows for
such an interaction between transfer of the structural variables
from bulk to interface.

Apart from these extensions, the new model also fixes two
minor inconsistencies in the model presented in [14]. In the
latter model the surface tensorial variable was chosen to be
a tensorial density. However the contributions to the Poisson
bracket describing the reversible processes associated with this
variable are more appropriate for a tensor, rather than a tensor
density. For tensor densities these contributions may not satisfy
the Jacobi identity [11], which means that the time evolution

equations for the tensor obtained from this formulation may not
satisfy time-structure invariance. To fix this problem the new
model introduces the tensorial variables as true tensors, and not
tensor densities. We have also modified the terms describing
the effect of the microstructure on the hydrostatic pressure.
The form chosen in [14] is appropriate for single phase systems
[11], but for multiphase systems it may also violate the Jacobi
identity. The form introduced in Sec. III of this paper does
satisfy this identity, and guarantees time-structure invariance
of the resulting time evolution equations.

This paper is structured as follows: in Sec. II we discuss
the specific details of our model. We introduce the set of
independent system variables, and present the expressions for
the Hamiltonian and total entropy of our multiphase system. In
Sec. III we present the specific forms of the Poisson bracket and
MINT term, and in Sec. IV we discuss the dissipative bracket
for the given set of system variables. In Sec. V we discuss the
degeneracy requirement for the entropy, and the restrictions
this requirement puts on the microstructural contributions to
the hydrostatic pressure and surface tension. In Sec. VI we
extract the time evolution equations for the set of system
variables from the GENERIC.

II. PROBLEM STATEMENT

The system we aim to describe is a multiphase system in
which both the bulk phases and the interfaces are a mixture of
low molecular weight components (dissolved on a molecular
level), and macro- or supramolecular structures, such as
rodlike or ellipsoidal colloidal particles, or (liquid crystalline)
polymers. We will assume that the set of independent bulk and
surface excess variables describing the dynamics of the system
is given by{

ρ,m,Ū ∗,ρ(1), . . . ,ρ(N−1),�̄,C,ρs,ms ,Ū s∗,

ρs
(1), . . . ,ρ

s
(N−1),�̄

s,Cs
}
. (2)

Here ρ is the density in the bulk phase, m is the bulk momentum
density, equal to ρv, v is the bulk velocity field, Ū ∗ is the
internal energy per unit volume of the bulk phase, and ρ(J ) is
the density of species J (J = 1, . . . ,N − 1) in the bulk. In the
remainder of this paper we will assume that Ū ∗ can be split
in a nonconfigurational contribution Ū , and a configurational
contribution Ūc. The variable ρs represents the surface mass
density (kg/m2), ms = ρsvs is the surface momentum density,
vs is the surface velocity field, Ū s∗ is the internal energy
per unit area of the interface, and ρs

(J ) is the surface density
of species J in the interface. Similar to the splitting of the
bulk internal energy, we will assume that Ū s∗ = Ū s + Ū s

c ,
where Ū s and Ū s

c are, respectively, the nonconfigurational and
configurational contributions to the surface internal energy per
unit area. �̄ is a scalar density describing the microstructure
of the bulk phases (for example, a local segment density, or
a local particle density), and C is a symmetric second order
tensor (for example a segment or particle orientation tensor).
The microstructure of the interfaces is described by a scalar
density �̄s and a symmetric surface tensor Cs . Note that all
system variables are densities, except for C and Cs . In case
the microstructure is more appropriately described by a tensor
density, C̄, we can simply choose C = C̄/ρ. For the sake of
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FIG. 1. (Color online) Density profile in the immediate neighbor-
hood of a phase interface. The dividing surface is initially located at
z = 0 and then displaced over a distance �.

simplicity we have assumed that the microstructure of the
bulk phases and the interfaces can both be described by a
single scalar and a single tensorial structural variable. The
generalization to systems described by multiple scalars or
tensors is straightforward.

Note that in (2) we have chosen the number of surface
variables to be equal to the number of bulk variables. Applying
Gibbs’ phase rule the state of the interface appears to be
overspecified by one variable for our chosen set of interfacial
variables. Moreover there is a certain degree of ambiguity
associated with some of the interfacial variables we have
chosen, in the sense that they are very sensitive to the choice for
the location of the dividing surface (which we have so
far not specified). Surface excess variables, like the surface
mass density ρs , arise naturally in the description of mul-
tiphase materials when interfacial regions are modeled as
two-dimensional dividing surfaces, placed sensibly within
the interfacial region. Bulk properties are extrapolated up to
the dividing surface, and the difference between the actual
continuously changing fields and the extrapolated ones is
accounted for by associating an excess property with the
dividing surface. This is illustrated in Fig. 1 for the density
profile across the interface of a single component system. The
surface excess density ρs for such a system can be expressed
as

ρs =
∫ 0

−d

(ρ − ρI)dz +
∫ d

0
(ρ − ρII)dz. (3)

From its definition we see that this density is very sensitive to
the exact location of the dividing surface. If we displace the
location of the dividing surface by a small distance � (Fig. 1),
we find a new value for the surface density, related to the old
value by

ρs′ = ρs + �(ρI − ρII). (4)

We can even choose a location of the dividing surface for which
ρs vanishes completely. A similar ambiguity is also observed
for the surface momentum density:

ms′ = ms + �(mI − mII). (5)

For static single component systems the location of the
dividing surface is typically fixed by setting ρs = 0, and this
choice reduces the set of interfacial variables by 1, and Gibbs’
phase rule is then satisfied. In this particular gauge ms = 0,
and from (4) and (5) we find that the surface velocity vs can
be expressed as

vs = ms′

ρs′ = ρIvI − ρIIvII

ρI − ρII
, (6)

which is independent of the particular choice for the location
of the interface. In a similar manner we can also construct
unambiguous variables from the other surface excess variables
defined in (2).

For multicomponent systems the choice of the dividing
surface is more subtle. When components are surface active
and preferentially accumulate at the interface, their densities
may no longer be ambiguous (in the sense that they cannot be
made to vanish by an appropriate choice of the location of the
dividing surface). For such systems we choose a gauge for the
location of the dividing surface typically by choosing ρs = ρs

∞
(where ρs

∞ is chosen such that all surface excess densities are
positive), rather than choosing ρs = 0, since the latter choice
introduces negative surface mass densities. Alternatively, we
can choose one of the component densities ρs

(J ) to be equal
to 0. For static systems either choice again reduces the
set of interfacial variables by 1, and Gibbs’ phase rule is
satisfied.

For evolving interfaces we can choose a gauge only for
the reference configuration, either by choosing ρs(tr ) = 0,
ρs(tr ) = ρs

∞, or ρs
(J )(tr ) = 0 at some reference time tr . For

t > tr we must allow for ρs and the component surface
densities to change by in-plane convection and exchange with
the bulk phase, so we must retain the full set of surface excess
variables.

In our discussion of the Poisson and dissipative brackets
in the next sections we will leave the exact location of the
interface unspecified, and we will use the set of surface
variables defined in (2), in spite of the fact that in some systems
part of these variables may be ambiguous. This set produces
simpler versions of the brackets. At the end of the development
we can always transform the evolution equations obtained
for ambiguous variables to equations for their associated
unambiguous variables. So rather than using gauge invariance
as a constraint on the brackets we enforce it a posteriori on the
balance equations and boundary conditions that result from
these brackets.

In the GENERIC framework the dynamic behavior of a
multiphase system is described by a single equation of the
form [12]

dA

dt
= {A,E} + [A,S] + {A,E}mint, (7)

where A is an observable of the system, {A,B} is the Poisson
bracket of the system, [A,B] is the dissipative bracket,
{A,B}mint is the moving interface normal transfer (MINT)
term, E is the Hamiltonian of the system, and S is the
total entropy. The Poisson bracket describes the reversible
contributions to the dynamics of the system. Its specific form
is determined by the set of system variables, and it is restricted
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by the following conditions:

{A,B} = − {B,A} , (8)

{A, {B,C}} + {C, {A,B}} + {B, {C,A}} = 0. (9)

We see that the Poisson bracket is antisymmetric, and must
satisfy the Jacobi identity (9). The dissipative bracket describes
the irreversible contributions to the dynamics of the system,
and must satisfy the conditions

[A,B] = [B,A] , (10)

[A,A] � 0, (11)

which implies that this bracket is a symmetric positive
semidefinite bracket. The MINT term in (7) ensures struc-
tural compatibility of the GENERIC with the chain rule of
functional calculus when moving interfaces are present in the
system.

Both the bulk phases and the interfaces of the system
are assumed to have a complex microstructure, and this
microstructure generates contributions to both the Hamiltonian
and the total entropy of the system. We will assume that the
Hamiltonian and total entropy can be expressed as

E =
∫

R

[
m2

2ρ
+ Ū + Ūc(ρ,�̄s,Cs)

]
dV

+
∫

�

[
(ms)2

2ρs
+ Ū s + Ū s

c (ρs,�̄s,Cs)

]
dA, (12)

S =
∫

R

[S̄(ρ,Ū ,ρ(1), . . . ,ρ(N−1)) + S̄c(ρ,�̄,C)]dV

+
∫

�

[
S̄s

(
ρs,Ū s,ρs

(1), . . . ,ρ
s
(N−1)

) + S̄s
c (ρs,�̄s,Cs)

]
dA.

(13)

Here S̄c is the configurational contribution to the entropy
per unit volume of the bulk phase, and S̄s

c denotes the
configurational contribution to the surface entropy per unit
area. In these expressions R denotes the union of all bulk
phase domains, � is the domain of the (internal) interfaces,
dV denotes an integration over volume, and dA indicates a

surface integration. The first term in the bulk integral of (12)
describes the contribution of the kinetic energy density to the
local energy per unit volume in the bulk phase, and likewise,
the first term in the surface integral describes the contribution
of the surface kinetic energy density to the local surface energy
per unit area. In the remainder of this paper we will assume
that the configurational contributions to the entropy satisfy

S̄c(ρ,�̄,C) = ρŜc(�̂,C), (14)

S̄s
c (ρs,�̄s,Cs) = ρsŜs

c (�̂s,Cs), (15)

where Ŝc represents the configurational entropy per unit mass
of the bulk phases, and Ŝs

c is the surface configurational entropy
per unit mass of the interfaces. The scalar �̂ equals �̄/ρ, and
�̂s equals �̄s/ρs .

We will assume that the separation in terms of bulk and
interfacial contributions introduced in (12) and (13) can also
be applied to the observable A in Eq. (7), which implies that
this observable can by written as

A =
∫

R

adV +
∫

�

asdA, (16)

where a denotes the density of A in the bulk phase, and as is
the surface density of A in the interface.

III. POISSON BRACKET AND MINT TERM

In this section we discuss the specific form of the Poisson
bracket {A,B}, and the moving interface normal transfer term,
{A,B}mint, for the set of system variables introduced in (2).
For convenience we split the Poisson bracket in two parts,
according to

{A,B} = {A,B}b + {A,B}s , (17)

where {A,B}b contains the contributions to the Poisson bracket
from the bulk variables, and {A,B}s contains the contributions
from the surface excess variables. The moving interface
normal transfer term contains contributions from both bulk
and interfacial variables. The contributions from the bulk phase
variables to the Poisson bracket are given by [11]

{A,B}b = −
∫

R

ρ

(
∂a

∂m
· ∇ ∂b

∂ρ
− ∂b

∂m
· ∇ ∂a

∂ρ

)
dV −

∫
R

m ·
(

∂a

∂m
· ∇ ∂b

∂m
− ∂b

∂m
· ∇ ∂a

∂m

)
dV

−
∫

R

Ū

(
∂a

∂m
· ∇ ∂b

∂Ū
− ∂b

∂m
· ∇ ∂a

∂Ū

)
dV −

N−1∑
J=1

∫
R

ρ(J )

(
∂a

∂m
· ∇ ∂b

∂ρ(J )
− ∂b

∂m
· ∇ ∂a

∂ρ(J )

)
dV

−
∫

R

(
∂a

∂m
· ∇

[
P ′ ∂b

∂Ū

]
− ∂b

∂m
· ∇

[
P ′ ∂a

∂Ū

])
dV −

∫
R

{
∂a

∂m
·
[
∇ ·

(
�′ ∂b

∂Ū

)]
− ∂b

∂m
·
[
∇ ·

(
�′ ∂a

∂Ū

)]}
dV

+
∫

R

C :

[
∇ ·

(
∂a

∂C
∂b

∂m
− ∂b

∂C
∂a

∂m

)]
dV +

∫
R

{
∂a

∂C
:

[
C ·

(
∇ ∂b

∂m

)T ]
− ∂b

∂C
:

[
C ·

(
∇ ∂a

∂m

)T ]}
dV

+
∫

R

{
∂a

∂C
:

[(
∇ ∂b

∂m

)
· C

]
− ∂b

∂C
:

[(
∇ ∂a

∂m

)
· C

]}
dV −

∫
R

�̄

(
∂a

∂m
· ∇ ∂b

∂�̄
− ∂b

∂m
· ∇ ∂a

∂�̄

)
dV

+
∫

R

G :

(
∂a

∂�̄
∇ ∂b

∂m
− ∂b

∂�̄
∇ ∂a

∂m

)
dV, (18)
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where the scalar P ′ and the second order tensor �′ are
contributions to the hydrostatic pressure tensor. We will
establish the specific form of these parameters in Sec. V, when
discussing the degeneracy properties of the entropy of the
system. The tensor G is a second order tensor, describing the
coupling between the scalar structural variable and the gradient
of the velocity field, and ∇ denotes the three-dimensional
gradient operator. The first four integrals in this expression
generate the convective terms for the overall mass density,
the momentum density, the internal energy density, and the
the species mass density ρ(J ) in, respectively, the overall
differential mass balance, the differential momentum balance,
the differential energy balance, and the differential species
mass balance for species J . The fifth and sixth integrals
introduce contributions of the hydrostatic pressure tensor in

the differential momentum balance and differential energy
balance. Integrals seven through nine generate the convective
terms for the bulk tensorial variable, and the specific form
chosen here ensures that the time derivative in the evolution
equation for this tensor will be of an upper-convected nature.
Finally, the last two integrals introduce the convective terms
for the scalar density �̄ in the time-evolution equation for this
variable. The most general form of the tensor G is given by

G = g1C + g2I + g3C−1, (19)

where gi = gi(�̄,I1,I2,I3), are coefficients which depend on
�̄, and the three invariants of C, Ii (i = 1,2,3). The specific
form of these functions is restricted by the Jacobi identity (9).

The contributions of the interfacial variables to the Poisson
bracket are given by

{A,B}s = −
∫

�

ρs

(
∂as

∂ms
· ∇s

∂bs

∂ρs
− ∂bs

∂ms
· ∇s

∂as

∂ρs

)
dA −

∫
�

ms ·
(

∂as

∂ms
· ∇s

∂bs

∂ms
− ∂bs

∂ms
· ∇s

∂as

∂ms

)
dA

−
∫

�

Ū s

(
∂as

∂ms
· ∇s

∂bs

∂Ū s
− ∂bs

∂ms
· ∇s

∂as

∂Ū s

)
dA −

N−1∑
J=1

∫
�

ρs
(J )

(
∂as

∂ms
· ∇s

∂bs

∂ρs
(J )

− ∂bs

∂ms
· ∇s

∂as

∂ρs
(J )

)
dA

+
∫

�

[
∂as

∂ms
· ∇s

(
γ ′ ∂bs

∂Ū s

)
− ∂bs

∂ms
· ∇s

(
γ ′ ∂as

∂Ū s

)]
dA −

∫
�

{
∂as

∂ms
·
[
∇s ·

(
�s′ ∂bs

∂Ū s

)]

− ∂bs

∂ms
·
[
∇s ·

(
�s′ ∂as

∂Ū s

)]}
dA +

∫
�

Cs :

[
∇s ·

(
∂as

∂Cs

∂bs

∂ms
− ∂bs

∂Cs

∂as

∂ms

)]
dA

+
∫

�

{
∂as

∂Cs
:

[
Cs ·

(
∇s

∂bs

∂ms

)T ]
− ∂bs

∂Cs
:

[
Cs ·

(
∇s

∂as

∂ms

)T ]}
dA +

∫
�

{
∂as

∂Cs
:

[(
∇s

∂bs

∂ms

)
· Cs

]

− ∂bs

∂Cs
:

[(
∇s

∂as

∂ms

)
· Cs

]}
dA −

∫
�

�̄s

(
∂as

∂ms
· ∇s

∂bs

∂�̄s
− ∂bs

∂ms
· ∇s

∂as

∂�̄s

)
dA

+
∫

�

Gs :

(
∂as

∂�̄s
∇s

∂bs

∂ms
− ∂bs

∂�̄s
∇s

∂as

∂ms

)
dA, (20)

where γ ′ and �s′ represent contributions to the surface
pressure tensor. Again, the specific form of these parameters
will be established in Sec. V, when discussing the entropy
degeneracy requirement. Note that both these parameters
are curvature dependent, and this dependence can be made
explicit by introducing Helfrich type expansions [15,16] for
both parameters. This would introduce additional parameters
characterizing the bending rigidity of the interface, a property
that is often relevant in multiphase systems, such as liposomes,
phase-separated biopolymers, polymersomes, or Pickering
stabilized emulsions [17–23].

The tensor Gs is a second order surface tensor, describing
the coupling with the surface scalar density �̄s , with the surface
gradient of the surface velocity vs , and ∇s denotes the surface
gradient operator. For an arbitrary vector field h = hiei defined
on the surface (here ei are the natural basis vectors), the surface
gradient is defined as ∇sh = (∂hi/∂y

α)eiaα [2]. Here yα (α =
1,2) are the surface coordinates [2]. The tensor Gs , in its most

general form, is given by

Gs = gs
1Cs + gs

2I + gs
3(Cs)−1, (21)

where the coefficients gs
i , are functions of �̄s , and the three

invariants of Cs . Again, the specific form of these functions is
restricted by the Jacobi identity (9).

The physical interpretation of the various contributions
from the surface excess variables to the Poisson bracket is
analogous to that of the terms involving their corresponding
bulk variables. So they generate the convective contributions
in the time-evolution equations for the surface variables, and
introduce the surface pressure terms in the differential surface
energy balance.

The final contribution to the reversible dynamics of the
system we need to specify is the MINT term. Öttinger
et al. showed that this bracket needs to be added to achieve
consistency between the thermodynamic evolution equation
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and the chain rule of functional calculus [12]. Here we assume that this term is given by

{A,B}mint = −
∫

�

[[[(
[b̃ − b]

∂as

∂ms
− [ã − a]

∂bs

∂ms

)
· ξ

]]]
dA −

∫
�

2H

(
(b̃s − bs)

∂as

∂ms
− (ãs − as)

∂bs

∂ms

)
· ξ dA

−
∫

�

[[[(
C :

∂b

∂C

)
∂a

∂m
· ξ −

(
C :

∂a

∂C

)
∂b

∂m
· ξ

]]]
dA

−
∫

�

2H

[(
Cs :

∂bs

∂Cs

)
∂as

∂ms
· ξ −

(
Cs :

∂as

∂Cs

)
∂bs

∂ms
· ξ

]
dA

−
∫

�

4H

(
∂as

∂ms
·
[

Cs · ∂bs

∂Cs

]
− ∂bs

∂ms
·
[

Cs · ∂as

∂Cs

])
· ξ dA

−
∫

�

2H

(
∂as

∂ms
·
[

Gs ∂bs

∂�̄s

]
− ∂bs

∂ms
·
[

Gs ∂as

∂�̄s

])
· ξ dA, (22)

where the modified system variable ã is defined by

ã =
(

ρ
∂

∂ρ
+ m · ∂

∂m
+ (Ū + P ′)

∂

∂Ū

+ �̄
∂

∂�̄
+

N−1∑
J=1

ρ(J )
∂

∂ρ(J )

)
a (23)

and ãs equals

ãs =
(

ρs ∂

∂ρs
+ ms · ∂

∂ms
+ (Ū s − γ ′)

∂

∂Ū s

+ �̄s ∂

∂�̄s
+

N−1∑
J=1

ρs
(J )

∂

∂ρs
(J )

)
as. (24)

An overview of modified bulk and surface variables is
presented in Table I. The parameter H in (22) represents the

TABLE I. Overview of modified bulk and surface variables,
calculated using Eqs. (23) and (24).

a ã

ρ ρ

m m
Ū Ū + P ′

ρ(J ) ρ(J )

�̄ �̄

C 0
S̄ ρ ∂S̄

∂ρ
+ ρŜc + (Ū + P ′) ∂S̄

∂Ū
+ �̄ ∂S̄

∂�̄
+ ∑

J ρ(J )
∂S̄

∂ρ(J )

Ē Ē + P ′ − Ūc + ρ ∂Ūc

∂ρ
+ �̄ ∂Ūc

∂�̄

as ãs

ρs ρs

ms ms

Ū s Ū s − γ ′

ρs
(J ) ρs

(J )

�̄s �̄s

Cs 0
S̄s ρs ∂S̄s

∂ρs + ρsŜs
c + (Ū s − γ ′) ∂S̄s

∂Ū s + �̄s ∂S̄s

∂�̄s

+∑
J ρs

(J )
∂S̄s

∂ρs
(J )

Ēs Ēs − γ ′ − Ū s
c + ρs ∂Ūs

c

∂ρs + �̄s ∂Ū s
c

∂�̄s

mean curvature of the interface, and the boldface brackets in
the first and third integral in the above expression represent
jump terms, defined by[[[

ψξ
]]] ≡ ψ Iξ I + ψ IIξ II, (25)

where ψM is the value of an arbitrary observable ψ in bulk
phase M (M = I,II), and ξM is the unit vector normal to the
interface, pointing in the direction of bulk phase M .

The first two integrals in (22) are identical to the contri-
butions introduced by Öttinger et al. [12], and as mentioned
before, need to be included to obtain consistency between the
GENERIC structure and the chain rule of functional calculus.
The third and fourth integral are added to ensure that the
entropy degeneracy requirement is satisfied (we will have more
to say on this in Sec. V). The last two integrals need to be
added to ensure that the surface tensorial structural variable
is a general surface tensor. Without this contribution we can
satisfy the entropy degeneracy requirement only if we assume
this tensor is a tangential surface tensor, and as already noted
in the Introduction, in our model we do not want to limit the
structural tensors to this particular class of surface tensors.

Note that the MINT bracket in Eq. (22) is not a proper
Poisson bracket, since in a Poisson bracket the observables
appear only through derivatives. Therefore we do not expect
that this bracket satisfies the Jacobi identity. But in the
presence of moving interfaces the structure of the chain
rule of functional calculus is incompatible with the Poisson
bracket structure, so the introduction of a MINT bracket is
unavoidable [12]. Bering [24] discussed modifications of the
Poisson structure for systems with a fixed boundary, without
excess parameters associated with the boundary. The boundary
term he suggests (that actually does satisfy the Jacobi identity)
has a distinctly different form than our MINT bracket.

IV. DISSIPATIVE BRACKET

Now that we have specified the Poisson bracket and MINT
term, we will turn our attention to the dissipative bracket. For
the sake of simplicity we will split the dissipative bracket in
three contributions, according to

[A,B] = [A,B]b + [A,B]s + [A,B]j , (26)
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where [A,B]b contains all contributions to the dissipative
processes from the bulk variables, [A,B]s contains the
contributions from the surface excess variables, and [A,B]j

describes the transfer of mass, momentum, energy, and the
structural variables between the interface and the adjoining
bulk phases. The first term in this expression is given by [11]

[A,B]b =
∫

R

2ηT

[
∇ ∂a

∂m
− D̄

∂a

∂Ū

]
:

[
∇ ∂b

∂m
− D̄

∂b

∂Ū

]
dV +

∫
R

ηbT

(
∇ · ∂a

∂m
− trD

∂a

∂Ū

)(
∇ · ∂b

∂m
− trD

∂b

∂Ū

)
dV

+
∫

R

λT 2

(
∇ ∂a

∂Ū

)
·
(

∇ ∂b

∂Ū

)
dV +

N−1∑
J=1

N∑
K=1

∫
R

D̃(JK)

[
∇

(
∂a

∂ρ(J )

)]
·
[
∇

(
∂b

∂ρ(K)

)]
dV

+
N−1∑
J=1

∫
R

α̃(J )T
2

[
∇

(
∂a

∂ρ(J )

)
· ∇

(
∂b

∂Ū

)
+ ∇

(
∂b

∂ρ(J )

)
· ∇

(
∂a

∂Ū

)]
dV

+
∫

R

(
∂a

∂�̄
− ∂a

∂Ū

∂Ūc

∂�̄

)
R1

(
∂b

∂�̄
− ∂b

∂Ū

∂Ūc

∂�̄

)
dV +

∫
R

(
∂a

∂C
− ∂a

∂Ū

∂Ūc

∂C

)
: R2 :

(
∂b

∂C
− ∂b

∂Ū

∂Ūc

∂C

)
dV

+
∫

R

∇
[

∂a

∂C
− ∂Ūc

∂C
∂a

∂Ū

]
...DC

... ∇
[

∂b

∂C
− ∂Ūc

∂C
∂b

∂Ū

]
dV +

∫
R

∇
[

∂a

∂�̄
− ∂Ūc

∂�̄

∂a

∂Ū

]
· D� · ∇

[
∂b

∂�̄
− ∂Ūc

∂�̄

∂b

∂Ū

]
dV.

(27)

Here η is the shear viscosity, ηb is the bulk viscosity, D̄ denotes
the traceless part of the rate of deformation tensor D (equal to
1
2 [∇v + (∇v)T ]), T is the bulk temperature, λ is the thermal
conductivity, D̃(JK) denote the components of the N × N

diffusion coefficient matrix of the multicomponent mixture,
α̃(J ) is the thermal diffusion coefficient of J , R1 is a scalar
parameter describing relaxation processes for �̄, R2 is a fourth
order tensor field describing relaxation processes for C, D� is
a second order tensor, quantifying the diffusion of �, and DC is
a sixth order tensor associated with diffusion processes for C.
The bar over the term ∇(∂a/∂m) indicates we are considering
only the symmetric traceless part of this tensor.

The first two integrals in this expression introduce the
viscous stresses of the continuous phase in the differential
momentum balance, and introduce viscous dissipation terms
in the differential energy balance. Here we have assumed
Newtonian behavior for the continuous phase. The inclusions
of these terms will generate an expression for the total extra
stress tensor with two contributions: a viscous contribution
from the continuous phase, and a contribution from the

microstructural elements, dispersed in the continuous phase.
When the former are expected to be negligible with respect
to microstructural contributions to the stresses, these two
integrals can simply be omitted. The third integral in the
above expression describes heat conduction, and the fourth
introduces a flux term in the differential species mass bal-
ance describing diffusion driven by concentration gradients
(ordinary diffusion). The fifth integral generates a thermal
diffusion flux in the mass balance (the Soret effect, mass
diffusion driven by temperature gradients), and an additional
thermal flux in the energy balance (the Dufour effect, heat
conduction driven by gradients in concentration). Integrals six
and seven describe relaxation processes for, respectively, the
scalar and tensorial structural variables. Integrals eight and
nine introduce diffusive terms in the time evolution equations
of the structural variables, relevant only when the applied
deformations induce spatial inhomogeneities in the structural
fields.

The contributions of the surface variables to the dissipative
bracket are assumed to be given by

[A,B]s =
∫

�

2εsT
s

(
∇s

∂as

∂ms
− D̄s ∂as

∂Ū s

)
:

(
∇s

∂bs

∂ms
− D̄s ∂bs

∂Ū s

)
dA

+
∫

�

εdT
s

(
∇s · ∂as

∂ms
− trDs ∂as

∂Ū s

) (
∇s · ∂bs

∂ms
− trDs ∂bs

∂Ū s

)
dA

+
∫

�

λs(T s)2

(
∇s

∂as

∂Ū s

)
·

(
∇s

∂bs

∂Ū s

)
dA +

N−1∑
J=1

N∑
K=1

∫
�

D̃s
(JK)

[
∇s

(
∂as

∂ρs
(J )

)]
·
[
∇s

(
∂bs

∂ρs
(K)

)]
dA

+
N−1∑
J=1

∫
�

α̃s
(J )(T

s)2

[
∇s

(
∂as

∂ρs
(J )

)
· ∇s

(
∂bs

∂Ū s

)
+ ∇s

(
∂bs

∂ρs
(J )

)
· ∇s

(
∂as

∂Ū s

)]
dA

+
∫

�

(
∂as

∂�̄s
− ∂as

∂Ū s

∂Ū s
c

∂�̄s

)
Rs

1

(
∂bs

∂�̄s
− ∂bs

∂Ū s

∂Ū s
c

∂�̄s

)
dA
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+
∫

�

(
∂as

∂Cs
− ∂as

∂Ū s

∂Ū s
c

∂Cs

)
: Rs

2 :

(
∂bs

∂Cs
− ∂bs

∂Ū s

∂Ū s
c

∂Cs

)
dA

+
∫

�

∇s

(
∂as

∂Cs
− ∂Ū s

c

∂Cs

∂as

∂Ū s

)
... Ds

C

... ∇s

(
∂bs

∂Cs
− ∂Ū s

c

∂Cs

∂bs

∂Ū s

)
dA

+
∫

�

∇s

(
∂as

∂�̄s
− ∂Ū s

c

∂�̄s

∂as

∂Ū s

)
· Ds

�· ∇s

(
∂bs

∂�̄s
− ∂Ū s

c

∂�̄s

∂bs

∂Ū s

)
dA. (28)

Here εs is the surface shear viscosity [1–3], εd is the surface
dilatational viscosity [1–3], D̄s is the traceless part of the
surface rate of deformation tensor Ds , equal to 1

2 [P · (∇svs) +
{(∇svs)T } · P] [2], P is the surface projection tensor [2,3], T s is
the surface temperature, λs is the surface thermal conductivity
[2,3], D̃s

(JK) denotes the components of the surface diffusion
coefficient matrix [2,3], α̃s

(J ) is the surface thermal diffusion
coefficient of J [2,3], Rs

1 is a scalar describing relaxation
processes for �̄s in the interface, Rs

2 is a fourth order tangential
surface tensor field describing relaxation processes for Cs , Ds

�

is a second order tangential tensor tensor, quantifying the dif-
fusion of �̄s in the interface, and Ds

C is a sixth order tangential
surface tensor associated with diffusion processes for Cs .

In formulating these contributions we have assumed that,
analogous to the bulk stresses, the surfaces stresses can be split
in an isotropic contribution from the interfacial continuous
phase and an anisotropic contribution from the microstructural
elements. The former is assumed to be described by the
linear Boussinesq model [25–27]. We have also accounted
for the surface equivalents of the Dufour and Soret effects,
in the description of the heat and mass fluxes. For both the
surface structural variables we have included terms describing
relaxation and diffusion of these variables.

The exact nature of the four material parameters associated
with the structural variables depends on the microstructure
of the interface. If we consider for example an interface
stabilized by anisotropic colloidal particles (an example which
we will discuss in more detail in Paper II of this sequence
of papers [28]), then �̄s would be the surface concentration
of particles, and Cs would represent a local average of the
orientation of the particles (for example, equal to 〈nsns〉,
where ns is a unit vector denoting the orientation of the
length axis of the particles). If such an interface is deformed
by, for example, an arbitrary shear field, particles will orient
in the direction of the flow. The flow field may also cause
inhomogeneities in the distribution of the particles. When
the flow is stopped the microstructure of the interface will
relax back to its equilibrium state, a homogeneous isotropic
interface with randomly oriented particles. In this process
Rs

1 would typically be set to 0, and Ds
� characterizes the

translational diffusion of the colloidal particles. The tensor Rs
2

describes relaxation of the particle orientation by rotational

diffusion, and Ds
C describes the smoothing of spatial gradients

in orientation by diffusive processes.
As another example, let us consider an interface stabilized

by a mixture of two immiscible surfactants S1 and S2, and
let us assume S1 forms deformable circular disklike rafts
in a continuous S2 phase. So the structure of the interface
is basically a two-dimensional emulsion. This problem is
relevant for example for raft formation in cell membranes.
When such an interface is deformed the circular rafts are
deformed to an anisotropic shape and oriented in the direction
of flow. When the flow is stopped, the rafts relax back to
a circular shape. This problem can be described with a
two-dimensional variation of the Doi-Ohta model [29], in
which we let �̄s be the total amount of contact line per unit
area between S1 and S2, and Cs is a second order tensor field
describing the shape of the rafts. In this model Rs

1 and Rs
2

would then quantify the relaxation process for respectively
the total amount of contact line and the shape of the rafts. The
two diffusion tensors would describe the smoothing of any
spatial gradients of these two variables along the surface.

Note that in this particular example the contact line
between the domains of S1 and S2 may also have excess
variables associated with it (for example, a line tension). When
additional line excesses are present in the system, and we
are interested in the time evolution of these, additional terms
involving these line variables will have to be included in the
Poisson and dissipative brackets. The framework as we have
presented it here can describe only systems with surface excess
variables associated with the interfaces.

The measurement of the structural material parameters
discussed in the preceding paragraphs is a nontrivial issue,
which requires a combination of surface rheological methods
and optical methods (two-dimensional rheo-optics [5]). The
time evolution of the interfacial microstructure formed by
adsorbed colloidal particles can often be studied with mi-
croscopic techniques. For smaller species various forms of
reflectometry (ligth, neutron, or x ray) may have to be used to
explore structural changes [5,30–32].

Finally, we need to specify the contributions to the dis-
sipative bracket describing the transfer of mass, momentum,
energy, and structural parameters, between the bulk phases and
interfaces. These contributions are given by

[A,B]j =
∫

�

[[[
T T s

RK

(
∂a

∂Ū
− ∂as

∂Ū s

) (
∂b

∂Ū
− ∂bs

∂Ū s

)]]]
dA

+
II∑

M,N=I

∫
�

(
∂aM

∂mM
− ∂as

∂ms
− vM ∂aM

∂ŪM
+ vs ∂as

∂Ū s

)
· T sζM,N ·

(
∂bN

∂mN
− ∂bs

∂ms
− vN ∂bN

∂ŪN
+ vs ∂bs

∂Ū s

)
dA
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+
N−1∑
J=1

∫
�

[[[
�(J )

(
∂a

∂ρ
− ∂as

∂ρs
+ ∂a

∂ρ(J )
− ∂as

∂ρs
(J )

+ 1

2
v2 ∂a

∂Ū
− 1

2
(vs)2 ∂as

∂Ū s

)(
∂b

∂ρ
− ∂bs

∂ρs

+ ∂b

∂ρ(J )
− ∂bs

∂ρs
(J )

+ 1

2
v2 ∂b

∂Ū
− 1

2
(vs)2 ∂bs

∂Ū s

)]]]
dA

+
N−1∑
J=1

∫
�

[[[
�T

(J )T T s

{(
∂a

∂Ū
− ∂as

∂Ū s

) (
∂b

∂ρ
− ∂bs

∂ρs
+ ∂b

∂ρ(J )
− ∂bs

∂ρs
(J )

+ 1

2
v2 ∂b

∂Ū
− 1

2
(vs)2 ∂bs

∂Ū s

)

+
(

∂a

∂ρ
− ∂as

∂ρs
+ ∂a

∂ρ(J )
− ∂as

∂ρs
(J )

+ 1

2
v2 ∂a

∂Ū
− 1

2
(vs)2 ∂as

∂Ū s

) (
∂b

∂Ū
− ∂bs

∂Ū s

)}]]]
dA

+
∫

�

[[[(
�

∂a

∂�̄
− �s ∂as

∂�̄s
+ ∂a

∂C
− ∂as

∂Cs
− ∂a

∂Ū

[
�

∂Ūc

∂�̄
+ ∂Ūc

∂C

]
+ ∂as

∂Ū s

[
�s ∂Ū s

c

∂�̄s
+ ∂Ū s

c

∂Cs

] )

:J�C :

(
�

∂b

∂�̄
− �s ∂bs

∂�̄s
+ ∂b

∂C
− ∂bs

∂Cs
− ∂b

∂Ū

[
�

∂Ūc

∂�̄
+ ∂Ūc

∂C

]
+ ∂bs

∂Ū s

[
�s ∂Ū s

c

∂�̄s
+ ∂Ū s

c

∂Cs

])]]]
dA. (29)

Here RK is the Kapitza coefficient for transfer of energy
between bulk phase and interface, and ζM,N are the friction
tensors for transfer of momentum between bulk phase and
interface. In most cases the accumulation of momentum at
the interface will be negligible, and the second integral in
the above expression can be omitted. But for the sake of
completeness, and for better comparison with results derived
using other frameworks [2,3], we choose to retain this term
here. The parameters �(J ) and �T

(J ) are the transfer coefficients
for transfer of species J between bulk phase and interface
driven by difference in, respectively, chemical potential and
temperature. J�C is a fourth order tensor field quantifying
the transfer of � and C between bulk phase and interface.
In the fifth integral we have introduced a coupling between
the transfer of the tensor C and the scalar density �̄, through
the tensors � and �s . As discussed in the Introduction, such
a coupling would be expected to be important in systems
with anisotropic particles or other types of microstructural
elements, which first need to adopt a specific orientation
with respect to the interface before being adsorbed. Based
on dimensional arguments we would expect � ∼ �̄C−1, and
�s ∼ �̄s(Cs)−1.

Now that we have specified all the contributions to the
Poisson and dissipative brackets, we can proceed with the
extraction of the time-evolution equations for the set of
independent system variables. Before we do this we will first
take a closer look at the degeneracy properties of the total
entropy and momentum.

V. DEGENERACY PROPERTIES

In the preceding we have left the exact definitions of the
isotropic pressure P ′, the isotropic surface tension γ ′, the
anisotropic microstructural contributions to the bulk pressure
�′, and the anisotropic microstructural surface pressure �s′

unspecified. We can use the entropy degeneracy requirement
to fix the specific form of these parameters. The degeneracy
requirement for the total entropy is given by

{S,B} + {S,B}mint = 0. (30)

Using the expressions for the Poisson brackets defined in
Sec. III, we find that to satisfy this identity, P ′ must take
the form

P ′ = T S̄ − Ū − ρT
∂S̄

∂ρ
−

N−1∑
J=1

ρ(J )T
∂S̄

∂ρ(J )
− �̄ρT

∂Ŝc

∂�̄
(31)

and �′ must take the form

�′ ≡ ρT

(
2C · ∂Ŝc

∂C
+ G

∂Ŝc

∂�̄

)
. (32)

We must also require that at the interfaces

r ∈ � :
[[[
�′(r) · ξ (r)

]]] = 0. (33)

This condition implies that to satisfy the entropy degeneracy
requirement, we must assume that the normal components of
�′ (representing the contributions from the microstructural
entropy Ŝc to the hydrostatic pressure) are continuous across
the interface. With these expressions for P ′ and �′ the total
hydrostatic pressure tensor is simply given by

� = P ′I + �′. (34)

We also find that the surface tension γ ′ must take the form

γ ′ = −T sS̄s + Ū s + ρsT s ∂S̄s

∂ρs

+
N−1∑
J=1

ρs
(J )T

s ∂S̄s

∂ρs
(J )

+ �̄sρsT s ∂Ŝs
c

∂�̄
(35)

and that the anisotropic contributions to the surface pressure
induced by the microstructure, �s′, must equal

�s′ ≡ ρsT s

(
2Cs · ∂Ŝs

c

∂Cs
+ Gs ∂Ŝs

c

∂�̄s

)
. (36)

The total surface pressure tensor is thus given by

�s = −γ P + �s′. (37)

The total momentum of the system can be expressed as

M =
∫

R

m dV +
∫

�

msdA. (38)
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The degeneracy requirement for the total momentum is given
by

{M,B} + {M,B}mint = 0, (39)

which is satisfied identically, when we assume (31)–(33), (35),
and (36).

The degeneracy conditions also give us some additional
insight in some of the contributions to the MINT term. If we
would eliminate the third integral in (22), then, to satisfy the
entropy degeneracy requirement, condition (33) would need
to take the form

r ∈ � :

[[[(
C :

∂ρŜc

∂C

)
ξ + �′(r) · ξ (r)

]]]
= 0. (40)

Whereas (33) has a clear physical interpretation, the additional
contribution in (40) does not, and puts an unnecessary
restriction on the form of the microstructural contributions to
the pressure tensor. By adding the third integral in the MINT
bracket, this restriction is removed. The fourth integral in the
MINT bracket was added for the same reason: it eliminates
a similar term 2H (C : ∂ρŜc

∂C )ξ from the integral over �. The
last two contributions are needed to ensure that the tensorial
structural variable of the interface belongs to the class of
general surface tensors. When these two integrals are omitted,
then, to satisfy the entropy degeneracy requirement, apart from
(33), we would in addition have to require

2H�s′ · ξ = 0, (41)

which means we would have to require that Cs is a tangential
surface tensor. As stated in the Introduction, to extend the
range of multiphase systems our model can be applied to, we
do not wish to impose such a restriction. The last two integrals
in the MINT bracket remove the term in (41) from the integral
over �, ensuring that Cs remains in the class of general surface
tensors.

VI. BALANCE AND CONSTITUTIVE EQUATIONS

In this section we will extract the balance equations for the
time evolution of the set of system variables defined in (2),
from the GENERIC (7). To extract these balance equations we
must first consider the time derivative of the left hand side of
(7). The time rate of change of an arbitrary observable A of
the system, satisfying (16), equals [2,12]

dA

dt
=

∫
R

∂a

∂xj

∂xj

∂t
dV +

∫
�

∂as

∂xs
j

∂xs
j

∂t
dA

−
∫

�

(
2Hasvs · ξ + ∂as

∂xs
j

∇sx
s
j · u + [[[

avs · ξ
]]])

dA,

(42)

where u is the speed of displacement of the interface [2],
and xj and xs

j are the independent bulk and surface excess
system variables. Combining this expression with (7), using
the expressions for the Poisson and dissipative bracket defined
above, and collecting all terms on the left hand side of (7),
we obtain (after integration by parts) an expression with two
main contributions. The first term is an integral over the
bulk domain R, containing terms proportional to the partial
derivatives ∂a/∂xj . The second term is an integral over the

interfacial domain �, and contains terms proportional to the
partial derivatives ∂as/∂xs

j , terms proportional to as , and jump
terms, proportional to either a or ∂a/∂xj . Since the observable
A and the domains R and � were chosen arbitrarily, we must
set the integrands of both integrals to zero, in order to satisfy
(7) identically. Setting the integrand of the first integral to zero
will give us the balance equations for the bulk variables ρ, m,
Ū , ρ(J ), �̄, and C. Setting the integrand of the second integral
to zero gives us the balance equations for the corresponding
surface excess variables, and a set of consistency requirements
for the transport of mass, momentum, energy, and the structural
variables to and from the interface [12,13].

Let us first examine the governing equations for the overall
bulk density ρ, and the overall surface mass density ρs . From
the integral over R we obtain (collecting all terms proportional
to ∂a/∂ρ, and setting the resulting coefficient to zero)

dbρ

dt
+ ρ∇ · v = 0, (43)

which is the familiar equation of continuity for the bulk phases.
The material derivative in this expression is defined as

dbψ

dt
= ∂ψ

∂t
+ (∇ψ) · v. (44)

Collecting the terms proportional to ρ and ∂a/∂ρ in the
integral over �, and setting the result equal to 0, we obtain the
consistency requirements (M = I,II)

N−1∑
J=1

�M
(J )

(
μ̌M

(J )

T M
− μ̌s

(J )

T s

)
+

N−1∑
J=1

�T M
(J ) (T M − T s)

= −ρM (vM − vs) · ξM, (45)

where the modified chemical potentials μ̌(J ) and μ̌s
(J ) are

defined by

μ̌(J )

T
= −

(
Ŝc + ∂S̄

∂ρ
+ ∂S̄

∂ρ(J )
+ v2

2T

)
, (46)

μ̌s
(J )

T s
= −

(
Ŝs

c + ∂S̄s

∂ρs
+ ∂S̄s

∂ρs
(J )

+ (vs)2

2T s

)
. (47)

Finally, collecting all terms proportional to ρs and ∂as/∂ρs

from the surface integral, setting the result to 0, and using (45),
we find

dsρ
s

dt
+ ρs∇s · vs + [[[

ρ(v − vs) · ξ
]]] = 0. (48)

This balance is the overall jump mass balance [2,3]. The
surface material derivative in this expression is defined as

dsψ

dt
= ∂ψ

∂t
+ (∇sψ) · ẏ, (49)

where ẏ is the intrinsic surface velocity [2]. The consistency
requirements (45) are boundary conditions coupling the
density field of the adjoining bulk phases to the interfacial
density field. This is one of the strengths of the GENERIC
framework: it not only provides time evolution equations for
the bulk and interfacial system variables, but also generates a
complete set of boundary conditions that couple these fields.
In other nonequilibrium thermodynamic frameworks these
boundary conditions are generated separately on an ad hoc
basis [2,33].
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We now turn our attention to the balance equations for
m and ms (the differential momentum balance and differential
jump momentum balance [2,3]). From the terms in the integral
over R, proportional to ∂a/∂m, we obtain

ρ
dbv
dt

+ ∇(P ′ + PE) − ∇ · σ tot = 0, (50)

where PE is the contribution from the configurational internal
energy to the pressure, defined by

PE = −Ūc + ρ
∂Ūc

∂ρ
+ �̄

∂Ūc

∂�̄
(51)

and σ tot is the total extra stress tensor in the bulk phase, equal
to

σ tot =
(

ηb − 2

3
η

)
[∇ · v]I + 2ηD + 2C · ∂F̄c

∂C
+ G

∂F̄c

∂�̄
.

(52)

In the last expression F̄c = Ūc − TρŜc is the Helmholtz
free energy per unit volume of the bulk phase. The terms
proportional to m and ∂a/∂m in the surface integral give us
the consistency requirement for the transfer of momentum
between the interface and the adjacent bulk phases (M = I,II):

II∑
N=I

ζM,NT s ·
(

vN

T N
− vs

T s

)

= −ρMvM (vM − vs) · ξM + σM
tot · ξM. (53)

In arriving at this result we used Eq. (33). Note that in
this expression we have friction tensors for each side of the
interface. This would be required for complex systems in
which, for example, the interface is a 2d polymer gel, and
the adjoining bulk phases are microstructured phases as well
[perhaps a liquid crystalline phase or a (3d) gel phase]. In such
systems we expect a significant effect of the stress-deformation
behavior of the interface on the behavior of the adjoining
bulk phases, and this effect may be different for each of
the bulk phases. In isothermal systems without accumulation
of components at the interface we can use a much simpler
condition. The entropy balance then suggests we use a single

friction tensor ζ ′, defined as

ζ ′ =
(

ρI + ρII

ρI − ρII

)2

ζ , (54)

where ζ = ζ I,I = ζ I,II = ζ II,I = ζ II,II. With this choice (53)
reduces to (when in addition there is no mass transfer across
the interface)

ζ ′ · (vI − vII) =
(

1

ρI
− 1

ρII

)−1(
σ I

tot

ρI
− σ II

tot

ρII

)
· ξ . (55)

Note that this expression no longer contains any interfacial
variables, and couples the adjoining bulk phases directly, as
we would expect for simple interfaces without accumulated
mass. For simple systems we could have introduced this form
directly by changing the second integral in the dissipative
bracket in Eq. (29). If we are willing to assume there is no
slip between the two bulk phases at the interface (i.e., vI = vII

at the interface), then (55) reduces to

σ I
tot = σ II

tot, (56)

which states that stresses are continuous across the interface,
a boundary condition commonly used in flow problems
involving simple interfaces.

From the terms in the surface integral proportional to ms

and ∂as/∂ms , we obtain the following form of the jump
momentum balance at the interface [using (53)]:

ρs dsvs

dt
− ∇s(γ

′ + γE) − 2(γ ′ + γE)H ξ − ∇s · σ s
tot

+ [[[
ρ(v − vs)(v − vs) · ξ − σ tot · ξ + (P ′ + PE)ξ

]]] = 0,

(57)

where the total surface extra stress tensor σ s
tot is defined as

σ s
tot = (εd − εs)[∇s · vs]P + 2εsDs

+ 2Cs · ∂F̄ s
c

∂Cs
+ Gs ∂F̄ s

c

∂�̄s
. (58)

Here F̄ s
c = Ū s

c − T sρsŜs
c is the surface Helmholtz free energy

per unit area of the interfaces, and γE equals

γE = Ū s
c − ρs ∂Ū s

c

∂ρs
− �̄s ∂Ū s

c

∂�̄s
. (59)

The next two variables we will consider are Ū , and Ū s . From the terms in the bulk integral proportional to ∂a/∂Ū we obtain
the differential energy balance for the bulk phases:

dbŪ

dt
+ (Ū + P ′)∇ · v + �′ : ∇v − 2ηD̄ : D̄ − ηb(trD)2 − ∇ · (λ∇T ) −

N−1∑
J=1

∇ ·
[
α̃(J )T

2∇
(

μ(J )

T

)]

−∂Ūc

∂�̄

R1

T

∂F̄c

∂�̄
− ∂Ūc

∂C
:

R2

T
:

∂F̄c

∂C
+ ∂Ūc

∂�̄
∇ ·

[
D� · ∇

(
1

T

∂F̄c

∂�̄

)]
+ ∂Ūc

∂C
:

{
∇ ·

[
DC

... ∇
(

1

T

∂F̄c

∂C

)]}
= 0. (60)

The consistency requirement for energy transfer between bulk phases and interface, obtained from the coefficients of the terms
proportional to Ū and ∂a/∂Ū in the surface integral, takes the form [using (45) and (53)] (M = I,II)

T s − T M

RM
K

−
N−1∑
J=1

�T M
(J ) T T s

(
μ̌M

(J )

T M
− μ̌s

(J )

T s

)

= (ŪM + P ′M )(vM − vs) · ξ − vM · σM
tot · ξM + 1

2
ρ(vM )2(vM − vs) · ξ − λM∇T M · ξM
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−
N−1∑
J=1

α̃M
(J )(T

M )2∇
[

μM
(J )

T M

]
· ξM + ∂ŪM

c

∂�̄M

[
DM

� · ∇
(

1

T M

∂F̄M
c

∂�̄M

)]
· ξM +

[
∂ŪM

c

∂CM
: DM

C

... ∇
(

1

T M

∂F̄M
c

∂CM

)]
· ξM

−
[
�M ∂ŪM

c

∂�̄M
+ ∂ŪM

c

∂CM

]
: JM

�C :

(
�M

T M

∂F̄M
c

∂�̄M
− �s

T s

∂F̄ s
c

∂�̄s
+ 1

T M

∂F̄M
c

∂CM
− 1

T s

∂F̄ s
c

∂Cs

)
. (61)

And finally, the terms proportional to Ū s and ∂as/∂Ū s in the surface integral give us the following expression for the differential
jump energy balance:

dsŪ
s

dt
+ (Ū s − γ ′)∇s · vs + �′s : ∇svs + 2Hvs · �′s · ξ + ∇s · qs − 2εsD̄s : D̄s − εd (trDs)2

− ∂Ū s
c

∂�̄s

Rs
1

T s

∂F̄ s
c

∂�̄s
− ∂Ū s

c

∂Cs
:

Rs
2

T s
:

∂F̄ s
c

∂Cs
+ ∂Ū s

c

∂�̄s
∇s ·

[
Ds

� · ∇s

(
1

T s

∂F̄ s
c

∂�̄s

)]
+ ∂Ū s

c

∂Cs
:

{
∇s ·

[
Ds

C

... ∇s

(
1

T s

∂F̄ s
c

∂Cs

)]}

+
[[[

ρ

(
Û + 1

2
[v − vs]2

)
(v − vs) · ξ + q · ξ − (v − vs) · σ tot · ξ + P ′(v − vs) · ξ + ∂Ūc

∂�̄

[
D� · ∇

(
1

T

∂F̄c

∂�̄

)]
· ξ

+
[
∂Ūc

∂C
: DC

... ∇
(

1

T

∂F̄c

∂C

)]
· ξ −

[
�

∂Ūc

∂�̄
− �s ∂Ū s

c

∂�̄s
+ ∂Ūc

∂C
− ∂Ū s

c

∂Cs

]

: J�C :

[
�

T

∂F̄c

∂�̄
− �s

T s

∂F̄ s
c

∂�̄s
+ 1

T

∂F̄c

∂C
− 1

T s

∂F̄ s
c

∂Cs

] ]]]
= 0, (62)

where q and qs are the bulk and surface energy flux vectors,
given by

q = −λ∇T −
N−1∑
J=1

α̃(J )T
2∇

(
μ(J )

T

)
, (63)

qs = −λs∇sT
s −

N−1∑
J=1

α̃s
(J )(T

s)2∇s

(
μs

(J )

T s

)
. (64)

We now turn our attention to the balance equations for the
structural variables. From the integral over R we find that the
time evolution of �̄ is given by

db�̄

dt
+ �̄∇ · v − G : ∇v + R1

T

∂F̄c

∂�̄

−∇ ·
[

D� · ∇
(

1

T

∂F̄c

∂�̄

)]
= 0. (65)

The consistency requirement for transfer of the scalar struc-
tural variable between bulk phase and interface, obtained from
the integral over �, is given by (M = I,II)

�M :JM
�C :

(
�M

T M

∂F̄M
c

∂�̄M
− �s

T s

∂F̄ s
c

∂�̄s
+ 1

T M

∂F̄M
c

∂CM
− 1

T s

∂F̄ s
c

∂Cs

)

= −�̄M (vM − vs) · ξ + DM
� · ∇

(
1

T M

∂F̄M
c

∂�̄M

)
· ξM. (66)

The jump balance for �̄s takes the form

ds�̄
s

dt
+ �̄s∇s · vs − Gs : ∇svs − 2Hvs · Gs · ξ

+Rs
1

T s

∂F̄ s
c

∂�̄s
− ∇s ·

[
Ds

� · ∇s

(
1

T s

∂F̄ s
c

∂�̄s

)]

−
[[[
�s :J�C :

(
�

T

∂F̄c

∂�̄
− �s

T s

∂F̄ s
c

∂�̄s
+ 1

T

∂F̄c

∂C
− 1

T s

∂F̄ s
c

∂Cs

)]]]
= 0.

(67)

Likewise we find for the time evolution of the bulk tensorial
structural variable

�
δ b C + R2 :

(
1

T

∂F̄c

∂C

)
− ∇ ·

[
DC

... ∇
(

1

T

∂F̄c

∂C

)]
= 0,

(68)

where
�
δ b C denotes the upper convected derivative in the bulk

phase, equal to
�
δ b C = dbC

dt
− C · (∇sv)T − (∇sv) · C. (69)

The consistency requirement for transfer of the tensorial
structural variable between bulk phase and interface takes the
form (M = I,II)

JM
�C :

(
�M

T M

∂F̄M
c

∂�̄M
− �s

T s

∂F̄ s
c

∂�̄s
+ 1

T M

∂F̄M
c

∂CM
− 1

T s

∂F̄ s
c

∂Cs

)

= DM
C

... ∇
(

1

T M

∂F̄M
c

∂CM

)
· ξM. (70)

For the jump balance for the surface tensorial structural
variable we find
�
δ s Cs − 4Hvs · Csξ + Rs

2 :

(
1

T s

∂F̄ s
c

∂Cs

)

−∇s ·
[

Ds
C

... ∇s

(
1

T s

∂F̄ s
c

∂Cs

)]

−
[[[

J�C :

(
�

T

∂F̄c

∂�̄
− �s

T s

∂F̄ s
c

∂�̄s
+ 1

T

∂F̄c

∂C
− 1

T s

∂F̄ s
c

∂Cs

)]]]
= 0,

(71)

and
�
δ s Cs denotes the upper convected surface derivative,

defined as
�
δ s Cs = dsCs

dt
− Cs · [(∇svs)T · P] − [P · (∇svs)] · Cs .

(72)
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The final balance equations we obtain from (7) are those for
the bulk and surface species mass densities ρ(J ) and ρs

(J ). For
these variables we obtain the differential species mass balance

dbρ(J )

dt
+ ρ(J )∇ · v −

N−1∑
K=1

∇ ·
(

D̃(JK)∇
[
μ(J )

T

])

−∇ · (α̃(J )∇T ) = 0, (73)

the consistency requirement (M = I,II)

�M
(J )

(
μ̌M

(J )

T M
− μ̌s

(J )

T s

)
+ �T M

(J ) (T M − T s)

= −ρM
(J )(v

M − vs) · ξM +
N−1∑
K=1

D̃M
(JK)∇

[
μM

(J )

T M

]
· ξM

+ α̃M
(J )∇T M · ξM, (74)

and the differential jump species mass balance

dsρ
s
(J )

dt
+ ρs

(J )∇s · vs −
N−1∑
K=1

∇s ·
[
D̃s

(JK)∇s

(
μs

(J )

T s

)]

−∇s

(
α̃s

(J )∇sT
s
) +

[[[
ρ(J )(v − vs) · ξ

−
N−1∑
K=1

D̃(JK)∇
[
μ(J )

T

]
· ξ − α̃(J )∇T · ξ

]]]
= 0. (75)

We have now extracted the complete set of time evolution
equations for the independent bulk and interfacial variables,
a complete set of boundary conditions coupling the bulk
and interfacial fields, and a set of constitutive equations
for the fluxes appearing in the time evolution equations.
This set of equations allows us to construct specific models

for a wide range of multiphase systems with a complex
microstructure, by choosing specific forms for the bulk and
surface configurational Helmholtz free energy, F̄c and F̄ s

c , the
scalar relaxation parameters R1 and Rs

1, the tensorial relaxation
and diffusion parameters R2, Rs

2, D� , Ds
� , DC and Ds

C , the
second order tensors G and Gs , and the coupling tensors �

and �s . As an example, we will discuss the application of this
framework to emulsions stabilized by anisotropic colloidal
particles (i.e., Pickering emulsions), in a companion paper.
Pickering stabilized emulsions are highly relevant systems for
the food, cosmetics, and pharmaceutical industries.

VII. CONCLUSIONS

In this paper we have presented a nonequilibrium ther-
modynamic model for the dynamics of multiphase systems
with a complex microstructure (emulsions, foam, immiscible
polymer blends), in the context of the GENERIC framework.
The effect of the microstructure on dynamic behavior was
incorporated by including scalar and tensorial structural
variables in the set of bulk and interfacial system variables.
To ensure consistency of our model with the chain rule of
functional calculus, a MINT term has to be included in the
GENERIC, and to satisfy the entropy degeneracy requirement,
this term has to include several new contributions involving the
bulk and interfacial tensorial variables. The model produces
a complete set of balance and constitutive equations for the
bulk and surface fields, and a set of boundary conditions
linking bulk to surface fields. By choosing specific forms of
the free energies, relaxation parameters, diffusivity tensors,
and coupling tensors we can create a wide range of models for
specific multiphase systems, which are valid not only close to
equilibrium, but also far from equilibrium.
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[11] H. C. Öttinger, Beyond Equilibrium Thermodynamics (Wiley-

Intersience, Hoboken, 2005).
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