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The general possible form of mean-field parametrization in a running frame in terms of current, energy,
and density functionals is examined under the restrictions of Galilean invariance. It is found that only two
density-dependent parameters remain which are usually condensed in a position-dependent effective mass and
the self-energy formed by current and mass. The position-dependent mass induces a position-dependent local
current, which is identified for different nonlinear frames. In a second step the response to an external perturbation
and relaxation towards a local equilibrium is investigated. The response function is found to be universal in the
sense that the actual parametrization of the local equilibrium does not matter and is eliminated from the theory
due to the conservation laws. The explicit form of the response with respect to density, momentum, and energy
is derived. The compressibility sum rule as well as the sum rule by first- and third-order frequency moments are
proved analytically to be fulfilled simultaneously. The results are presented for Bose or Fermi systems in one,
two, and three dimensions.
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I. INTRODUCTION

Density functional theories have turned out to be very
successful in describing highly correlated systems. The strict
proof shows that for calculating the ground state it is sufficient
to have a density-dependent functional. This is based on
the existence of a variational principle and a functional to
extremize. For excitations and in nonequilibrium it is not
obvious to find such a density functional since an extremal
principle which would lead to only one density-dependent
functional is not available before the time evolution of the
density is known. Therefore, parameterizations of the mean
field in terms of observables like density, momentum, and
energy are commonly met in the literature. Let us inspect first
how this is implemented in nuclear and solid state physics.

In nuclear physics there have been widely used density-
dependent parametrizations of contact interactions originally
introduced by Skyrme [1,2] to fit experimental binding prop-
erties. One can consider such density-dependent two-particle
potentials as arising from three-particle interactions [3,4]. As
extensions the effective mean field has been described by cur-
rent and energy-dependent terms [5,6] with the help of which
the time-dependent Hartree-Fock theories have been simplified
[5]. The current contributions break explicitly the time invari-
ance and an effective mass appears [7]. This velocity depen-
dence of the Skyrme forces simulates finite-range effects [6].

The crucial theoretical tool is the response function which
provides as poles the collective excitations. Sometimes such
collective excitations are described by collective variables
and the response function is deduced by density variations
of Skyrme-type potentials obeying frequency-weighted sum
rules [8]. This line of treatments starts from time-dependent
Hartree-Fock equations to derive the response by a time-
reversal broken Skyrme interaction [9,10].

As a result the response has been used successfully to
describe collective excitations like giant resonances [7–11]

also in multicomponent systems [12–18]. In fact, the velocity
dependence of the quasiparticle mean field induces the appear-
ance of multipole forces and when treated in random phase
approximation (RPA) produces multiple pairing forces [19].
An unwanted byproduct is the violation of Galilean invariance
which has to be reintroduced by symmetry restoring forces
and which shows a better agreement with the data on scissor
modes in nuclei [20]. A renormalized quasiparticle RPA has
been developed which cures spurious states and which has been
successfully applied to describe low-lying multipole vibrations
[21]. The removal of spurious center-of-mass motions is one
of the most studied consequences of broken symmetries in
nuclear matter [22].

The breaking of Galilean invariance for electrons in a
solid can be restored by the construction of quasiparticles
completing the Bloch theorem. The expansion of the crystal
Bloch Hamiltonian around the band extrema leads to an
effective quasiparticle energy which contains besides the
parabolic band also velocity-dependent terms leading to the
entrainment effect, where the momentum of a condensate is a
linear combination of its own current and those of the other
condensates [23]. The consequence is that the mass current
does not agree with the mean momentum [24,25] but two
different masses appear [26,27]. Therefore, neutral excitations
due to correlations can carry momentum but no current [28].

The Galilean invariance imposes severe restrictions on the
theory [27,29] and has been applied to plasmon frequency and
Drude weights [30,31] and in doped graphene [26], where a
strong renormalization effect has been reported. In the Landau
Fermi liquid theory the demand on Galilean invariance leads
to complicated restrictions on the energy functional [27],
which has been rather seldomly used explicitly, e.g., for
transport phenomena in superconductivity [32]. It has been
reported that the effect of velocity dependence described in
Skyrme forces and which agrees with the experimental values
cannot be reproduced when the particle-hole interaction is
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restricted to its Landau form [6]. Therefore, here we use a
parametrization of the quasiparticle energy in terms of current
and kinetic energy which completes the Galilean invariance
and contains the momentum-dependent terms explicitly. There
has been investigations of interacting Bose systems breaking
the Galilean invariance due to the coupling with dispersionless
modes [33]. However, with an appropriate quasiparticle picture
the Galilean invariance should be possible to restore.

All the above considerations require a density-dependent
effective mass. Such position-dependent masses have gained
great attention in semiconductor literature. Its concept has
been criticized on the basis of the Bargmann theorem that
Newton relative principle requires the mass to be a constant
and forbids a coherent superposition of states of different
masses [34]. Later it was refuted [35] by showing that this
theorem does not apply to the band dependence of the
effective mass. In fact, it was shown rigorously that the
instantaneous Galilean invariance is in agreement with the
concept of position-dependent masses induced by the band
structure or by boundary conditions on the wave function due
to abrupt heterojunctions [36,37]. This problem has led to a
deep foundation of quantum mechanics in terms of the Galilean
group [38,39].

The connection between Schrödinger equation based on
deformed canonical commutation relations, a curved space,
and a position-dependent effective mass has been shown in
[40]. The resulting noncommutativity of the mass with the
momentum operator can be circumvented with the concept
of nonadditive spatial displacements in the Hilbert space
[41]. The actual form of the correct effective Hamiltonian is
subject to severe boundary conditions of Galilean invariance,
Hermiticity, and probabilistic wave function [42,43]. Exactly
solvable effective-mass Schrödinger equations have demon-
strated the usefulness of the position-dependent mass concept
[44,45]. Even scattering of particles with position-dependent
masses has been successfully described [46].

With respect to these effective density-dependent Hamil-
tonians it is desirable to have a theoretical treatment for
the response function to an external scalar perturbation.
This response function determines the two-particle correlation
function as a Fourier transform of the structure function and
therefore any one- and two-particle observables including the
optical response. It is therefore the preferred theoretical object
to learn about the interacting system. The position-dependent
mass and the density dependence will create complications
compared to the normal many-body treatment. As we will see,
this can be treated but with more involved local currents and
response function, from which will be shown an ability to
complete even higher order sum rules.

The major line of improvement beyond the simple RPA
goes via the construction of local fields which describe the
modification of the restoring force due to the correlation of
particles. Such local fields screen the full effect of interaction
at short distances [47]. There exists a large literature [48] to
construct such local fields, starting with the pioneering work
of Hubbard [49]. A deficiency of the simple local field factors
showing negative pair correlation functions has been repaired
by Singwi et al. [50] using exchange correlations, which
leads to a local field factor in terms of the structure function.
Since the latter itself is expressed by the response function a

self-consistency loop is required. This approximation has been
used and compared with molecular dynamical simulations [51,
52] and further improved invoking the third-order frequency
sum rule [53] by Pathak and Vashishta [54]. This describes
the motion of particles inside the correlation hole [55,56].
The quantum versions have been discussed in [57–59] and
the difference between correlated and uncorrelated occupation
numbers show up in the difference of the corresponding kinetic
energies, leading to further improvements [47,60], which are
expressed by the virial theorem in density derivatives of the
pair correlation function [61,62]. These density variations
have been used as an alternative to construct expressions
for the local fields [55,60,63]. A numerical discussion of the
Singwi, Tosi, Land, and Sjölander local field corrections can
be found for plasma systems in [64], which shows appreciable
deviations from the simple RPA results.

The third-order frequency sum rule plays an important rule
in a variety of applications. It was used to locate the collective
mode in small metal particles [65] and to calculate the
optical dipole response in metal clusters [66]. Such conserving
calculations have been performed for small metal clusters [67]
based on Bethe-Salpeter expansion schemes [67,68]. It has
been derived for electronic multilayers in [69] and was used for
bilayer charged Bose liquids [70]. The third-order frequency
sum rule is especially important for low-dimensional layered
structures [71–73] like the two-layered electron gas [74–76].

The hydrodynamic limit of the dynamical structure factor
has been computed in early times [77] to access shear and
bulk viscosity of ionized matter. Of special interest is also
the compressibility sum rule. One can construct local fields
directly from this sum rule [78]. A bad surprise was the
discovery that the compressibility and the third-order sum rule
cannot be completed simultaneously by one static local field
[60,79] since it violates the theorem of Ferrell, d2E0/d(e2)2 �
0. Therefore, the focus was on the construction of dynamical
local fields [57,62,80,81]. Unfortunately, even the dynamic
quantum version of the Singwi-Tosi-Land-Sjölander local field
cannot fulfill the compressibility sum rule [82]. The reason is
that a single degree of freedom like the self-energy cannot
provide this demand and in a previous paper it was shown
that one can fulfill both sum rules by introducing two degrees
of freedom: the self-energy and the effective mass [83]. While
this is impossible with static local field corrections [60,79], the
inclusion of the effective mass besides the self-energy makes
it possible to adapt these two quantities to complete both sum
rules. The reward is that the first-order frequency sum rule
leads to the effective mass instead of the bare mass, as the
theory demands if one starts from a basic Hamiltonian. One can
form such an effective quasiparticle picture by the knowledge
of the structure factor at small distances from experiments or
simulations [52,84,85].

Different schemes can be used to obtain an effective Hamil-
tonian characterized by density-dependent mass, current, and
energy. As we show in the appendices, the correct sum rules
appear then with the effective quasiparticle mass. There are
two boundaries we demand on the theory. The first is to
complete the frequency as well as compressibility sum rules
of the response function. The second is to find the same
current from kinetic equations and from the sum rule of
the response function. That the latter demand turns out to
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be nontrivial is a fact mostly overlooked since one usually
does not work in running frames. This reveals the underlying
conflict between Galilei invariance and sum rules met by
different approximations.

Various phenomenological schemes for parameterizing the
response function to complete the sum rules exist in the
literature [86–88]. This ranges from variational approaches
[62] to approximative parametrizations of the kinetic equation
[89] up to recurrence relations [90,91]. Various requirements
on the possible forms can be extracted from different limiting
laws; for an overview, see [92].

The other line of improvements includes collisional cor-
relations in the response [93–97], mostly in relaxation time
approximation and imposes conservation laws [83,98–101].
The extensions of this dielectric function first published by
Mermin [93] has been applied to stopping power problems
[98,102]. The trick is to consider the relaxation not towards a
global equilibrium but to a local equilibrium. The latter one
is specified by the demand of conservation laws. We show
that in this way a universal response function appears which
is independent of the local equilibrium. We restrict ourselves
here to a one-component system, though the generalization
to multicomponent systems is straightforward [12,17] and
considered in different approaches [103–105] where some
pitfalls have to be observed [106].

Other improvements rely on numerical studies of Monte
Carlo [71,85,107,108] or molecular dynamical simulations
[52,84]. Solving the equation for the two-time Green’s
function [109] provides an alternative way to sum higher
order correlations [110]. Here we use the method to lin-
earize the kinetic equation which creates correlations in the
response that are of higher order than those used in the
kinetic equation itself. Due to the variation of internal lines,
the linearization of the mean-field kinetic equation already
leads to RPA (GW) approximation. The Boltzmann equation
due to the Born diagram leads to a linear response which
includes high-order vortex corrections fulfilling sum rules
consistently [111,112]. The systematic perturbative expansion
of correlation functions provides, in principle, the dynamical
local fields [111] which are of interest for the conductivity in
the long wavelength limit [81] and for the response in strongly
disordered electron systems [113]. However, the simultaneous
fulfillment of frequency and compressibility sum rules remains
a problem. Alternative approaches use specific techniques
useful for specific lower-dimensional systems like the response
in fraction-quantum-Hall systems [114]. Here we formulate
all expressions in D = 1,2,3 dimensions such that any of the
above mentioned systems in nuclear, solid state, and plasma
physics can be treated.

A. Overview of the paper

The paper consists of five parts following this introduc-
tion. First the notion of density-dependent Hamiltonians is
discussed, which can be understood as being created by
Skyrme forces or as the parametrization of mean fields. This
is performed first in the quasiclassical picture in order to
provide a feeling for the complexity of the demand of Galilean
invariance. The density-dependent parameters like effective
mass, current, and self-energy induce position-dependent

currents. Therefore, different frames are specified and dis-
cussed, which serve as benchmarks for the further treatment.
The general response is formulated later for any frame. The
first section ends with the expected form of compressibility.
In the second section the kinetic equation for mean fields with
density-dependent effective Hamiltonians is discussed and the
nontrivial transformations between position-dependent frames
are presented. This makes it possible to identify the corre-
sponding nonlinear currents created by the position-dependent
effective masses. This quasiclassical treatment is extended to
a quantum kinetic treatment, allowing the complete nonlocal
structure of the kinetic terms. Special attention is paid to the
backflows arising from the interaction of particles with the
surroundings. In Sec. IV the response function is derived as
a linearization of the appropriate kinetic equation around a
local equilibrium. The actual form of the latter one turns out to
be irrelevant for the response function since the conservation
laws determine the form of response function. The explicit
transformation rules for the response function to change the
nonlinear frames are derived. In Sec. V the analytical form of
the response function is presented within the most convenient
mixed frame. The local field corrections constitute a physical
way to represent the extension of the response function from
standard RPA expressions. The static and the large frequency
expansion of the latter one provides the compressibility and
frequency-weighted sum rules. With the help of the explicit
commutator relations in Appendix A it is shown that the
response function derived here completes the compressibility
and third-order frequency sum rule simultaneously. Explicit
expansion formulas are provided in Appendix B for one, two,
and three dimensions. In Sec. VI a summary and outlook can
be found.

II. QUASIPARTICLE PICTURE AND PARAMETRIZATION
OF MEAN FIELD

A. Building quantities and Galilean transformation

We want to construct a quasiparticle picture, i.e., a mean
field, which describes Galilean-invariant excitations and which
leads to a consistent response function in the sense that the
conservation laws are obeyed. We consider a general form
which one can derive from microscopic theories and see that
boundary conditions of mass current and Galilei invariance
will restrict such forms considerably.

In general, we have three building quantities, the density
of particle, the momentum density or mass current, and the
kinetic energy density,

n(q,t) =
∑

p

f (p,q,t),

J(q,t) =
∑

p

pf (p,q,t), (1)

EK (q,t) =
∑

p

p2

2m0
f (p,q,t),

respectively, with the bare mass m0 in terms of the Wigner
function,

f (p,q,t) =
〈
p + 1

2
q

∣∣∣∣ ρ̂
∣∣∣∣p − 1

2
q
〉
. (2)
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For our purpose the difference between Wigner function and
quasiparticle distribution does not play any role [115].

Since we derive all formulas for one-, two-, and three-
dimensional systems (D = 1,2,3), we understand

∑
p

=
∫

dDp

(2πh̄)D
, (3)

and in equilibrium the distribution f is the Fermi or Bose
function for Fermi or Bose systems correspondingly.

Under Galiean transform r ′ = r + vt with velocity v =
u/m0 and p′ = p + u, these quantities should transform as

n′ = n,

J′ = J + nu, (4)

E′
K = E + u2

2m0
n + u · J

m0
,

such that the only two possible Galilean-invariant forms read(
p − J

n

)2

, I2 = 2m0EK − J2

n
. (5)

Any expression has to be built up from these two ingredients.
We search now for the quasiparticle energy excitation in

terms of the building quantities (1),

εp(J,EK ) = A(n)p2 + B(n)
p · J(n)

n
+ C

EK (n)

n
+ ε0(n).

(6)

Since we consider later the linear response it is sufficient to
have the linear terms where the density-dependent coefficients
A,B,C have to be determined such that the Galilean transform
(4) is respected. Further demands will be the conservation laws
and that the corresponding response function should obey sum
rules. We want to see how much freedom remains for these
general coefficients if conservation laws and sum rules and
Galilean invariance are completed simultaneously. The density
functional in the usual sense is represented by ε0[n].

B. Momentum versus mass current

The question is now how to construct a quasiparticle energy
which is convenient enough to work out a consistent response
function. In fact, the appropriate quasiparticle energy as an
argument of the distributions turns out to be nontrivial in
equilibrium.

A simple guess fp = f (εp) that the local quasiparticle
distribution is a function of the quasiparticle energy (6) leads
immediately to a contradiction. In fact, the mean momentum
from (6) would read

J =
∑

p

pf (εp) = −J
B

2A
, (7)

which would result in B = −2A. This is in contradiction to
the far-reaching demand that the momentum density should be
equal to the current multiplied with the flux mass m(n),

J = m
∑

p

∂εp

∂p
f (εp) = m(2A + B)J, (8)

which would result in

A ≡ 1

2m∗ = 1

2

(
1

m − B

)
. (9)

The only way out of this dilemma between (7) and (8) is to
modify the actual quasiparticle energy (6) needed in defining
the local equilibrium towards the local-frame quasiparticle
energy,

ε̃p = εp− m∗
nm

J =
(
p − J

n

)2

2m∗ − J 2B2m∗

2n2
+ C

EK

n
+ ε0,

(10)

and to choose

fp = f (ε̃p). (11)

Then we have the desired agreement

J =
∑

p

pfp = m
∑

p

∂εp

∂p
fp (12)

and further
∑

p
∂ε̃
∂pfp = 0. In this way, the position-dependent

coefficient A = 1/2m∗ of the quadratic momentum term is the
effective mass. The coefficient B of the linear momentum term
turns out to be the difference of the inverse effective and flux
masses.

It is remarkable that the quasiparticle energy in the
laboratory frame (6) cannot be the argument of the equilibrium
distribution function. Instead, we have to have as the argument
the quasiparticle energy in the rest frame (10).

C. Galilean invariance

The foregoing consideration is equivalent to the correct
Galilean transformation provided we determine the coefficient
C suitably. In order to complete the Galilean invariance (4)
we have to have for the transformed distribution f ′

p = fp−u
since no other possibility completes all three transformations
(4) simultaneously. This translates with (11) into the demand

ε̃p(J ′,E′) = ε̃p−u(J,E). (13)

With (10) and (5) one derives from (13) now

C

m0
= m∗B2 = B

(
m∗

m
− 1

)
≡
(

1

m
− 1

m∗

)2

m∗, (14)

and the quasiparticle energy (6) becomes

εp = p2

2m
− B

(
p − J

n

)2

+ m0B
2(

1
m

− B
) EK

n
+ B

J 2

n
+ ε0

= 1

2m∗

(
p + m∗B

J
n

)2

+ �(n), (15)

with

� = m∗B2

2n

(
2m0EK − J 2

n

)
+ ε0. (16)

The local-frame quasiparticle energy (10) reads, therefore,

ε̃p = 1

2m∗

(
p − J

n

)2

+ �. (17)
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We can obtain different frames from the local frame by a
suitable momentum shift,

E = ε̃p−Q. (18)

The values for the above laboratory frame εp = ε̃p−Q are
realized by Q = −m∗J/nm, and for the mixed frame with
quadratic dispersion ep = ε̃p−Q we need Q = −J/n.

In the previous paper [83] the situation had been investi-
gated where no currents are present and therefore B = 0 or
m = m∗ and � = ε0. Please note that the difference in the two
masses has been recognized in the Fermi liquid theory [30]
and obviously reflects the properties of the running frame.

Let us summarize that with two yet undetermined density-
dependent constants, the flux mass m and B, or alternatively
m and m∗, or m∗ and �, we can find a local quasiparticle
distribution (11) such that the Galilei transformation (4) is
completed and the mean momentum equals the mass current
(12). One notes that the free mass m0 does not appear anymore
in the momentum-dependent terms. This is the reason why in
the sum rules the effective mass appears and not the bare mass
of the basic Hamiltonian, as shown in Appendix A.

D. Local versus laboratory frame

The notion of local-frame quasiparticle energy becomes
justified if we calculate the mean energies. The mean local-
frame quasiparticle reads

Ẽqp =
∑

p

ε̃pf (ε̃p)

= m0

m

(
m∗

m
+ 2

m

m∗ − 2

)(
EK − J 2

2nm0

)
+ nε0 (19)

and is Galilean invariant, Ẽ′
qp = Ẽqp, which shows that we are

in the frame of moving quasiparticle. The mean laboratory-
frame quasiparticle energy otherwise reads

Eqp =
∑

p

εpf (ε̃p)

= m0

m

(
m∗

m
+ 2

m

m∗ − 2

)
EK + B

J 2

n
+ nε0, (20)

which Galilei transforms as

E′
qp − Eqp = m0m

∗

m2

(
u2

2m0
n + u · J

m0

)
. (21)

We could conclude that this mean quasiparticle energy Galilei
transforms as the kinetic energy (4) by fixing m∗m0 = m2, but
this is not used here in this paper.

The local quasiparticle energies in different frames Galilei
transform themselves as

ε′
p = ε + Bu · p + B2m∗

(
u2

2
+ J

n
· u
)

,

(22)

ε̃′
p = ε̃p−u = ε̃p − u · p

m∗ + 1

m∗

(
u2

2
+ J

n
· u
)

,

which shows that the local excitations cannot be Galilean
invariant due to the position-dependent effective mass.

The difference between the two local quasiparticle energies
in the laboratory and local frame read

εp − ε̃p = p · J
nm

+ J 2

2n2m

(
m∗

m
− 2

)
. (23)

The mean momentum and kinetic energy in the laboratory-
frame picture become∑

p

pf (εp) =
(

1 − m∗

m

)
J,

(24)∑
p

p2

2m0
f (εp) = EK − m∗

m

(
2 − m∗

m

)
J 2

2nm0
,

respectively, and one sees the difference to the expressions in
the local frame (1).

E. Mixed frame with quadratic dispersion

Both the local-frame and laboratory-frame quasiparticle
energies can be written into a quadratic dispersion by different
momentum shifts,

ep = εp−m∗ B
n

J = ε̃p+ J
n

= p2

2m∗ + �, (25)

with the self-energy (16). It is most convenient to work in this
mixed frame when it comes to linear response. Therefore, we
try to formulate the kinetic equation next in this mixed frame
and provide transformation rules for the response function to
reach other frames.

Redefining the nonequilibrium distribution function,

fp(r,t) = fp+ J
n
(r,t), (26)

according to mixed frame, we can express the observables (1)
by

n(r,t) =
∑

p

fp,

J(r,t) =
∑

p

pfp =
∑

p

(
p + J

n

)
fp, (27)

EK (r,t) =
∑

p

p2

2m0
fp + J 2

2nm0
,

which means ∑
p

pfp = 0,

(28)∑
p

p2

2m0
fp = EK − J 2

2nm0
= I2

2m0
,

in difference to (24) and (1).

F. Compressibility in equilibrium

From the explicit expression for the density (27) we can see
directly how the compressibility of the system should look. The
compressibility for noninteracting systems reads

n2K0 = −
∑

p

∂ep
fp = β

∑
p

fp(1 ∓ fp), (29)
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with the inverse temperature β = 1/kBT and the upper
sign for fermions and lower sign for bosons. The com-
pressibility for the interacting system we can calculate
directly:

n2K = ∂μn = β
∑

p

fp(1 ∓ fp)

[
1 − ∂n

(
p2

2m∗ + �

)
∂μn

]

= K0

1 − D
2

∂ ln m∗
∂ ln n

+ n2∂n�K0
. (30)

Here we have used a partial integration,

−β
∑

p

p2fp(1 ∓ fp) = m∗∑
p

p∂pfp = −nDm∗, (31)

valid for any dimension D = 1,2,3.
The form of compressibility (30) should also be the result of

the compressibility sum rule for the density-response function
κn which describes the induced density change due to an
external potential,

δn = κnδV
ext = κnVqδn

ext. (32)

The polarization, in turn, describes the induced density
variation in terms of the induced potential,

δn = �δV ind, (33)

which itself is the sum of the external potential and the effective
interaction potential (Vq + ξq)δn such that one gets

δn = �[(Vq + ξq)δn + Vqδn
ext]

= �

1 − [Vq + ξq(ω)]�
Vqδn

ext = κnVqδn
ext, (34)

which provides the relation between the response (32) and
the polarization function. The local field ξq(ω) describes the
shielding of the interaction at short distances by particle
correlations [47].

Denoting the total local density by δloc = δn + next we can
write alternatively

δn = �(Vqδn
loc + ξqδn)

= �

1 − ξq(ω)�
Vqδn

loc = κs
nVqδn

loc, (35)

which defines the screened response function κs
n.

The dielectric function ε relates the local densities to the
external ones δnext = εδnloc, as is customary in electrody-
namics relating the displacement field to the electric field.
Therefore, we can write the induced density change in terms
of the external one as

δn

δnext
= κnVq = 1

ε
− 1, (36)

from which one has ε = 1 − Vqκ
s
n. The ratio of the induced

density change to the local density change reads

δn

δnloc
= κs

nVq = 1 − ε. (37)

The compressibility sum rule states now that

n2K = lim
q→0

1

Vq

Re [ε(q,0) − 1] = − lim
q→0

�(q,0)

1 − ξq(0)�(q,0)

= K0

1 + n2K0 lim
q→0

ξq(0)
, (38)

where (29) has been used. Comparing with (30) the static local
field should obey

lim
q→0

ξq(0) = ∂n� − D

2n2K0

∂ ln m∗

∂ ln n
. (39)

This has to be fulfilled by the response function if the
compressibility sum rule is obeyed.

Using the Kramers-Kronig relation we can write for (38)
alternatively

n2K = lim
q→0

1

Vq

Re [ε(q,0) − 1]

= − lim
q→0

2

πVq

∫ ∞

0

dω

ω
Imε(q,ω)

= lim
q→0

2

π

∫ ∞

0

dω

ω
Im

�(q,ω)

1 − ξq(ω)�(q,ω)
, (40)

which illustrates the notion sum rule. We prove that this sum
rule is obeyed by the response function in Sec. V E.

III. KINETIC THEORY

A. Quasiclassical kinetic equation

1. Local-frame kinetic equation

The excitation of the system is described by the effective
quasiparticle energy ε̃(p,q,t) in the local frame (10). The idea
is that the deviation of the distribution function from the global
equilibrium one f0(ε̃) is realized by a local equilibrium one
f l.e.(ε̃) such that we have

δf = f − f0 = f − f l.e. + f l.e. − f0 = δf l.e. + ∂f

∂ε̃
δε̃,

(41)

where for f0 and f l.e. the Fermi-Bose distribution serves as
the equilibrium distribution.

Now we are going to construct the appropriate kinetic
equation. From the foregoing consideration we have to obtain
f l.e.(ε̃) as the local equilibrium solution of the kinetic equation,
which means

∂pε̃∂rf
l.e. − ∂rε̃∂pf

l.e. = 0. (42)

Therefore, we can write a general local-frame linearized
kinetic equation as

d

dt
δf + ∂pε̃∂rδf − ∂rδε̃∂pf0 = δ�̇Gal∂pf0, (43)

with a possible time-dependent backflow force �̇Gal from
which we know at the moment only that it vanishes in
equilibrium. It will be specified later. The reason for this force
is the position-dependent mass and current which induce a
backflow force and an entrainment which we name together
Galilean force.
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The deviation of the quasiparticle energy from the equi-
librium value should be understood as a deviation of the local
equilibrium one in the sense that it can be expressed in terms of
the energy functional of the Landau theory δε̃ = ∑

p′ fpp′δfp′ .
From now on we understand all observables φ = n,ε,J,E, . . .

as local equilibrium ones and the deviation from it denoted as
δφ.

Observing that ∂pε̃ = (p − J
n

)/m∗ it is not difficult to see
that from (43) follows

d

dt
δn = −

∑
p

∂pδ�̇
GalF0. (44)

Assuming �Gal to be momentum independent we see that the
density excitation is a constant in time, which is in agreement
with the above notion of local frame. In the local frame ε̃ we
are local to the excitation and do not see a current.

The customary density balance reads

δṅ + ∂r · δJn = 0, (45)

where the particle current Jn should have an appropriate
relation to the mass current Jn ∼ J. In order to obtain this
balance we have to go to an appropriate frame such that the
corresponding distribution function and quasiparticle energies
are changed according to

fp(r,t) = FP (R,t) ,
(46)

ε̃p(r,t) = EP(R,t),

with the new coordinates R = r + ∫ t vt̄ d t̄ and P = p + Q.
The relocation of the center-of-mass coordinate is given by
the velocity vt . The accompanying momentum shift Q has to
be chosen adequately since it describes the local excitation
and formally the Fourier transformation of the difference
coordinates.

There is an important difference in whether we first
transform and linearize then or the other way around. The
difference is obviously a term ∼δQ. Transforming first and
then linearizing, the current balance reads∑

p

pδFp =
∑

p

pδfp−Q =
∑

p

p[(δf )p−Q − ∂pi
fp−QδQi]

=
∑

p

(p + Q)δfp +
∑

p

fpδQ = δJ + Qδn+ nδQ,

(47)

which agrees with∑
p

pδFp = δ
∑

p

pFp = δ(J + nQ) = δJ + Qδn + nδQ.

(48)

Otherwise, if one first linearizes and then transforms, one
obtains∑

p

pδFp =
∑

p

p(δf )p−Q =
∑

p

(p + Q)δfp = δJ + Qδn

(49)

and we see that δQ is absent compared to (47). This term
describes just the induced backflow force when transformed
to another frame.

In the following we choose the procedure as first to
linearize and then to transform. This has the advantage that all
transformations obey a group property which can be handled
conveniently. With transforming (46) after linearization, the
observables (1) calculated with δFp = (δf )p−Q are denoted
with a tilde and we have (Jq = q · J,Q = qQ)⎛

⎜⎝
δñ

δJ̃q

δẼK

⎞
⎟⎠ = DQ

⎛
⎜⎝

δn

δJq

δEK

⎞
⎟⎠, (50)

with the matrix

DQ =

⎛
⎜⎝

1 0 0

q2Q 1 0
q2Q2

2m0

Q

m0
1

⎞
⎟⎠ (51)

obeying the group properties DaDb = Da+b and D−1
Q = D−Q.

The other way to first transform and then linearize would
destroy these convenient properties.

In fact, in the kinetic equation the difference in these two
procedures vanishes, as one can see by inspecting different
choices from the kinetic equation (43). If we first transform
and then linearize, we get

∂t δF + (∂PE + v) · ∂RδF − ∂RδE · ∂PF0

= [δ�̇l − ˙δQl + ∂pi
E(∂Rl

δQi − ∂Ri
δQl)] · ∂Pl

F0. (52)

One sees that, besides the drift term modified by the velocity
v, the momentum shift results in extra forces written on the
right-hand side. The latter ones can be simplified observing
that

∂pi
E
(
∂Rl

δQi − ∂Ri
δQl

) · ∂Pl
F0 = −∂pE · [∂pF0 × (∇ × δQ)]

= −(∂pE × ∂pF0)(∇ × δQ)

= 0, (53)

where we use the fact that the equilibrium distribution is
F0 = F (E). One sees that the extra terms arising if we first
transform and then linearize cancel out, except the δ̇Q term,
which we absorb in the backflow force since it is obviously a
force established by the time dependence of the shift current
δQ.

In the following we consider every time that the procedure
to first linearize and then transform and the final kinetic
equation (52) reads

∂t δF + (∂PE + v) · ∂RδF − ∂RδE · ∂PF0

= (δ�̇
Gal − ˙δQ) · ∂PF0, (54)

where we understand ∂RδF = (∂Rδf )p−Q and similarly for
E . It should be noted that the differences between these two
pictures cancel out in the kinetic equation (54), as we have
seen in (53).

So far we have transformed the kinetic equation in an
equivalent manner. This means we are still in the local frame
as (43). We can change the frame by taking into account the
appropriate force on the quasiparticles. This is achieved by the
transformation

∂RδE = (∂Rδε̃)p−Q → ∂Rδ(ε̃p−Q). (55)

022148-7



K. MORAWETZ PHYSICAL REVIEW E 88, 022148 (2013)

The first equality expresses what we understood by the
transformation so far. With the second replacement we change
actually the picture to the corresponding frame.

In the general frame the density balance from (54) with (55)
takes the form

δṅ + v · ∂Rδn −
(

n

m∗ ∂RδQ
)

= −
∑

p

∂pδ�̇
Gal

F0, (56)

since δQ̇ is independent of p. The term in the parentheses
on the left-hand side appears only since we linearize first and
transform then as outlined above.

In order to obtain the customary density balance (45), we
choose

v = −Q∂n

(
n

m∗

)
(57)

and obtain from (56) exactly the density balance (45) with the
particle current

Jn = − n

m∗ Q. (58)

The backflow force on the right-hand side of (56) will lead
to a contribution if it is dependent on the momentum. We
assume that the appropriate frame is the one where the time
dependence of the momentum shift cancels this backflow force
on the right-hand side of (54). Otherwise, we will get an
additional frequency dependence and a renormalization of
the current response. This possibility we investigate later in
a separate chapter as unbalanced backflow.

It is instructive to rewrite (54) explicitly as

∂t δF + ∂PE · ∂RδF − ∂RδE · ∂PF0

=
{
∂t δ(�Gal − m∗v − Q)

− ∂Rδ

([
p − J

n
− Q

]
· v − m∗

2
v2

)}
· ∂PF0. (59)

The right-hand side is zero if the backflow force compensates
the terms, which is customary in standard derivations of kinetic
equations. Let us discuss the different frames now.

2. Standard quasiparticle equation

First we choose

Q = −m∗

m

J
n

(60)

such that the standard quasiparticle kinetic equation appears
with the quasiparticle energy E = ε̃p+m∗J/nm = εp. The par-
ticle current (45) and the velocity of quasiparticles become,
according to (58) and (57),

vlab = ∂n ln

(
n

m∗

)
J
m

, J n = J
m

. (61)

Let us remark that (60) is only one of many possible choices to
obey the necessary kinetic equation (43). The only additional
boundary is that the balance (45) results, which translates into
these compensations. Among these choices there is also a
possible frame where the Galilean forces on the right-hand side

of (59) show a form of Bernoulli potential which is appropriate
when one considers superfluidity.

3. Quasiparticle equation in mixed frame with
quadratic dispersion

Most conveniently we work in a picture where the quasi-
particle energy reads Ep = ep = p2/2m∗ + � and shows a
quadratic dispersion (25). One sees from (46) that this is
possible if we choose

Q = −J
n
. (62)

The corresponding particle current (45) and the velocity of
quasiparticles become, according to (58) and (57),

vmix = ∂n ln

(
n

m∗

)
J

m∗ , J n = J
m∗ . (63)

This form of mean current for a position-dependent mass will
also be proven from the sum rules by quantum commutators
in Eq. (A32).

The kinetic equation reads with δep = δε̃p+J/n =
δεp−m∗BJ/n and F = f

∂tδf +
(

v + p
m∗

)
∂Rδf − ∂Rδep∂pf0

= (δ�̇
Gal − ˙δQ) · ∂Pf0. (64)

The right-hand side vanishes if we chose again balanced
backflows δ�Gal = δQ.

Please note that in the laboratory frame the flux mass m

connects obviously the mass current with the particle current
(61). In the mixed frame it is the quasiparticle mass m∗ which
connects both currents (63). Consequently, these masses will
determine the corresponding first-order frequency sum rule as
it is shown in Appendix A.

B. Nonlocal and quantum calculation

Now we extend the calculation towards the inhomogeneous
case such that the q dependence has to be taken into account.
We combine it with the quantum calculation since in this way
the inhomogeneous and quantum response is described with
the same formalism.

We start from the kinetic equation for the one-particle
density operator in the quasiparticle picture,

˙̂F + i[Ê + V̂ ext,F̂ ] = I, (65)

where ε = 〈p + 1
2q|ε̂|p − 1

2q〉 is the quantum expectation
value of (17) and the collision side I vanishes when integrated
over the three moments of (1). The external potential V ext

creates a perturbation and excitation, which we calculate later.
The quasiparticle energy operator or mean field can be

represented in general as a Skyrme type of potential

Ê = −∇Ãx∇ − 1

2i
(B̃x · ∇ + ∇ · B̃x) + Ã′p2

+ C̃
EK

n
+ ε0(nq), (66)
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in analogy to the quasiclassical limit (6). We have

E =
〈
p + 1

2
q

∣∣∣∣ ε̂
∣∣∣∣p − 1

2
q
〉

= p2(Ã′
q + Ãq) − p · (B̃q + qÃ′

q)

+ q2

4
(−Ãq + Ã′

q) + C̃q �
Ek

n

∣∣∣∣
q

+ ε0[nq]

= p2Aq + Bq · p + Cq �
Ek

n

∣∣∣∣
q

+ ε0[nq]. (67)

Here a simple renaming of q-dependent constants is used such
that the same form as in the homogeneous case (6) appears.
The difference is now that all constants are q-dependent, which
leads to convolutions,

J (q,ω) = nq � Q̃q =
∑

k

nqQ̃q−k, (68)

as Fourier transform of the spatial and time-dependent values,

J(R,t) = n(R,t)Q̃(R,t). (69)

The quasiparticle energy and the effective mass are understood
as spatial-dependent quantities due to the density dependence
in the sense

m∗(R) =
∑

q

eiq·Rm∗(nq). (70)

The same arguments concerning the Galilean invariance as in
the quasiclassical limit, Eqs. (9) and (15), apply now, resulting
in

Aq = 1

2m∗

∣∣∣∣
q

, Bq = 1

m
− 1

m∗ , (71)

and analogously for the local-frame quasiparticle energy ε̃ of
(10). The balance equation for the density follows directly
from the trace of (65) as

ṅq = i
∑
pq̄

(〈
p + q̄

2

∣∣∣∣Ê
∣∣∣∣p − q − q̄

2

〉

−
〈
p + q + q̄

2

∣∣∣∣Ê
∣∣∣∣p − q̄

2

〉)
F (p,q̄). (72)

The part Ê of the Hamiltonian (A13) which contributes to the
commutator,

〈p1|pAp + 1

2
(pB + Bp)|p2〉

= p1p2Ap1−p2 + p1 + p2

2
Bp1−p2 , (73)

is responsible for the density balance

ṅq + iq(2J � Aq + Bq � n) = 0, (74)

with p = (p1 + p2)/2 and q = p2 − p1.
Dependent on the choice of frames, see (10) or (25), one

obtains, remembering Aq = 1/2m∗, the balance

local frame, δε̃p, Bq = −2Aq �
Jq

n
:

ṅq = 0;

laboratory frame, δεp, Bq = Jq

n
�

(
1

mq

− 1

m∗
q

)
:

ṅq + iq
(

Jq �
1

mq

)
= 0;

mixed frame, δep = δε̃p+J/n = δεp−m∗BJ/n, Bq = 0 :

ṅq + iq

(
Jq �

1

m∗
q

)
= 0, (75)

in agreement with the quasiclassical ones. Again we note that
different masses connect the mass current with the particle
current in different frames.

C. Quasiparticle excitation

Now we consider the excitation due to the external pertur-
bation V ext and linearize the quasiparticle energy according to

E = Epδq + δE, (76)

with the equilibrium part corresponding to the chosen frame
(10), (24), or (25) and the general excitation,

δE =
(

V0 + V4
p2

2m0
+ V3p · J + V5EK + V6J

2

)
δn

+ V1p · δJ + V2δEK + V7J · δJ. (77)

Some parameters are the same for all frames,

V0 = dε0

dn
, V2 = C

n
= m0m

∗

n

(
1

m
− 1

m∗

)2

, V3 = dV1

dn
,

(78)

V4 = m0
d

dn

1

m∗ , V5 = dV2

dn
, V6 = 1

2

dV7

dn
,

and two are frame specific:

local, δE = δε̃p,Q = 0 :

V1 = − 1

nm∗ ; V7 = 1

n2m∗ − V2

nm0
;

laboratory, δE = δεp,Q = − m∗

nm
J :

V1 = 1

nm
− 1

nm∗ ; V7 = 0;

mixed, δE = δep = δε̃p+J/n = δεp−m∗BJ/n,Q = −J
n

:

V1 = 0; V7 = − V2

nm0
. (79)

Now we check under which restrictions the excitation (77)
itself is Galilean invariant δε = δε′.

Straightforward calculation of (77) with the help of (4)
shows that

δε′ − δε =
[
u2

(
V1 + V4

2m0
+ nV3 + V2

2m0
+ n

V5

2m0

)

+ p · u
(

V1 + V4

m0
+ nV3

)

+ u · J
(

V3 + V5

m0
+ 2nV6 + V7

)]
δn

+
(

V1 + V2

m0
+ nV7

)
u·δJ (80)
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TABLE I. The parameter for the Galilean-invariance breaking
terms of the quasiparticle excitations in different frames.

d1 d2 d2 + nd1

Local 0 0 0
Laboratory (m∗ − m)/nm2 1/m m∗/nm2

Mixed 0 1/m∗ 1/m∗

and with (78)

δε′ − δε = δ
[

1
2u2(d2 + nd1) + p · ud2 + u · Jd1

]
, (81)

with the values of d1 = V1 + V2
m0

+ nV7 and d2 = nV1 + 1
m∗

given in Table I. We see that only in the local frame the
excitation is Galilean invariant. In the mixed or laboratory
frame we could have Galilean invariance of the excitations
if the masses m∗ and m would be density independent, i.e.,
position independent. Therefore, the density-dependent mass
destroys the Galilean invariance of excitations though the mean
observables (1) remain, of course, Galilean invariant, as we
have discussed in Sec. II.

We can express the necessary shift (58) and frame velocity
(57) for the corresponding frames in order to obtain the balance
(45) also in terms of the parameter (78). Observing that

∂pδE =
(

p
m0

V4 + JV3

)
δn + V1δJ, (82)

we can repeat the integration of (54) to obtain the balance (56)
but now obtaining

Jn = − n

m∗ Q =
(

1

m∗ + nV1

)
J,

(83)

v = ∂n ln

(
n

m∗

)
Jn.

We see that V1 determines the actual choice of the frames.

D. Backflows

The reason for the different occurring Galilei forces on
the right-hand side of (54) or specifically (59) or (64) and
their compensations is the backflow. This backflow can be
understood as dragged particles by a moving quasiparticle
[116], which means that it will be frame-dependent. If one
adds a quasiparticle to the system in the general frame it carries
a group velocity ∂pE = vp. The total particle current we had
from (54),

δJn =
∑

p

∂pEδF +
∑

p

∂pδEFp + vδn

= δJn
QP + δJn

c + δJn
v . (84)

The last term describes the dragging of particles due to the
frame velocity v and reads explicitly (83)

δJ n
v = Jnδ ln

(
n

m∗

)
. (85)

The first two terms in (84) represent just the deviation from
local equilibrium since we can write

δJn
QP + δJn

c =
∑

p

∂pEδF −
∑

p

δE∂pF

≡
∑

p

vpδF −
∑

p

vcδF

=
∑

p

∂pE (δF − ∂EFδE) =
∑

p

∂pEδF l.e., (86)

where the drag velocity vc is given as in the Fermi-liquid theory
with δE = ∑

p′
fpp′δFp′ such that

∑
p

δE∂pF =
∑

p

∂pE∂EFpδE =
∑
pp′

fpp′∂pE∂EFpδFp′

=
∑
p′

δFp′
∑

p

fpp′∂pE∂EFp ≡
∑
p′

δFp′vc
p′ . (87)

One sees from (86) that the group velocity vp is changed by
the drag velocity vc, which describes the flow of the other
quasiparticles around. We can consider this as the backflow
since it arises from the interaction of moving quasiparticles
with the surrounding media.

Therefore, we call the first part of the particle current (84)
the quasiparticle current. With the quasiparticle energy in a
general frame (18) it takes the form

δJn
QP = n

m∗ δ

(
J
n

)
. (88)

The second part we call backflow current, which reads
with (83)

δJn
c = n

m∗ δ

(
m∗Jn − J

n

)
= n

m∗ δ(m∗V1J). (89)

We see that the parameter V1 determines the backflow current
and is given as the difference between the mass current of
quasiparticles m∗Jn and the momentum current J.

The thorough treatment of backflows in metals can be found
in [117]. When collisional correlations are considered the
correct balance of backflows require the extended quasiparticle
picture [115,118]. The backflow is intimately connected
with the effect of collisional drag [119], which induces a
drag current from one layer to another layer [120]. The
phonon-assisted drag is important for thermal transport in
nanostructures [121,122]. In two-dimensional electron gases it
was found that the backflow effect is dominant over three-body
correlations for ground-state properties [123,124].

IV. RESPONSE FUNCTIONS

A. Local equilibrium

Next we consider the density-, momentum-, and energy-
response functions due to an external perturbation δV ext.
Therefore, the kinetic equation is linearized with respect to
the quasiparticle excitation and the density-, current-, and
energy-response function are calculated from a conserving
kinetic equation with the same quasiparticle excitation.

The conserving relaxation time approximation means that
we approximate the collision side of the kinetic equation (65)
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by a relaxation towards a local equilibrium in the sense of (41),

˙̂F + i[Ê + V̂ ext,F̂ ] = F̂ l.e. − F̂

τ
. (90)

The local equilibrium will be specified such that all three
conservation laws (1) are obeyed. We choose for the local
equilibrium distribution a (Fermi-Bose) function F0 with three
suitable parameters like, e.g., mean current, temperature, and
chemical potential,

F l.e.(p,r,t) = F0

{
ε0[p − Q(r,t)] − μ(r,t)

T (r,t)

}
, (91)

or alternatively the mass, self-energy, and current,

F l.e.(p,r,t) = F0

{
[p − Q(r,t)]2

m∗(r,t)T
+ �(r,t) − μ

T

}
, (92)

or any other set of three parameters. The actual choice does
not play a role since it vanishes from the theory as we will see
now.

B. Local equilibrium parameter from conservation laws

The deviation of the local equilibrium distribution from
equilibrium reads〈
p + q

2

∣∣∣∣F l.e. − F0

∣∣∣∣p − q
2

〉
= F0

(
p + q

2

)− F0
(
p − q

2

)
E
(
p + q

2

)− E
(
p − q

2

) δεl.e.,

(93)

where the deviation of the quasiparticle energy from the local
equilibrium is dependent on the moments δεl.e. = δεl.e.(1,p ·
q,p2/2m0). If one uses the mean momentum, chemical
potential, and temperature as a set of observables (91), one
has, e.g.,

δεl.e. =

⎛
⎜⎝

1

p · q
p2

2m0

⎞
⎟⎠

T
⎛
⎜⎜⎝

− 1
T

q2Q

m0T

μ

T 2 − q2Q2

2m0T 2

0 − 1
m0T

Q

m0T 2

0 0 − 1
T 2

⎞
⎟⎟⎠
⎛
⎜⎝

δμ

δQ

δT

⎞
⎟⎠,

(94)

or if one uses mass, current, and self-energy (92), one gets

δεl.e. =

⎛
⎜⎝

1

p · q
p2

2m0

⎞
⎟⎠

T
⎛
⎜⎜⎝

− q2Q

m∗T −Qq2

m∗ 1
Q

(m∗)2 − 1
m∗ 0

m0
(m∗)2 0 0

⎞
⎟⎟⎠
⎛
⎜⎝

δm∗

δQ

δ�

⎞
⎟⎠ , (95)

where we use Q = Qq. In general, one can specify the
deviation of the local quasiparticle energy by

δεl.e. = −

⎛
⎜⎝

1

p · q
p2

2m0

⎞
⎟⎠

T

A

⎛
⎜⎝

δl.e.
1

δl.e.
2

δl.e.
3

⎞
⎟⎠ , (96)

where the matrix A is characteristic for the chosen local equi-
librium parameter δl.e.

i . The actual form of A—and therefore
the form of local equilibrium specification—is not needed
since it will be eliminated from the theory by conservation
laws as follows.

The local equilibrium is determined by the requirement that
the expectation values for density, momentum, and energy

are the same as the expectation values performed with the
complete distribution F . From the kinetic equation (90) we
see that the conservation laws for density, momentum, and
energy are fulfilled if the corresponding expectation value of
the collision side vanishes,∑

p

φ(F − F l.e.) = 0. (97)

Taking this into account we can express the deviation of
the observables φ = 1,p,p2/2m0 from equilibrium (41), with
δF = F − F0 = F − F l.e. + F l.e. − F0 as

δφ(q,ω) =
∑

p

φδF (p,q,ω) =
∑

p

φ(F l.e. − F0). (98)

Performing the momentum integrals in (98) with the help of
(93) and (96), we have for the density, momentum, and energy
deviation

δX =

⎛
⎜⎝

δn

δJq

δE

⎞
⎟⎠ = −G(0)A

⎛
⎜⎝

δl.e.
1

δl.e.
2

δl.e.
3

⎞
⎟⎠ , (99)

where Jq = q · J. The appearing correlation functions are of
the form

gφ(ω) =
∑

p

φ
F0
(
p + q

2

)− F0
(
p − q

2

)
E
(
p + q

2

)− E
(
p − q

2

)− ω − i0
(100)

and are condensed in matrix notation,

G(ω) =

⎛
⎜⎝

g1 gpq gε0

gpq g(pq)2 gpqε0

gε0 gε0pq gε2
0

⎞
⎟⎠

=
∑

p

⎛
⎜⎝

1

p · q
p2

2m0

⎞
⎟⎠⊗ �F0

�E − ω − i0

⎛
⎜⎝

1

p · q
p2

2m0

⎞
⎟⎠

T

, (101)

with �F0 = F0(p + q
2 ) − F0(p − q

2 ) and analogously for E .
The standard RPA Lindhard expression is just g1(ω). Here ⊗
stands for the dyadic product.

Frequently we use the distribution function Fp in different
frames (46), which translates into modified observables (50).
Therefore, the general form of (99) in an arbitrary frame Fp

reads

DQ

⎛
⎜⎝

δn

δJq

δE

⎞
⎟⎠ = −G(0)A

⎛
⎜⎝

δl.e.
1

δl.e.
2

δl.e.
3

⎞
⎟⎠ (102)

and the correlation matrix (101) is calculated with F and E
in the general frame according to (46). We continue with this
general case and show up to what extent the final response
function becomes independent of the frame such that we
can choose the most convenient mixed frame with quadratic
dispersion (25) later.

By inverting (102) we can eliminate the deviations from
local quasiparticle energies δl.e.

1,2,3 in the balances of the kinetic
equation (90), as we perform now.
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C. Linear response from the kinetic equation

We linearize the kinetic equation (90) with the help of the
general form of excitations (77) and work in the general frame,
which gives

δF = �F

�E − ω̄ − i0
(δV ext + δE)

+ x

(
�F

�E − ω̄ − i0
− �F

�E

)
δεl.e.

+ ω(δQ − δ�Gal)∂pFp

�E − ω̄ − i0
, (103)

with

x = 1

iτ ω̄
, ω̄ = ω − q · v + i

τ
. (104)

The last term of (103) comes from the the δ̇Q term in (54) if
not compensated. For the sake of completeness we keep this
form, though in the appropriate frame it is compensated by the
backflow force ˙�Gal.

By integrating (103) over the moments 1,p,p2/2m0 and
using (96) we get with the notation (99)

DQδX =
∑

p

⎛
⎜⎝

1

p · q
p2

2m0

⎞
⎟⎠ �F

�E − ω̄ − i0
(δV ext + δE) − x

∑
p

⎛
⎜⎝

1

p · q
p2

2m0

⎞
⎟⎠⊗

(
�F

�E − ω̄ − i0
− �F

�E

)⎛⎜⎝
1

p · q
p2

2m0

⎞
⎟⎠

T

A

⎛
⎜⎝

δl.e.
1

δl.e.
2

δl.e.
3

⎞
⎟⎠

+ ω
∑

p

⎛
⎜⎝

1

p · q
p2

2m0

⎞
⎟⎠δ(Q − �Gal)∂pFp

�E − ω̄ − i0
. (105)

Rewriting (77) in matrix notation,

δE =

⎛
⎜⎝

1

p · q
p2

2m0

⎞
⎟⎠

T

ṼδX , (106)

with the interaction matrix,

Ṽ =

⎛
⎜⎝

V0 + V6J
2
q /q2 + V5EK V7Jq/q

2 V2

V3Jq/q
2 V1/q

2 0

V4 0 0

⎞
⎟⎠, (107)

and inverting (102) to eliminate A in (105), the equation for
the deviations δX becomes

κ−1δX = {[
G−1(1 + x) − G−1

0 x
]
DQ − V

}
δX

=

⎛
⎜⎝

1

0

0

⎞
⎟⎠δV ext. (108)

The inversion of the matrices in (108) yields the response
tensor κ . We see that the actual form of the deviation of
observables from local equilibrium has dropped out of the
theory due to the demand of energy conservation (102).

The occurring interaction matrixV is given by (107) with an
additional part added in the left upper corner if one considers
situations of unbalanced backflow forces. This comes from
the time derivative of the right-hand side of (54). Let us
parametrize ∂t δ(Q − �Gal)∂pF → −iωq∂pF (a δJq

q2 + b
Jq

q2 δn)
with b(n) = ∂na(n), which results in

V0 → V0 + ω

(
a

q2

δJq

δn
+ b

Jq

q2

)
δn. (109)

In case that these terms occur such that δ�̇Gal does not cancel
δQ̇ we discuss the consequences in the next paragraph.

From (108) we see how a Q transformation is changing the
response tensor and how it looks in different frames. If we
want to express the correlation matrix in f (ε̃) according to
the local frame, we can reabsorb this transformation into the
correlation matrix G like

G̃ = D−QG(p,Fp,p)DT
−Q

= G(p − Q,Fp,p − Q) = G(p,fp,p)

=
∑

p

⎛
⎜⎝

1

p · q
p2

2m0

⎞
⎟⎠⊗ �fp

pq
m∗ − q · J

nm∗ − ω̄ − i0

⎛
⎜⎝

1

p · q
p2

2m0

⎞
⎟⎠

T

,

(110)

where we used

DQ

⎛
⎜⎝

1

p · q
p2

2m0

⎞
⎟⎠ =

⎛
⎜⎝

1

(p + Q) · q
(p+Q)2

2m0
.

⎞
⎟⎠. (111)

The equation for the deviations (108) can be multiplied with
DT

Q from the left to yield

{
(1 + x)G̃−1 − xG̃−1

0 − DT
QV
}
δX

= DT
Q

⎛
⎜⎝

1

0

0

⎞
⎟⎠δV ext =

⎛
⎜⎝

1

0

0

⎞
⎟⎠δV ext, (112)
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and the response tensor (108) gets the structure

κ−1 = P−1 − DT
QV, (113)

where the polarization tensor describes the response without
mean field V

P−1(ω) = (1 + x)G̃(ω)−1 − xG̃(0)−1 (114)

and is obviously frame independent. In contrast, the interaction
matrix is multiplied by DT

Q according to the desired frame.
Summarizing, we have seen that the parameters δl.e.

i of
the local equilibrium distribution have been eliminated from
the response function with the help of the conservation laws.
This is remarkable since it shows that the response function is
independent of the choice of the local equilibrium parameters
and entirely determined by the conservation laws, which
justifies calling it universal.

D. Renormalization by uncompensated backflow forces

In the case when we work in a frame where the backflow
force on the right-hand side of (54) is not compensated, we
obtain an additional frequency part (109) in the interaction
matrix (107). Besides the trivial shift ωbJq/q

2 in V0 there
appears an additional part of the current response δJq/δn with
the factor ã = aω/q2. The latter one leads to a renormalization
of the response tensor as follows. We write⎡

⎢⎣κ−1 −

⎛
⎜⎝ ã

δJq

δn
0 0

0 0 0

0 0 0

⎞
⎟⎠
⎤
⎥⎦ δX =

⎛
⎜⎝

1

0

0

⎞
⎟⎠δV ext, (115)

which means that by multiplying with κ ,⎡
⎢⎣1 − κ

⎛
⎜⎝ ã

δJq

δn
0 0

0 0 0

0 0 0

⎞
⎟⎠
⎤
⎥⎦ δX =

⎛
⎜⎝

1 −ãκ11 0

0 1 − ãκ21 0

0 −ãκ31 1

⎞
⎟⎠δX ,

(116)

and, finally,

δX = 1

1 − a ω
q2 κ21

⎛
⎜⎝

κ11

κ21

κ31

⎞
⎟⎠δV ext. (117)

We see that an additional renormalization of the response
tensor appears by an expression given in terms of the current
response κ21.

V. RESULTS FOR THE RESPONSE FUNCTION

A. Explicit forms of correlation functions

Let us inspect the different correlation functions (100) as
they appear in (101). In the general frame we have

�Ep+ q

2
− Ep− q

2
= pq

m∗ + O, O = − Jq

nm∗ − q2Q2

m∗ , (118)

with Q = qQ. In fact, the various correlation functions can
be reduced to only three different ones given by moments of

φ = 1,p2,p4 in (100). One has with ω̄ = ω − q · v + i/τ

gpq = m∗∑
p

�F − (O − ω̄)m∗∑
p

�F
pq
m∗ + O − ω̄

= m∗(ω̄ − O)g1,

g p2pq
2m∗

= 1

2

∑
p

p2�F + ω̄ − O

2

∑
p

p2 �F
pq
m∗ + O − ω̄

= q
∑

p

pF + m∗(ω̄ − O)g p2

2m∗

= −nm∗O + m∗(ω̄ − O)g p2

2m∗
,

g(pq)2 = (m∗)2
∑

p

(
pq
m∗ − O + ω̄

)
�F + (m∗)2(O − ω̄)2g1

= −nq2m∗ + (m∗)2(O − ω̄)2g1. (119)

The needed moments of (p2/2m0)n can be easily obtained
by an appropriate scaling of the above expressions with
(m∗/m0)n. We see that the Q transformation appearing in
O can be absorbed in the frequency shift except for gpqε ,
where it appears explicitly. This renders the response formulas
somewhat involved and nontransparent. We restrict ourself
therefore from now on to the mixed frame with quadratic
dispersion (25), which provides Q = −Jq/nq2 due to (62)
and conveniently O = 0. Therefore, the correlation functions
are to be calculated with Fp = f(ep), leading to (27) and (28).

B. Explicit form of response function in mixed frame with
quadratic dispersion

The polarization matrix is symmetric and has the following
terms [ω̄ = ω − v · q + i/τ = � + i/τ ]:

P12 = m∗�P11, P13 = PhP11, P23 = PhP12,

P22 = (m∗)2�2P11 − m∗nq2,

P33 = P11P
2
h + (i�τ − 1)

gh

4m2
0

g2
p2 (0) − g1(0)gp4 (0)

g1(0)gh − i�τg1(ω̄)
,

P11 = g1(ω̄)

1 − 1
1−i�τ

[1 − gs + 2m0Phgt ] − im∗�
nq2τ

g1(ω̄)
,

Ph = 1

2m0

gp2 (0)gh − i�τgp2 (ω̄)

g1(0)gh − i�τg1(ω̄)
, (120)

with the auxiliary quantities

gh = gp2 (ω̄)2 − gp4 (ω̄)g1(ω̄)

gp2 (0)2 − gp4 (0)g1(0)
,

gs = gp2 (ω̄)gp2 (0) − gp4 (0)g1(ω̄)

gp2 (0)2 − gp4 (0)g1(0)
, (121)

gt = gp2 (ω̄)g1(0) − gp2 (0)g1(ω̄)

gp2 (0)2 − gp4 (0)g1(0)
.

These results are the main result of the section and represent
the universal response function in the sense that the actual form
of the local equilibrium has dropped out of the theory provided
the conservation laws are enforced.

Let us compare now to known special cases. We have in-
cluded momentum, energy, and density conservation �n,j,E =
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P11. The inclusion of momentum conservation leads to the
same local field correction irrespective of whether one has
only density or also energy conservation considered [100],

1

�n,j,E(ω)
− 1

�n,E(ω)
= 1

�n,j(ω)
− 1

�n(ω)
= − iω

τ

m∗

nq2
.

(122)

If we would have considered only density conservation, the
Mermin-Das polarization reads [93,94]

�n = g1(ω̄)

1 + x − x
g1(ω̄)
g1(0)

= g1(ω̄)

1 + 1
1−i�τ

[
g1(ω̄)
g1(0) − 1

] , (123)

with (104).
It was found that the low frequency limit of the polarization

including all three conservation laws approaches the Mermin-
Das (density) formula, while the high frequency limit falls
with ω−5 compared to ω−3 for Mermin-Das polarization [100].
The long wavelength expansion of the expression including
momentum conservations shows an excellent agreement with
the complete expression for both the high and the low
frequency limit. The corrections of order q2 drop out and it is
effectively of the order q4.

The polarization P11 in different notations has been
discussed and compared with the Mermin-Das dielectric
function in [99,101] and has been applied to stopping power
problems in plasma and storage rings [98]. The extension to
multicomponent systems has led to a prediction of a low-lying
collective mode in nuclear matter [12].

It is also instructive to write the static limit of the response
functions where one has to keep care of limω→0 ω̄ = i/τ . One
obtains from (120)

P(0) =

⎛
⎜⎜⎝

g1(0) 0
gp2 (0)

2m0

0 −nm∗q2 0
gp2 (0)

2m0
0

gp4 (0)

4m2
0

⎞
⎟⎟⎠. (124)

As in the case of the Mermin-Das polarization function, all
effects of the relaxation time vanish in the static limit.

C. Density- and energy-response functions

With the help of the results of the foregoing section from
(108) the current and energy-response functions are related to
the density-response function in the mixed frame via

δJq

δn
= Jq

n
+ m∗(ω − v · q), (125)

δEK

δn
= Ph + Ṽ4

(
P33 − P11P

2
h

)
+ Jq

nq2

[
Jq

2nm0
+ m∗

m0
(ω − v · q)

]
. (126)

Remembering the velocities (63) we see that the current
response (125) can be rewritten as

−ωδn + qδ

(
J

m∗

)
= 0, (127)

which is exactly the density balance (45) with the particle
current (63). This consistency is satisfying and justifies the
somewhat lengthy discussion of the introductory chapters.

For later use we express the density derivative of the
Galilean-invariant form (5) with the help of (126) as

∂nI2

2m0
= ∂n

(
EK − J2

nm0

)
= Ph + V4

(
P33 − P11P

2
h

)
=
(

2

D + 1

)
I2

2nm0
+ q2

8m0
+ o

(
1

ω2

)
, (128)

where the expansion formulas of (B19) have been used.
Finally, let us remark that if we would use the renormaliza-

tion (117) with the expression for the local frame a = 1/n,
we would obtain a vanishing density response δn = 0 in
agreement with the notion of local frame.

D. Local field correction

The density-response function results in

κn = δn

V ext
= P11

1 − (V0 + ξq)P11
= g1(ω)

1 − (V0 + ξq − ξ ∗
q )g1(ω)

,

(129)

with the local field correction with respect to the polarization
P11,

ξq = Ṽ0 − V0 + Ṽ4Ph + Ṽ7
∂Jq

∂n
+ Ṽ2

∂EK

∂n

= Ṽ0 −V0 + (Ṽ4 + Ṽ2)Ph + Ṽ2
Jq

nq2

[
Jq

2nm0
+ m∗

m0
(ω−vq)

]

+ Ṽ2Ṽ4
(
P33 − P11P

2
h

)+ Ṽ7

[
Jq

n
+ m∗(ω − vq)

]
,

(130)

where (125) and (126) have been used.
Please note that there is a local field with respect to the RPA

polarization g1(ω) itself according to (120),

ξ ∗
q = 1

P11
− 1

g1(ω)

= gs(ω) + 2m∗Ph(ω)gt (ω) − iωτ

(1 − iωτ )g1(ω̄)
− 1

g1(ω)
− im∗ω

nq2τ

=
{

0 + o(ω2),

− 1
1−iωτ

(
1

∂μn
− 2EK

n2

)+ o(q2) = 1
1−iωτ

8εf

15n
+ o(q4),

(131)

with the last equality valid for zero temperature [83]. The static
limit of the latter one is nonzero, which is no contradiction
since the long-wave length expansion is performed while the
small-frequency limit is written in the first line. Obviously, the
limits of small � and q are not interchangeable as it is known
already from RPA Lindhard form of the dielectric function.

If we choose a frame where the backflow force leads to an
additional renormalization (117), it would give rise to an extra
local field,

ξq → ξq − a
ω

q2

∂Jq

∂n
. (132)

This completes the form of the conserving response function
obeying the three conservation laws (1).
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E. Compressibility sum rule

For the compressibility sum rule (38) we need to prove
(39) for the static local field factor lim

q→0
ξq(� = 0). First we

note that in the static limit from (120) follows P11(0) = g1(0).
Using the values for the mixed frame (79) in which we work,
it is not difficult to find

ξq(0) = ∂n� − m∗

2n
B2

(
∂nI2 − g2(0)

g1(0)

)

− 1

2
∂n

(
1

m∗

)[
m∗

2n
B2

(
g2

2(0)

g1(0)
− g4(0)

)
− g2(0)

g1(0)

]
,

(133)

where we used the abbreviation for the self-energy (16) and the
Galilei-invariant form (5). Using the relations in Appendix B,
particularly (B13), we see that for any dimension D the long
wave expansion is

g2(0)

g1(0)
= m∗D

nK0
+ o(q2),

(134)
g2

2(0)

g1(0)
− g4(0) = − (m∗D)2

K0
+ o(q2),

and the relation from (B2),

∂nI2 = m∗

2
∂n

(
1

m∗

)[
m∗

K0
D2 − (D + 2)I2

]
+ m∗D

nK0
, (135)

holds. Introducing (134) and (135) into (133), we see that
exactly (39) appears as

lim
q→0

ξq(0) = ∂n� − D

2n2K0

∂ ln m∗

∂ ln n
. (136)

This shows that the universal response function obeys the
compressibility sum rule. Next we prove that the response
function completes also the first- and third-order frequency
sum rule.

F. Frequency-weighted sum rules

The frequency-weighted sum rules can be easily read off
from the fact that the response function is an analytical function
in the upper half plane and falls off with large frequencies faster
than 1/ω2 such that the compact Kramers Kronig relation reads∫

dω′ κn(ω′)
ω′ − ω − i0

= 0, (137)

closing the contour of integration in the upper half plane. From
this one has

Reκn(ω) =
∫

dω′

π

Imκn(ω′)
ω − ω′ = 〈ω〉

ω2
+ 〈ω3〉

ω4
+ · · · , (138)

with the moments

〈ω2k+1〉 =
∫

dω

π
ω2k+1Imκn(ω). (139)

The first moments are known,

〈ω〉 =
∫

dω

π
ωImκn(ω) = nq2

m∗ , (140)

as shown in the Appendix A, Eq. (A28). The mass m0 appears
if we start with the a Hamiltonian with quadratic dispersion and

the bare mass. Here we have worked in the mixed or laboratory
frame that the masses m∗ and m should appear, respectively.
Indeed, from our response function (129) we obtain the large
frequency limit with the help of Appendix B (see also [83])
for all frames,

〈ω〉 = nq2

(
1

m∗ + nV1

)
. (141)

From the definition of the parameters (79) we see that for
the mixed frame V1 = 0 such that (140) is completed with
m∗, as it should. If we work in the laboratory frame we have
Ṽ1 = 1

nm
− 1

nm∗ and the sum rule (140) is completed with m as
stressed already after (75).

The higher order sum rules can be obtained from the
form of response function (129). Using the expansions of the
polarization,

ReP11(ω) = 〈ω〉P
ω2

+ 〈ω3〉P
ω4

+ · · · , (142)

and the local field,

Reξq(ω) + V0 = a0 + a2

ω2
+ a4

ω4
+ · · · , (143)

the response function (129) becomes

Re κn(ω) = P11 + a0〈ω〉2
P

ω4
+ · · · . (144)

We see that the large-frequency expansion of the polarization
function and of the response function agree up to the first-order
frequency sum rule, 〈w〉 = 〈w〉P . The first deviation arises by
the third-order frequency sum rule, i.e.,

〈ω3〉 = 〈ω3〉P + a0〈ω〉2
P , (145)

and is given by the zeroth-order expansion a0 of the local field
(143). For the polarization we obtain, with the help of (B19),

〈w3〉P = 3q2

(m∗)3

(
q2

D
I2 + (q · J)2

n

)
+ nq6

4
, (146)

and the zeroth-order expansion of the local field,

a0 = ε0 + ∂nV2I2

2m0
+ V2 + V4

2m0

[(
2

D + 1

)
I2

n
+ q2

4

]

= ∂n� + V4

2m0
∂nI2, (147)

where we have used (128) and the fact that the form of the
self-energy (16) reads

� = ε0 + V2I2

2m0
. (148)

As derived in Appendix A, Eq. (A38), we have obtained
with (147) exactly the sum rule following from the quantum
commutator relations. This completes the proof of frequency
sum rules and shows that the presented response function obeys
simultaneously the compressibility sum rule as well as the first
two energy-weighted sum rules.

VI. SUMMARY

An effective density-dependent Hamiltonian is considered
as it appears from Skyrme forces or mean fields. The
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Galilean invariance restricts the possibilities to an effective
position-dependent mass and a density-dependent current and
self-energy. Relations between these quantities are derived
which ensure the Galilean invariance of the theory. From
kinetic theory the accompanying currents are identified which
take specific forms for different nonlinear frames and show
the effect of entrainment as the influence of the surrounding
currents to the one considered. Backflow and entrainment are
interrelated and are formulated in terms of the effective mass,
current, and self-energy of the Hamiltonian. Quasiclassical
and quantum expression are considered.

The excitation of such system shows some specific features
due to the nonlinear density dependence which are described
by the density, current, and energy responses. Assuming a
relaxation towards a local equilibrium the explicit forms of
these response functions are calculated. It turns out that the
demand of conservation laws renders these response functions
independent of the actual form of the local equilibrium and
are therefore considered as universal. The transformation rule
is derived, which translates the response functions from one
nonlocal frame to another frame.

As a satisfying feature the current response as well as
frequency-weighted sum rules up to third order are shown
to be in agreement with the above identified nonlinear and
frame-dependent currents. The compressibility sum rule is
proven to be completed simultaneously with the third-order
frequency sum rule, which solves a longstanding puzzle that it
was considered impossible with a static local field correction.
Here the two degrees of many-body freedom, effective mass
and self-energy, are the crucial reasons for this result. The
explicit quantum commutators are calculated and shown how
they establish the sum rules.

Explicit expansion formulas are given for the long wave-
length and the high-frequency limits as well as the static limit.
All treatments and explicit formulas are presented in terms of
the D = 1,2,3 dimension parameter and are valid therefore for
Bose-Fermi systems in all three dimensions. The here derived
universal and consistent response function should be possible
to use for a wide range of applications where the many-body
effects are possible to recast into an effective mass, current,
self-energy, and conserving relaxation time. Especially the
density functional theories belong to this class as a special
case. Since the response is explicitly given for one, two, and
three dimensions it should be of interest to the physics of
low-dimensional materials especially their optical properties.
The numerical demand does not exceed the one calculating
the RPA Lindhard finite-temperature response function since
the universal response function is expressed by correlation
functions of moments of the RPA type.

Finally, let us remark that the explicit forms of the sum
rules in terms of the density-dependent mass, current, and self-
energy allows to be compared with the ones from the standard
two-body Hamiltonian with genuine two-body interactions.
Such identification makes it possible to deduce the effective
mass, current, and self-energy, which would be an alternative
way to express many-body correlations by a simpler effective
density-dependent one-particle Hamiltonian which was treated
here. These identifications are quite straightforward but depend
on the specific features and physics on which one wants to
focus. Therefore, it has been not written here in general.

Instead, the tools to perform such construction of effective
Hamiltonians are presented, with hope that they will be helpful
in solid-state as well as nuclear physics problems.
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APPENDIX A: PERTURBATION THEORY AND
FREQUENCY SUM RULES FOR ONE, TWO, AND THREE

DIMENSIONS

The external potential δV ext(r,t) induces a time-dependent
change in the Hamilton operator

δĤ (t) =
∫

drn̂(r,t)δV ext(r,t). (A1)

The variation of the density matrix operator ρ̂(t) = ρ̂ + δρ̂(t)
can be found from the linearized van Neumann equation as

δρ̂(t) = −i

∫ t

−∞
[δĤ ,ρ̂0], (A2)

where it has been assumed that the perturbation is conserving
symmetries of the equilibrium Hamiltonian [Ĥ0,δρ̂] = 0.

The variation of the density expectation value δn = Trδρ n̂

is consequently

δn(r,t) = −i

∫ t

−∞
dt ′
∫

dr ′V (r ′,t ′)〈[n̂(r,t),n̂(r ′,t ′)]〉. (A3)

Since in equilibrium the commutator is dependent only on the
difference of coordinates, and times we can define

〈[n̂(r,t),n̂(r ′,t ′)]〉 =
∫

dω

π
e−iω(t−t ′)

∑
q

eiq(r−r ′)Imκn(q,ω),

(A4)

from which we obtain the Fourier transform of (A3) to

δn(q,ω) = −V ext(q,ω)
∫

dω̄

π

Imκn(q,ω̄)

ω̄ − ω − i0

= V ext(q,ω)κn(q,ω), (A5)

identical with (32). To see the last identity in (A5), we write
(137) explicitly,

∫
dω′ Reκn(ω′) + iImκn(ω′)

ω′ − ω
+ iπReκn(ω) − π Imκn(ω) = 0,

(A6)
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to deduce the Kramers-Kronig relations

Re κn(ω) = −
∫

dω′

π

Im κn(ω′)
ω′ − ω

,

(A7)

Im κn(ω) = 1

π

∫
dω′

π

Re κn(ω′)
ω′ − ω

,

which shows the second equality of (A5).

1. Sum rules

Inverting (A4) and applying the spatial average
∫

d(r1 +
r2)/2V , one gets

Imκn(q,ω) = 1

2V

∫
dτei(ω−q·v)t 〈[n̂(q,t),n̂(−q,0)]〉, (A8)

where we wrote the mean drift velocity (57) explicitly. From
this expression it is easy to see that the frequency sum rules
read∫

dω

π
ωnImκn(q,ω)

= 1

V

∫
dt

∫
dω

2π
eiωt (ω + q · v)n〈[n̂(q,t),n̂(−q,0)]〉. (A9)

The first three moments read explicitly∫
dω

π
ωImκn(q,ω) = 〈ω〉,∫

dω

π
ω2Imκn(q,ω) = 2q · v〈ω〉, (A10)∫

dω

π
ω3Imκn(q,ω) = 〈ω3〉 + 3(q · v)2〈ω〉,

where 〈1〉 = 〈ω2〉 = 0. To calculate the sum rules, we have by
partial integration

〈ωn〉 = 1

V

∫
dt

∫
dω

2π
eiωtωn〈[n̂(q,t),n̂(−q,0)]〉

= 1

V
〈[(i∂t )

nn̂(q,t)|t=0,n̂(−q,0)]〉. (A11)

The sum rules are therefore transformed to the problem of
determining the corresponding commutators.

2. Effective Hamiltonian

We consider here only the mixed frame (25). The other
frames can be written similarly. Since the response is frame
independent in the sense that we know the transformation
between the different forms (113) we choose the most
convenient mixed frame with the effective quasiparticle energy
A(R)p2 + �(R), where A = 1/2m∗ and � = ε0 + V2I2/2m0.
We consider this energy as represented by the effective
Hamiltonian

Ĥ = p̂Âp̂ + ˆ̃�, (A12)

which has the matrix representation

H12 = 〈p1|Ĥ |p2〉 = p1 · p2Ap1−p2 + �p1−p2

=
(

p2 − q2

4

)
Aq + �̃q (A13)

in terms of the difference p = (p1 + p2)/2 and center-of-mass
momentum q = p1 − p2. Here we have used the notation in
(70). We see that the term Aqq

2/4 should be absorbed in

�q = �̃q − Aq

q2

4
(A14)

in order to reproduce the quasiparticle energy.
In second quantization we represent the Hamiltonian (A12)

by creation â+ and annihilation â operators,

Ĥ =
∑

12

â+
p1

âp2

(
p1 · p2Ap1−p2 + �p1−p2

)
. (A15)

The density matrix reads

f̂p,q = a+
p+q/2ap−q/2 (A16)

such that the thermal averaging provides the Wigner distribu-
tion function

fp,q = 〈f̂p,q〉 (A17)

and the density operator reads

n̂q =
∑

p

f̂p,q. (A18)

With the help of the standard commutator relations it is now
easy to prove the following two commutator rules:

rule 1,[∑
pq̄

f̂p,q̄φpĀq−q̄,Ĥ

]

=
∑
pq̄ ¯̄q

f̂p,q̄Āq− ¯̄q

{[
A ¯̄q−q̄

(
p2 − q̄2

4
+ q̄ · ¯̄q

2

)
+ � ¯̄q−q̄

]

× (
φp− q̄− ¯̄q

2
− φp+q̄− ¯̄q

2

)+ A ¯̄q−q̄ ¯̄q · p
(
φp− q̄− ¯̄q

2
+ φp+ q̄− ¯̄q

2

)}
;

(A19)

and

rule 2,

[f̂p,q̄φp,q̄,n̂−q] = f̂p,q̄−q

(
φp− q̄− ¯̄q

2 ,q̄ − φp+ q̄− ¯̄q
2 ,q̄

)
. (A20)

Applying repeatedly rule 1 (A19) one finds the first three
time derivatives of the density operator. The first one reads

i∂t n̂q = [n̂q,Ĥ ] = 2
∑
pq̄

f̂p,q̄ p · q Aq−q̄ (A21)

and the thermal averaging agrees, of course, with the
momentum-integrated quantum kinetic equation (Vlassov)
[Eq. (65)], which reads in matrix representation

iḟp,q =
∑

3

(
H2,3 f p1+p3

2 ,p3−p1
− f p2+p3

2 ,p2−p3
H3,1

)
. (A22)

Multiplying with p and integrating yields the balance for the
current,

i∂tq · J =
∑

q̄

∑
p

fp,q̄

{
(q2 − q · q̄)�̃q−q̄ + Aq−q̄

[
2(p · q̄)2

+ (q2 − q · q̄)

(
p2 − q̄2

4
+ q · q̄

2

)]}
. (A23)
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The second-order time derivative of the density operator reads

(i∂t )
2n̂q = 2

∑
pq̄ ¯̄q

f̂p,q̄Aq− ¯̄q

{[
A ¯̄q−q̄

(
p2 − q̄2

4
+ q̄ · ¯̄q

2

)
+ � ¯̄q−q̄

]
q · ( ¯̄q − q̄) + 2p · qp · ¯̄qA ¯̄q−q̄

}

+ 2
∑
pq̄

f̂p,q̄ p · q i∂tAq−q̄. (A24)

The third-order derivative takes the form

(i∂t )
3n̂q = 4

∑
pq̄ ¯̄qq′

f̂p,q̄Aq− ¯̄q

{
Aq′−q̄A ¯̄q−q′

[(
p2 − q̄2

4
+ q̄ · ¯̄q

2

)
(p · (q′ − q̄)q · ( ¯̄q − q̄) + p · ¯̄qq · (q′ − q̄) + p · q ¯̄q · (q′ − q̄))

+ q′ · p
(

q · ( ¯̄q − q̄)

(
p2 + (q̄ − q′)2 − q̄2

4
+ q̄ · ¯̄q

2

)
+ 2p · qp · ¯̄q + q · (q′ − q̄) ¯̄q · (q′ − q̄)

)]

+�q′−q̄A ¯̄q−q̄

[
p · (q′ − q̄)q · ( ¯̄q − q̄) + 2p · ¯̄qq · (q′ − q̄) + p · q ¯̄q · (q′ − q̄)

]}

+ 2
∑
pq̄ ¯̄q

f̂p,q̄

{[(
p2 − q̄2

4
+ q̄ · ¯̄q

2

)
q · ( ¯̄q − q̄) + 2p · qp · ¯̄q

]
(A ¯̄q−q̄i∂tAq− ¯̄q + i∂tA ¯̄q−q̄Aq− ¯̄q)

+ q · ( ¯̄q − q̄)
(
� ¯̄q−q̄i∂tAq− ¯̄q + i∂tA ¯̄q−q̄Aq− ¯̄q

) }+2
∑
pq̄ ¯̄q

f̂p,q̄i∂tAq− ¯̄q

{
2p · qp · ¯̄qA ¯̄q−q̄

+
[
A ¯̄q−q̄

(
p2 − q̄2

4
+ q̄ · ¯̄q

2

)
+ � ¯̄q−q̄

]
q · ( ¯̄q − q̄)

}
+ 2

∑
pq̄

f̂p,q̄ p · q (i∂t )
2Aq−q̄. (A25)

These somewhat lengthy expressions have to be subject to
rule 2 (A20) in order to calculate the commutators (A11). It
can be tremendously simplified if we observe that the required
parts for the commutator (A11) are the ones proportional to
the volume. Therefore, we expand all quantities around the
homogeneous equilibrium values,

fp,q = fpδq,0 + δfp,q, Aq = Aδq,0 + δAq. (A26)

Applying rule 2 (A20) to the derivatives (A21), (A24), and
(A25), we obtain for the commutators (A11) convolution
structures of the form∑

q̄

fp,q̄−qAq−q̄φq̄ = fpφqAδq,q + φqfpδAp + φqAδfp,0

= (V Afp + fpδAp + Aδfp,0)φq, (A27)

since δq,q = V represents the volume. Higher order convo-
lutions are analogously treated. Therefore, only the lowest
order expansion around the homogeneous values survives in
the expressions (A11) and therefore in the terms (A21), (A24),
and (A25). Finally, it translates into the limits q′ = ¯̄q = q̄ = q
in (A21), (A24), and (A25).

We obtain from (A21) the first energy-weighted sum rule,

〈ω〉 = 1

V
〈[i∂tnq,nq]〉 = 2q2A

∑
p

fp,0 = 2nq2A = nq2

m∗ .

(A28)

This is the sum rule obeyed by the response function (140).

The second-order weighted sum rule takes the form from
(A24),

〈ω2〉 = 1

V
〈[(i∂t )

2nq,nq]〉

= 8q2A2
∑

p

fp,0q · p + 2q2i∂tA
∑

p

fp,0

= 2q2A2q · J + 2nq2iȦ. (A29)

All quantities are the homogeneous ones in equilibrium.
Since we consider the linear response we have formally the
time derivatives at t = 0 to first order in the deviations of
equilibrium which are the values itself. This means

iȦ|t=0 = ∂nAiδ̇n|t=0 = 2∂nA (q · δJ|t=0 + q · JδA|t=0)

→ 4A∂nA q · J. (A30)

Taking into account that the mean velocity in mixed frame is
just (63), which can be written

q · v = 2

n
q · J(A + n∂nA), (A31)

we see that (A29) is exactly

〈ω2〉 = 2〈w〉q · v, (A32)

which is the required form (A10). This proves the form of
mean velocity (63) also from the sum rules.

The third-order sum rule reads

〈ω3〉 = 1

V
〈[(i∂t )

3nq,nq]〉

= 24A3q2
∑

p

fp,0(q · p)2 + 2q2A3
∑

p

fp,0
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+ 24q2AiȦ
∑

p

fp,0q · p + 2q2i2Ä
∑

p

fp,0

= 24A3q2

(
q2

D
I2 + (q · J)2

n

)
+ 2nq2A3

+ 24q2AiȦ q · J + 2nq2iÄ. (A33)

The first two terms are just the third-order expansion of the
polarization 〈w3〉P according to (146). Therefore, we still have
to prove

〈w3〉 = 〈w3〉P + 3(q · v)2〈w〉 + a0〈w〉2 (A34)

in order to justify the form (A10) with (145).
Using (A31) we see that we have to have

a0〈w〉2 = 24q2AiȦ q · J + 2nq2iÄ

− 24nq2A (q · J)2[2A∂nA + n(∂nA)2]. (A35)

Since we multiply in the first term iȦ already with q · J we
have to use from (A30) only the second term, otherwise we
would get a quadratic response at t = 0.

The second derivatives of A requires some more care. We
have from (A30)

i2Ä = 2i∂t [∂nA (q · δJ + q · JδA)] . (A36)

From all the appearing six explicit time-derivative terms only
one remains as first-order response since (A36) is already
multiplied with q · J in (A35),

i2Ä = 2A∂nAi∂tq · δJ

= 4A∂nA

{∑
p

fp,0[(p · q)2 + q2p2] + q2

2
n δ�̃

}
,

(A37)

where we used (A30) and linearized (A23). Observing
with (A14) that ∂nA δ�̃ = ∂nA∂n�̃δn = ∂n�̃δA → ∂n�̃A =
∂n�A + Aq2/4, we see that we obtain after cancellation of
terms

a0 = ∂n� + ∂nA

[(
2

D
+ 1

)
q2I2 + (q · J)2

n

]
= ∂n� + ∂nA∂nI2, (A38)

where we have used the identity (128). The expression (A38)
is just the one we have obtained from the sum rule of the
response function (147), which completes the proof.

APPENDIX B: EXPANSION FORMULAS

1. General relations

We provide here the expansion formulas for any dimension
D = 1,2,3 and work in the mixed frame where the distribution
is g(ep) and the quasiparticle energy is ep = p2/2m∗ + �.
First we observe that for any dimension we have with angular
integration dα by partial integration,∑

p

pn∂εf = m∗
∫

dα

∫ ∞

0
dppD+n−2∂pf

= −m∗(D + n − 2)
∑

p

pn−2f. (B1)

Using the definition of the compressibility, ∂μ = n2K∂n, and
with the help of (B1), one has

∂nI2 = m∗D
nK

− (D + 2)m∗∂n

(
1

m∗

)
I2 − nm∗D∂n�, (B2)

which we use after introducing K0 from (30) to derive (135).
Next we rewrite the correlation functions gn of (100),

gn(ω) =
∑

p

pn
f
(
p + q

2

)− f
(
p − q

2

)
p·q
m∗ − ω − i0

. (B3)

It is convenient to introduce x = p · q/q and k = m∗ω/q.
Then in the integral of g2 we write

p2

x − k
= (p2 − x2) + x + k + k2

x − k
(B4)

to obtain

g2 = �̃2 +
(

m∗ω
q

)2

g0 − nm∗, (B5)

with the convenient form

�̃2 =
∑

p

(
p2 − p · q

q

)
f(p + q

2 ) − f(p − q
2 )

p·q
m∗ − ω − i0

, (B6)

which vanishes, e.g., in 1D.
Similarly, we can write for g4

p4

x − k
= (p − x)4

x − k
− x3 − kx2 + (2p2 − k2)x

+ k(2p2 − k2) + k2(2p2 − k2)

x − k
. (B7)

The different occurring integrals over the angle x can be
performed in any dimension D = 1,2,3, and we find∑

p

x2f = 1

D

∑
p

p2f,
∑

p

x4f = 3

D(D + 2)

∑
p

p4f,

(B8)∑
p

x6f = 5

4D2 − D + 2

∑
p

p6f.

With the help of (B8), one has

g4 = �̃4 + 2(m∗)2ω2

q2
g2 − (m∗)4ω4

q4
g0

− nm∗q2

4

(
1 − 4(m∗)2ω2

q4

)
−
(

1

D + 2

)
m∗I2

= �̃4 + 2(m∗)2ω2

q2
�̃2 + (m∗)4ω4

q4
g0

− nm∗q2

4

(
1 + 4(m∗)2ω2

q4

)
−
(

1

D + 2

)
m∗I2. (B9)

2. Static long-wavelength expansion

In the static limit we have for (B5) and (B9)

g2(0) = �̃2(0) − nm∗,
(B10)

g4(0) = �̃4(0) − nm∗ q2

4
−
(

2 + 1

D

)
m∗I2.
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For the long-wavelength expansion we use again x = p · q/q

and find for the static argument of �̃

f
(
p + q

2

)− f
(
p − q

2

)
p·q
m∗

= ∂ef + q2

8m∗ ∂2
e f + q2x2

24(m∗)2
∂3
e f + o(q4). (B11)

Using (B8) and repeatedly (B1), one gets

�̃2(0) = −nm∗(D − 1) + n2q2

12
(D − 1)K0 + o(q4),

(B12)

�̃2(0) = −m∗
(

D − 1

D

)
I2 + o(q2),

and for (B10), finally,

g1(0) = −n2K0 + o(q2),

g2(0) = −nm∗D + o(q2), (B13)

g4(0) = −m2(2 + D)I2 + o(q2).

3. Dynamic long-wavelength expansion

Expanding the denominator in gn of (B3) or (100) and using
(B11) as well as the fact that only even exponents of x count,
one gets

gn(ω) = − q

m∗ω

∑
p

pn

[
qx2

m∗ω
∂ef + q3x2

8(m∗)2ω
∂2
e f

+ q3x4

24(m∗)3ω
∂3
e f + q3x4

(m∗)3ω3
∂ef + o(q5)

]
, (B14)

and after using again (B8) and repeatedly (B1) for n � 2,

gn(ω) = q2

m∗ω2

D + n

D
In + 3q4

(m∗)3ω4

D + n + 2

D(D + 2)
In+2

+ q4

8m∗ω2

(D + n − 2)(D + n)n

D(D + 2)
In−2 + o(q6)

(B15)

and

g0(ω) = nq2

m∗ω2
+ 3q4

(m∗)3ω4

1

D
I2. (B16)

4. Dynamic large frequency expansion

The expansion with respect to large frequencies works
similar as the expansion with respect to small wavelength

with the difference that higher order wavelength enters the
corresponding terms. First we observe that the form p − xq
with x = p · q/q is invariant under transformation p → p ±
q/2 and therefore p2 − x2 as well. This shows that we can
expand in a geometric sum understood as the difference of
upper sign expressions minus lower ones:

�̃n = − 1

ω

∑
p

(p2 − x2)n/2fp
∑
−

[
1 + q

(
x ∓ q

2

)
mω

+ · · ·
]

= q2

mω2

∑
p

(p2 − x2)n/2fp

[
1 + q4

4m2ω2

(
1 + q6

4m4ω4

)

+ x2 q2

m2ω2

(
3 + 5q4

2m2ω2

)
− 5x4 q4

m4ω4

]
+ o

(
ω−8

)
.

(B17)

This expansion is different from the long-wavelength expan-
sion of the foregoing section.

Abbreviating y = 1/k = q/mω, one obtains for the needed
expansion order in ω

g0(ω) = q2

mω2

[
n

(
1 + q2y2

4
+ q4y4

16

)
+ y2(6 + 5q2y2)

2D
I2

+ 15y4

D(2 + D)
I4

]
+ o(ω−8),

g2(ω) = q2

4mω2

{
nq2

(
1 + q2y2

4

)
+ 12(4 + D)y2

D(2 + D)
I4

+ [4D + 8 + (D + 9)q2y2]
I2

D

}
+ o(ω−6),

g4(ω) = q2

mω2

[
n

q2

16
+ 4 + D

2D
q2I2 +

(
1 + 4

D

)
I4

]
+ o(ω−4). (B18)

With the help of this expansion the polarization functions (126)
expand as

Ph =
(

2

D + 1

)
I2

2nm0
+ q2

8m0
+ o(ω−2)

P33 − P11P
2
h

= 0 + q2
[
nq2I2D + n(4 + D)DI4 − (2 + D)2I 2

2

]
4nmω2m2

0D
2

+ o(ω−4). (B19)
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[118] V. Špička and P. Lipavský, Phys. Rev. B 52, 14615 (1995).
[119] T. Holstein, Phys. Rev. 113, 479 (1959).
[120] A. G. Rojo, J. Phys.: Condens. Matter 11, R31 (1999).
[121] V. W. Scarola and G. D. Mahan, Phys. Rev. B 66, 205405

(2002).
[122] C. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, Nano Lett. 5,

1842 (2005).
[123] Y. Kwon, D. M. Ceperley, and R. M. Martin, Phys. Rev. B 48,

12037 (1993).
[124] M. Holzmann, D. M. Ceperley, C. Pierleoni, and K. Esler, Phys.

Rev. E 68, 046707 (2003).

022148-22

http://dx.doi.org/10.1103/PhysRevB.22.1522
http://dx.doi.org/10.1103/PhysRevB.26.2547
http://dx.doi.org/10.1103/PhysRevLett.70.1972
http://dx.doi.org/10.1103/RevModPhys.54.1017
http://dx.doi.org/10.1103/PhysRevB.1.2362
http://dx.doi.org/10.1088/0305-4608/5/11/015
http://dx.doi.org/10.1006/aphy.1993.1026
http://dx.doi.org/10.1006/aphy.1993.1026
http://dx.doi.org/10.1016/0370-2693(94)90850-8
http://dx.doi.org/10.1103/PhysRevE.57.7075
http://dx.doi.org/10.1103/PhysRevE.59.1015
http://dx.doi.org/10.1103/PhysRevE.69.039902
http://dx.doi.org/10.1103/PhysRevE.69.039902
http://dx.doi.org/10.1103/PhysRevE.61.2272
http://dx.doi.org/10.1103/PhysRevE.62.4382
http://dx.doi.org/10.1017/S0263034610000212
http://dx.doi.org/10.1103/PhysRevA.58.357
http://dx.doi.org/10.1103/PhysRevA.32.1768
http://dx.doi.org/10.1103/PhysRevA.32.1768
http://dx.doi.org/10.1103/PhysRevA.41.5516
http://dx.doi.org/10.1063/1.873779
http://dx.doi.org/10.1007/BF00681507
http://dx.doi.org/10.1007/BF00681507
http://dx.doi.org/10.1103/PhysRevB.50.1391
http://dx.doi.org/10.1103/PhysRevLett.75.689
http://dx.doi.org/10.1103/PhysRevLett.75.689
http://dx.doi.org/10.1103/PhysRevLett.84.1768
http://dx.doi.org/10.1103/PhysRevLett.84.1768
http://dx.doi.org/10.1103/PhysRevC.64.024613
http://dx.doi.org/10.1103/PhysRevC.64.024613
http://dx.doi.org/10.1088/0953-8984/24/24/245302
http://dx.doi.org/10.1088/0953-8984/24/24/245302
http://dx.doi.org/10.1103/PhysRevB.67.115125
http://dx.doi.org/10.1140/epjb/e2003-00258-4
http://dx.doi.org/10.1103/PhysRevB.47.7080
http://dx.doi.org/10.1103/PhysRevB.50.13981
http://dx.doi.org/10.1103/PhysRevB.50.13981
http://dx.doi.org/10.1103/PhysRevB.52.14615
http://dx.doi.org/10.1103/PhysRev.113.479
http://dx.doi.org/10.1088/0953-8984/11/5/004
http://dx.doi.org/10.1103/PhysRevB.66.205405
http://dx.doi.org/10.1103/PhysRevB.66.205405
http://dx.doi.org/10.1021/nl051044e
http://dx.doi.org/10.1021/nl051044e
http://dx.doi.org/10.1103/PhysRevB.48.12037
http://dx.doi.org/10.1103/PhysRevB.48.12037
http://dx.doi.org/10.1103/PhysRevE.68.046707
http://dx.doi.org/10.1103/PhysRevE.68.046707



