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Nonexistence of equilibrium states at absolute negative temperatures
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We show that states of macroscopic systems with purported absolute negative temperatures are not stable
under small, yet arbitrary, perturbations. We prove the previous statement using the fact that, in equilibrium, the
entropy takes its maximum value. We discuss that, while Ramsey theoretical reformulation of the second law
for systems with negative temperatures is logically correct, it must be a priori assumed that those states are in
thermodynamic equilibrium. Since we argue that those states cannot occur, reversible processes are impossible,
and, thus, Ramsey identification of absolute negative temperatures is untenable.
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I. INTRODUCTION

While the laws of thermodynamics have shown to be
of universal applicability, it is necessary to postulate the
existence of equilibrium states in order to develop the theory of
thermodynamics in terms of concepts such as temperature and
entropy [1]. Without equilibrium states, reversible processes
are not possible, and, therefore, there is no way to identify the
reversible transfer of heat as

δQ = T dS. (1)

Ramsey [2], without proof, makes this assumption in reformu-
lating the second law for systems with energy spectra bounded
from above. Then, by logical consistency, negative tempera-
tures appear as a reality. The flaw in such a reformulation is that
states with energy above the corresponding one with infinite
positive temperature are not stable. The purpose of this article
is to show such a result.

The laws of thermodynamics are, first, the conservation
of energy; second, the impossibility of energy conserving,
perpetuum mobiles; and third, the unattainability of the
absolute zero. With these laws and the additional observation
that bodies externally unperturbed reach a state of stable
equilibrium, one can postulate the existence of reversible
processes and define entropy, temperature, chemical potential,
and, in the case of fluids, hydrostatic pressure; in the case
of magnetic systems, one can then define the magnetic field
(this is implicit in Maxwell electrodynamics of continuous
media [3]). Let us review the formulation of the second law.

The second law is based on two seemingly different
statements, the Clausius and the Kelvin postulates, which
in turn are based in denying the opposite of two empirical
observations that we believe are always true. This denial
renders impossible a perpetuum mobile.

Clausius’s postulate is based on the observation that when
two bodies are in contact, energy in the form of heat
spontaneously flows from one to the other or nothing happens.
The body that releases the energy is called hot, the other cold.
Thus, we say, heat always flows irreversibly from the hotter
bodies to the colder ones. If heat does not flow, we say the
bodies are in thermal equilibrium. Clausius’s postulate is the
denial of the opposite, stating that it is impossible to realize a
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process whose only result is the transfer of heat from a cold
body to a hotter one.

Kelvin’s postulate, on the other hand, is based on the
empirical observation that it is always possible to irreversibly
convert work into heat, independently of the state of the body.
Dissipative friction is the essence of this form of energy
transfer. Kelvin’s postulate denies the contrary, stating that
it is impossible to realize a process whose only result is the
conversion of heat into work, while keeping the same state of
the body releasing the energy.

As described in the literature, see Ref. [1] for instance, the
previous statements are equivalent. They guarantee the im-
possibility of perpetual motion of energy conserving engines.
The validity of the second law is based on the fact that we
have found no process that violates it. We know from atomic
considerations, however, that its validity is only of statistical
nature.

With the previous laws and the hypothesis of the existence
of states of thermodynamic equilibrium, one can conceive a
reversible process, which is one that consists of equilibrium
states only. Then, a hypothetical engine that goes through
a cyclic process, a Carnot engine, allows us to prove [1] a
series of statements that lead to the introduction of (1) an
absolute temperature, which in turn requires the use of the
ideal gas temperature, a positive quantity by definition, and (2)
Clausius’s inequality. This inequality leads to the identification
of the entropy. We insist that these two concepts, temperature T

and entropy S, require the existence of the state of equilibrium.
The theorems needed to prove these assertions are given in the
Appendix.

An important step in the previous procedure of identifying
the temperature is the proof that for all Carnot engines working
between the same two heat sources, the ratio of the extracted
Qin to the released Qout amounts of heat are all the same; see
the Appendix. Thus, such a ratio must be a property of the
heat sources and not of the engines. By appealing to an engine
made out of an ideal gas, one reaches the conclusion that,

|Qout|
|Qin| = TC

TH

, (2)

where TC and TH are the respective temperatures of the sources
with which the body interchanged Qout and Qin. The signs
of the latter are determined by the direction of the cycle.
The subscripts C and H stand for “cold” and “hot.” It is
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very important to insist that the variable T is unambiguously
determined by an empirical measurement using a (real) gas
thermometer. It can also be shown that if TC > 0, then,
all temperatures must be positive as well. The third law
ensures that temperatures equal or below absolute zero are
unattainable. It is a further simple exercise to show that all
reversible Carnot engines working between the same heat
sources have the same largest efficiency (less than 1) and that
all the corresponding irreversible ones have a lower efficiency.

By a logical argument, which can be found in Ref. [4], for
instance, one can further prove that the entropy of a thermally
isolated system cannot decrease in any process and this, in
turn, implies that the entropy is a concave function of its
arguments, in particular, as a function of the internal energy
E of the system. This latter property is typically referred to
in textbooks as the mathematical statement and requirement
that the equilibrium state must be a stable one. That is, it
must be stable under small arbitrary perturbations. We shall
return to this point below. It is important to realize that the
concave property of the entropy by itself does not indicate that
the entropy should be a monotonic increasing function of the
energy, thus ensuring positive temperatures only: 20th-century
quantum physics had a surprise for us. We recall here that the
temperature is given by

1

T
=

(
∂S

∂E

)
N,X

, (3)

where N is the number of atoms (or molecules) and X stands
for the values of the extensive appropriate parameters that
determine the macroscopic state of the system [5].

Although thermodynamics is considered to be a purely
empirical science, we now know that we cannot ignore the
atomic structure of matter. This was foreseen by Boltzmann
[6], who found that the second law was actually statistical in
origin and further found that entropy is given by

S = kB ln �(E,N,X), (4)

where �(E,N,X) is the number of “microscopic” states of
a system with N atoms (or molecules) with internal energy
E and a given value of the extensive parameters X. Thus, S

will be monotonous in E if the energy spectrum is unbounded
from above. We expect it to be bounded from below by the
Ground State Energy, thus, incidentally, explaining the third
law. The surprise was that quantum systems with individual
entities that have a finite number of states, such as a collection
of spins in magnetic materials, give rise to a spectrum for the
whole system that is bounded from above. The calculation of
the entropy using Eq. (4) gives rise to a function that indeed
is concave but that it is not monotonic, since the number of
states of the system first increases, reaches a maximum, and
then decreases. As there is only one state with the lowest
energy, there is also only one with with the highest one. This
will be exemplified later on. The consequence of this behavior
is that, for values of the energy higher than the one with the
largest number of states, the temperature would take a negative
value as indicated by the relation Eq. (3). As it will be further
discussed, it is important to stress that negative temperatures
are hotter than all positive ones, because the lay above the
positive infinite temperature.

II. RAMSEY POSTULATE OF THE SECOND LAW

The previous known result [7] prompted Ramsey [2] to
review the statements of the second law such that negative
temperatures would not violate it. The main goal of Ramsey
was to identify negative temperatures using the relation Eq. (2)
in a well-defined cyclic process. He certainly achieved it, as we
show below, but we want to point out a couple of observations
right away. First, Ramsey tacitly assumed that equilibrium
states always exist and that they are stable. And second, he
never specified a “universal” thermometer that would permit
an unambiguous measurement of negative temperatures. Since
Ramsey’s publication [2], there have been many articles
[8–20], as well as brief sections in well-known textbooks
[5,21–23], addressing the subject. However, the stability or
mere existence of those states has not been discussed and that
is the purpose and motivation of this article.

In order to use Eq. (2) to identify negative temperatures,
Ramsey modified Kelvin’s statement. The idea was to reverse
the empirical observation and its negation. That is, Ramsey
established, first, that heat can always irreversibly be trans-
formed into work irrespective of the state of the body, and
then, denied its opposite, stating that it is impossible to realize
a process whose only result is the transformation of work into
heat. This statement certainly forbids an energy-conserving
perpetuum mobile. In addition, it does allow us to construct
a cyclic engine that leads to relation Eq. (2) with negative
temperatures. Furthermore, it can be shown that heat flows
from a body at negative temperature to a body at positive
temperature, thus, proving that the former are hotter than the
latter. In the Appendix, we provide the theorems needed to
corroborate these statements. But, before arguing that states
at presumably negative temperature are not stable equilibrium
states, we would like to point out that a world with negative
temperatures leads to very counterintuitive results.

First, we observe that the statement that heat can irreversibly
be all converted into work implies that engines operating
between reservoirs at different negative temperatures are
irrelevant, since one can obtain work from any single body,
with efficiency equal to one. We could exhaust all the energy
of a large body and obtain quite freely a lot of usable work,
the dream of clean energy made come true. Additionally,
one can prove that all reversible engines working between
negative temperature reservoirs have the lowest efficiency, but
alas, those engines are useless. Second, the fact that Ramsey
postulates that work cannot be converted into heat, implies
that bodies mechanically interacting with others at negative
temperatures cannot dissipate energy by friction; thus, they
could move through such media as if the body at negative
temperature were a perfect superfluid.

III. INSTABILITY OF STATES AT NEGATIVE
TEMPERATURES

Despite that no violation of the second law is allowed,
if Ramsey’s extension is valid, we can show that systems at
negative temperature are not truly stable. That is, we can show
that if a system in a state of negative temperature interacts
with another one that can only take positive temperatures,
the equilibrium state always has a positive temperature,
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independently of the sizes of the systems. Consider the extreme
case that the “normal” body is much smaller than the one at
negative temperature, such that it should be considered merely
as a perturbation to the latter. As we see, however, it is far from
being a perturbation, since it will always drive the large system
out of the state of negative temperature and will equilibrate
it into a state with a positive temperature. Thus, states with
negative temperatures are not stable under small, otherwise
arbitrary perturbations. This result follows quite simply from
the second law due to the unboundedness of the number of
states of systems that have can only positive temperatures.

To be more precise, let us call p the system that can only
take positive temperatures and n the one that can take both.
Suppose the latter is in a macroscopic state that should have
a negative temperature. Let En, Nn, and Xn be the energy,
number of particles and appropriate extensive variables of the
n system. Let also Sn(En,Nn,Xn) be the entropy of the state of
n, as given formally by Eq. (4). Analogously for p, we identify
Sp(Ep,Np,Xp). Consider the situation that the systems are
in thermal contact but isolated from any other body. In this
case, the total energy is a constant, ET = Ep + En, but the
systems interchange it until the state of equilibrium is reached.
This state corresponds to that one with the maximum value
of the total entropy ST = Sp + Sn. Since the interaction is
only through thermal contact, all the other variables but the
energy remain constant. Let E

eq
p and E

eq
n be the energies at

the common equilibrium state. They obey, of course, ET =
E

eq
p + E

eq
n . It is a straightforward exercise to show that in the

state of maximum entropy it is true that(
∂Sp

∂E
eq
p

)
Np,Xp

=
(

∂Sn

∂E
eq
n

)
Nn,Xn

, (5)

which, by Eq. (3), simply says that the temperatures of the
two bodies are the same. Since the system p can only take
positive temperatures, the common one must be positive. The
argument is independent of the sizes of the systems.

What is not independent of the sizes of the systems is the
heat capacity, whose behavior is tied to the stability of the
state of equilibrium. It is almost common sense to affirm that
when two bodies at different temperatures are put into thermal
contact, the equilibrium temperature not only is between the
initial ones but that it is closer to the body with the largest
heat capacity. Since the heat capacity scales with the size of
the system, the final temperature is closer to the temperature
that the bigger body had initially. As a matter of fact, a heat
reservoir is nothing but a very large body, such that its heat
capacity is also so large that it keeps essentially its same
temperature regardless of the heat released to, or absorbed
from, a smaller system. As we have seen in the previous
paragraph, a body at negative temperature does not behave in
this “common” way. Moreover, the fact that the heat capacity
must be positive as a consequence of the stability of the
equilibrium state, is most clearly summarized by the second
law in the form of Le Chatelier’s principle, which establishes
that: ‘An external interaction which disturbs the equilibrium
brings about processes in the body which tend to reduce the
effects of this interaction” [24]. For a large body at a negative
temperature in interaction with a smaller system that can take
positive ones only, one finds what appears to be the opposite,

namely, there must be internal processes that tend to take the
body out of that equilibrium state. It is in this regard that we
can assert that the states of seemingly negative temperature
cannot be in thermal equilibrium.

Let us visualize the previous general results with a very
simple example. Let n be an ideal paramagnetic solid of spin
j = 1/2 in the presence of a uniform magnetic field, whose
Hamiltonian can be written as,

Hn = −μ0B

Nn∑
i=1

mi, (6)

where μ0 is the magnetic moment of the atoms, B the external
magnetic field, and mi = ±1/2 the spin component along B.
For the p system we take a monoatomic ideal gas of fermions of
mass m and spin j = 1/2. In both cases, it is straightforward to
calculate [25] the entropies Sp(Ep,Np,Vp) and Sn(En,Nn). For
ease of plotting we use arbitrary energy units with μ0B = 15.
We consider 10 moles of the paramagnet and 1 mole of the ideal
gas, namely, Nn = 10N0 and Np = N0, with N0 Avogadro
number, in order to ensure the condition Nn � Np.

The physical situation is that, before thermal contact, the
p system is at a “low” positive temperature with energy
Ep/N0 = 10, while the paramagnet is at a negative tem-
perature with energy En/N0 = 50. In Fig. 1 we plot the
entropies Sn/N0kB (blue) and Sp/N0kB (red) versus energy
E/N0. The initial energies are indicated with dashed lines.
Further numerical details are given in the caption. When
the systems are put into thermal contact they equilibrate at
the same temperature, as indicated by the relation Eq. (5). At
the equilibrium state, the systems have the energies E

eq
n /N0 =

−11.7 and E
eq
p /N0 = 71.7; these are indicated with dotted

lines. The common equilibrium temperature is kBT = 47.6,
a large, positive one. This is illustrated by showing that at

50 11.7 0 10 50 71.7 100 e

2

4

6

s

FIG. 1. (Color online) Entropies s = S/N0kb versus energy e =
E/N0, for a paramagnet n of ten moles Nn = 10N0, thick-dashed
blue line, and for one mole Np = N0 of an ideal Fermi gas p, solid
red line. The energy units are arbitrary with μ0B = 15. The volume
of the gas was chosen such that Fermi energy is εF = 5. The dashed
vertical lines indicate the initial energies en = 50 and ep = 10. The
equilibrium state is indicated with vertical dotted lines and correspond
to eeq

n = −11.7 and eeq
p = 71.7. At those states, we have plotted the

slope of the curves s vs e, respectively, to show that they correspond
to the same temperature kBT = 47.6.
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FIG. 2. Total entropy sT = ST /N0kB versus energy ep = Ep/N0

of the system p (ideal gas). The maximum occurs at eeq
p = 71.7; see

Fig. 1.

the equilibrium state the slopes are the same for the n and p

systems. It is instructive to verify that the total entropy takes
a maximum at those values of the energies. This is shown
in Fig. 2, where we plot the total entropy as a function of
the energy Ep/N0; the energy of the paramagnet is not an
independent variable since En = ET − Ep. In this example,
ET /N0 = 60.

This simple geometric construction shows that the total
entropy, for fixed total energy, of a system that can only take
positive temperatures in interaction with a system that can take
both positive and negative temperatures will always take its
maximum value at a state with a common positive temperature.
The reason is that, since the number of states is not bounded
for a p system, it will always be possible to increment the total
number of states using this system. The system n is “oblivious”
to this change because its number of states is bounded from
above. We repeat, it could be that Np � Nn, as in the figures,
and then it will always happen that the system at negative
temperature (which is very hot) will cool down to achieve a
positive temperature and the small system will certainly get
hot, but at that positive temperature.

The conclusion is, therefore, that a system in a macroscopic
state to which it would correspond to a negative temperature
cannot relax to, neither stay at, a stable equilibrium state. It
will always transfer its energy to any “normal” body with
which it interacts and necessarily leave that state. It is only
in this respect that one can consider those states as being
“hotter” than any body at positive temperatures, but it does
not mean at all that we can assign a negative temperature. A
very important point here is that we are not simply implying
that it is experimentally “very difficult” to maintain a system
in a state of negative temperature. We are asserting that it is a
matter of principle. That is, the concept of “thermal isolation”
is meaningful only for systems at positive temperatures: With
extreme experimental care, it is only possible for those states
to reach a situation for which the interaction of the system with
the rest of the Universe amounts to a very small perturbation.
This is impossible for systems at negative temperature. In the
absence of those equilibrium states, the existence of reversible
processes cannot be postulated. And as discussed above, this
precludes the definition of temperature and entropy. Although

not argued here, one runs into similar conclusions when
considering the internal mechanisms of thermal relaxation to
the equilibrium state.

This discussion, of course, does not imply that systems
cannot be put into macroscopic states that would correspond
to negative temperatures. As a matter of fact, it has been done
in magnetic systems [7] and, very recently, in ultracold gases
in optical lattices [26]. However, as described above, those
states are necessarily unstable. Nevertheless, to reinforce this
point, it is also of interest to discuss possible experimental
realizations to highlight situations that appear contradictory or
even absurd. We shall argue that those apparent difficulties are
solved by realizing that one made an invalid hypothesis about
equilibrium states at the outset.

IV. REACHING STATES WITH T < 0 BY HEATING
OR COOLING

To argue about the title of this section, let us assume that
states at negative temperatures would indeed be of stable
equilibrium. As pointed out in all articles regarding negative
temperatures, these are hotter than positive ones, and thus one
can reach them by “heating” the system, or equivalently, by
putting energy into it. But, is this always true? One should
recall here that in the mid ’70s there was a flurry of papers
[12,15–18] discussing the impossibility not only of reversibly
reaching the “usual” coldest temperature T = +0, but also of
reversibly attaining T = ±∞ and T = −0, the hottest possible
temperature. For the ideal paramagnet of Eq. (6), these results
are reflected in the fact that the heat capacity at constant B,
CB = NnkB(μ0B/kBT )2sech2(μ0B/2kBT ), vanishes both at
T = ±0 and at T = ±∞. However, as the original experiment
by Purcell and Pound [7] showed, it is possible to pass
from positive to negative temperatures, or vice versa, by an
irreversible process. Let us use the simple ideal paramagnetic
system described before, Eq. (6), to discuss two possible
processes to show that one can “reach” negative temperatures
from positive ones by either heating, as expected, or by
cooling. The “trick,” we shall see, is that the states T = +0,
T = ±∞, and T = −0 are all unattainable and, thus, it appears
meaningless to consider “heating” or “cooling” above or below
them. Those states must always be “bypassed.” By the way, this
forbids the reversible operation of an engine working between
reservoirs at temperatures with different signs.

Considering the ideal paramagnet described by Eq. (6), one
can find the equation of state of the system that relates the
magnetization M to the magnetic field B and temperature T ,
namely M = M(B,T ):

M = 1

2
Nμ0 tanh

(
μ0B

2kBT

)
. (7)

This formula is valid for any sign of the field B and the
temperature T . This equation of state is shown in Fig. 3, where
we see that positive temperatures correspond to states with
the magnetization M being parallel to the magnetic field B,
while at negative temperatures those variables are antiparallel.
Let us now think of two simple processes starting at positive
temperature and reaching negative ones by, (I) change of
magnetization M at constant field B0, as shown in Fig. 4,
and (II) change of field B at constant M0, Fig. 5.
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FIG. 3. (Color online) Equation of state M = M(B,T ) of an ideal
paramagnet; see Eq. (7). Positive temperatures correspond to the
magnetization M and magnetic field B being parallel (solid blue
curves), while negative ones to the antiparallel situation (dashed red
curves).

In the first case, Fig. 4, the system can be reversibly
heated as much as one desires, reaching an extremely large
positive temperature, but not quite T = +∞, with an almost
vanishing magnetization. Then, as Purcell and Pound did, the
magnetization can be irreversibly inverted, bypassing T =
±∞, and hence obtaining a very large negative temperature.
The system can then be further reversibly heated up with
negative temperature reservoirs. This scenario appears sound
in the sense that negative temperatures are reached by heating
the system. The realization of negative temperature reservoirs
is, at this point, considered feasible.

The second case, Fig. 5, refers to a reversible decrease of
the magnetic field B at constant magnetization. Incidentally,
for this simple system this process is also adiabatic, with
a corresponding positive change in energy. The system can
then be cooled down reversibly to reach almost T = +0, as
cold as we want. At those very low positive temperatures,
the magnetic field is also extremely small. Again, we cannot
reversibly reach T = +0 or below, but nothing prevents us

T 0

-T 0

B

M0

M0

1
2 N Μ0

1
2 N Μ0

M

FIG. 4. (Color online) Change of magnetization M for a fixed
value of the magnetic field B. Initially, the system has magnetization
M0 at positive temperature T0. The system is reversibly heated
up to T → ∞, indicated by the upper arrow. Then, irreversibly,
the magnetization is inverted reaching a temperature T → −∞.
Afterwards, it continues to be reversibly heated up to −T0 and −M0.

T-T 0 0

B0 B0
B

M

FIG. 5. (Color online) Change of magnetic field B for a fixed
value of the magnetization M . Initially, the system has magnetic
field B0 at positive temperature T0. The system is reversibly cooled
down to T → +0 at constant magnetization, as indicated by the right
arrow. Then, the field is irreversibly inverted reaching a temperature
T → −0. After that, it continues to be reversibly cooled down to −T0

and −B0.

from irreversibly “cooling” even further by inverting “very
quickly” the direction of the very feeble magnetic field B and
putting the system at a negative temperature very close to
T = −0 . . . but this is the hottest temperature in the Universe.
So, was the magnet cooled down or heated up? if the latter,
the system jumped from the absolute coldest temperature to
the absolute hottest one by simply inverting a vanishing field
B. We note that the change in energy is also very tiny but
positive, �E = 2M0B, indicating a cooling mechanism. This
process does not contradict the fact that negative temperatures
are hotter than positive ones, but it indicates that the transition
from positive to negative temperatures can be achieved by an
irreversible cooling mechanism below absolute zero.

The two previous processes indicate that, although negative
temperatures are hotter than positive ones in the sense of the
direction of heat flux, one can pass from one case to the other
through T = +∞ or T = +0. As mentioned above, there
appears to be no formal difficulty, since the transition must
be irreversible. But from a more practical point of view, in
which reversible processes actually never occur, it appears
absurd and contradictory that negative temperatures can be
found above T = +∞ or below T = +0, depending on the
process used. It seems that somewhere, something is wrong.
However, if we accept that the purported negative-temperature
states are not equilibrium states (and no negative reservoirs
can thus exist), then a solution appears. As a matter of fact,
it is very simple to conclude that in reality, in the “cooling”
process, the paramagnet will eventually equilibrate with the
negative-pointing magnetic field, but at a very low positive
temperature. It will do so by any minute interaction with the
rest of the Universe. The possibility of irreversibly reaching
those states is not denied, but it appears that the concepts
of temperature and entropy applied to them, with all their
concomitant properties, are meaningless. It remains true,
nevertheless, that those nonequilibrium states are certainly
“hot” because they will eventually release their energy. But
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at the end, they will reach an equilibrium state with a “cold”
positive temperature.

V. FINAL REMARK

An interesting question arises if one imagines a system
that can take negative temperatures only. This is claimed to
have been realized in the recent experiment with ultracold
gases in optical lattices [26], based on previous theoretical
suggestions [27,28]. In those articles it is described how, by
carefully inverting the sign of atomic and external interactions,
the atomic kinetic energy also becomes effectively negative.
The ensuing system has an energy spectrum with an upper
bound but unbounded from below. Incidentally, the purported
negative-temperature state was obtained by cooling the gas
below T = +0, similar to the process described in the legend
of Fig. 5. Then, what would happen if such a system were
put in contact with a system that could only take positive
temperatures (as essentially the rest of the Universe)? Since
energy always flows from the hotter to the colder, according
to Clausius, then the possible scenario is that energy will
continuously be transferred from the system at negative
temperature to the one at positive ones. That is, the former will
cool down toward T → −∞, while the latter will heat up until
T → +∞, but truly never equilibrating. This kind of behavior
again appears quite strange and does not seem to be observed
in the recent experiments. We insist that a system in such a
situation requires negative kinetic energy, a concept whose full
elucidation and implications demand further thought.
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APPENDIX: THERMODYNAMIC THEOREMS

In this Appendix, we summarize the basic thermodynamic
theorems that lead to absolute positive or negative temper-
atures, if either Kelvin or Ramsey postulates are used. The
proofs are not given. They can be produced by following the
arguments given by Fermi [1].

We shall denote by H a hot reservoir and by C a cold one.
The second law is given by:

• Clausius postulate (CP). While heat can be irreversibly
transferred from H to C, the opposite is impossible as a sole
result.

• Kelvin postulate (KP). While work can always be
converted into heat, W → Q, the opposite is impossible as
a sole result, Q �→ W .

• Ramsey postulate (RP). While heat can always be
converted into work, Q → W , the opposite is impossible as a
sole result, W �→ Q.

Theorem 0. CP is equivalent to KP or CP is equivalent to RP.
Note that RP is not the negation of KP, but rather its inverse.
Thus, NO KP is the same as NO RP and, therefore, both are
equivalent to NO CP. It is clear, however, that either KP or RP
cannot be true simultaneously.

Carnot engine. A Carnot engine is a device that operates
in a cycle between H and C reservoirs. Let QH and QC

be the corresponding amounts of heat interchanged between
reservoirs and the engine, and W is the work received or
delivered by the engine, all in one cycle. By the first law,
it is true that

W + QH + QC = 0. (A1)

The signs of W and Q are negative if released by the engine.
Note that a Carnot engine may or may not be reversible.
Namely, neither case violates the second law. Reversible means
that if operated in any direction, the signs of W , QH , and
QC are reversed, but their magnitudes remain the same. The
efficiency η of a Carnot engine is the magnitude of the ratio of
the work delivered to the heat absorbed, both by the engine, in
one cycle. By the first law, Eq. (A1), the efficiency is less than
or equal to 1.

Theorem 1K. If KP is valid, then for a Carnot engine for
which W < 0, it must be true that QH > 0 and QC < 0. That
is, if a Carnot engine delivers work |W |, then it absorbs heat
QH from the hot reservoir and releases heat |QC | to the cold
one.

Corollary. The efficiency of this engine is necessarily less
than 1, whether reversible or not.

Theorem 1R. If RP is valid, then for a Carnot engine for
which W > 0, it must be true that QH > 0 and QC < 0. That
is, if a Carnot engine receives work |W |, then it absorbs heat
QH from the hot reservoir and delivers heat |QC | to the cold
one.

Corollaries. The opposite engine thus delivers work while
absorbing heat from the cold reservoir and releasing part of it
to the hot one. With the use of CP, the cold reservoir C can be
restored to its initial state by transferring heat from H . Thus,
one can convert all the heat into work, in agreement with RP.
This last process is of efficiency 1, yet irreversible.

Theorem 2K. Let KP be valid. Let W < 0, QH > 0 and
QC < 0 refer to a reversible Carnot engine and let W ′ < 0,
Q′

H > 0 and Q′
C < 0 refer to a Carnot engine not necessarily

reversible. Both engines operate between the same H and C

reservoirs. Then, it is true that

|QC |
QH

� |Q′
C |

Q′
H

< 1, (A2)

where the equality refers to the case when both engines are
reversible. The fact that the ratio of those heats is less than
one, follows from the first law, Eq. (A1).

Corollaries. If both engines are reversible, then the ratio
|QC |/QH is a property of the reservoirs and not of the engine.
This allows us to define the temperature T as a property of the
reservoirs. Call them TH and TC , respectively. Because the ratio
|QC |/QH = TC/TH < 1, then, if TC > 0, all temperatures are
positive, T > 0. By running a Carnot engine made out of
an ideal gas, the temperature T can be identified with the
ideal gas temperature. All reversible engines have the same
efficiency, larger than the efficiency of any irreversible one. By
considering an arbitrary cycle, Clausius’s inequality follows.

Theorem 2R. Let RP be valid. Let W > 0, QH > 0, and
QC < 0 refer to a reversible Carnot engine and let W ′ > 0,
Q′

H > 0, and Q′
C < 0 refer to a Carnot engine not necessarily

reversible. Both engines operate between the same H and C
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reservoirs. Then, it is true that

|QC |
QH

� |Q′
C |

Q′
H

> 1, (A3)

where the equality refers to the case when both engines are
reversible. The fact that the ratio of those heats is greater than
one, follows from the first law, Eq. (A1).

Corollaries. If both engines are reversible, then the ratio
|QC |/QH is a property of the reservoirs and not of the engine.
This allows to define the temperature T as a property of the
reservoirs. Call them TH and TC , respectively. Because the ratio
|QC |/QH = TC/TH > 1, then if TH < 0, all temperatures
are negative, T < 0. All reversible engines have the same

efficiency, smaller than the efficiency of any irreversible
one. By considering an arbitrary cycle, Clausius’s inequality
follows.

Theorem 3. Heat can flow irreversibly from a reservoir at
negative temperature TN < 0 to a reservoir at a positive one
TP > 0.

Proof. By RP let us convert a quantity of heat Q from the
reservoir at TN into work W . Then, by KP all this work can
be converted into heat in a reservoir at TP . Both RP and KP
prohibit the inverse process. The final result is that we were
able to irreversibly transfer, as a sole result, the heat Q from
the reservoir at TN to the reservoir at TP . By CP, the reservoir
TN is hotter than the reservoir TP .
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