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A theoretical study of the emergence of helices in the wake of precipitation fronts is presented. The precipitation
dynamics is described by the Cahn-Hilliard equation and the fronts are obtained by quenching the system into a
linearly unstable state. Confining the process onto the surface of a cylinder and using the pulled-front formalism,
our analytical calculations show that there are front solutions that propagate into the unstable state and leave
behind a helical structure. We find that helical patterns emerge only if the radius of the cylinder R is larger than
a critical value R > Rc, in agreement with recent experiments.
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I. INTRODUCTION

Chiral patterns have been the subject of a large number
of studies in natural sciences and engineering, as well as in
the artistic domain [1–3]. The emergence of chirality at meso-
and macroscales is usually a complex process that may go
along principally distinct routes. First, the chirality may be
present in the microscopic building blocks and the symmetry
is just transcribed to a higher level of spatial organization [4].
Second, achiral microscopic entities may assemble into chiral
objects provided the process takes place in a chiral medium [5].
Finally, achiral microscopic units may self-organize into a
chiral structure through symmetry breaking [6].

Our interest is in the symmetry-breaking route and this
work is a follow-up to our recent studies [7,8] in which
helical precipitation patterns were observed in the wake of
moving reaction-diffusion fronts. In our experiments, we saw
no chirality in the precipitation blocks at the microscale [8]
and, furthermore, the media, the precipitation dynamics, and
the boundary conditions of the laboratory setup also lack
chirality, thus we believe that the macroscopic patterns form
through symmetry breaking. This view was also confirmed
by simulations [7] that suggest that the helices emerge from
a complex interplay among the unstable precipitation modes,
the motion of the reaction front, and the noise in the system.

Although the simulations correctly describe the trends
observed in experiments, one would also like to make
analytical advancements in at least some aspects of the above
problem. In experiments using Liesegang-type setups (Fig. 1),
we measured the probability of the emergence of helices as
a function of control parameters such as the concentrations
of the inner and outer electrolytes, the temperature, and the
radius R of the test tube. A simple but remarkable feature
of the observations (reproduced in simulations) is that the
probability approaches zero at a critical radius Rc, below which
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FIG. 1. (Color online) Liesegang experiments producing precip-
itation patterns in the form of (a) bands or (b) helices under identical
external experimental conditions in tubes of radius R = 8 mm (the
numbers below the tubes are their diameters in mm). (c) Example
of when the radius is smaller (R = 2 mm) and the helix becomes
unstable as its pitch increases. (d) Only Liesegang bands form in
tubes with radius R � 1.5 mm.

no helical pattern forms. Our aim with this paper is to provide
an explanation for the nonexistence of helical solutions below
a critical radius Rc using analytical calculations within the
theoretical framework of Cahn-Hilliard precipitation dynamics
[9], which has been used successfully in simulations to
interpret the experimental results [7].

It should be noted that theoretical results about the absence
of helical patterns below Rc have been derived earlier on
phenomenological grounds [10,11]. Our work is based on
similar logic in the sense that the conclusion is obtained
by considering propagating helical waves evolving from an
unstable state in precipitation dynamics. The differences lie
in the use of a more transparent model of precipitation and in
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the well-defined approximation (pulled-front formalism [12])
used for the analytic derivation of the bound on Rc.

We describe the experimental background and the results
motivating our study in Sec. II, while the theoretical model
and the pulled-front formalism are summarized in Sec. III.
The theory is first applied (Sec. IV) to the emergence of
regular Liesegang patterns (bands parallel to the front). Then
helical solutions (bands tilted with respect to the front) are
obtained (Sec. V) and the conditions for the existence of
helical solutions are derived (Sec. VI). We conclude with a
discussion of more complex patterns and by reviewing the
unsolved aspects of the problem (Sec. VII).

II. EXPERIMENT

Precipitation patterns have captivated the imagination for
a long time [13] and systematic studies of the so-called
Liesegang bands (Fig. 1) have been going on for more than a
century [14]. In a typical Liesegang-type experiment, a gel
column soaked with a chemical reactant (called the inner
electrolyte and denoted by B) is placed in a tube and another
reactant (the outer electrolyte, denoted by A) is poured over the
gel. The initial concentration of the outer electrolyte is chosen
to be much larger than that of the inner electrolyte (a0 � b0),
thus a diffusive front moves into the gel where the reactions
(A + B → · · · → C) take place. For appropriate choice of
reagents and initial concentrations, the final product C emerges
as a precipitate and the region of high concentrations of C

becomes visible as a pattern in the wake of the front.
The simplest patterns are the much studied Liesegang bands

[see Fig. 1(a)], which have been shown to obey a set of laws
governing the distance between the consecutive bands, the
width of the bands, and their time of appearance [13,15–19].
There are, however, complex precipitation patterns displaying
curiosities such as band splitting, irregular banding, spirals,
helices [see Fig. 1(d)], and secondary and revert patterns [6,7,
13,20–24], which are less readily explained. Frequently, they
are just peculiarities of a given system and some of them have
problems with reproducibility. Our experiments [7], however,
proved that the emergence of helices is a robust phenomenon:
They appear reproducibly with well-defined probabilities for
a given range of experimental parameters.

In our experiments, described in more detail in Refs. [7,25],
we used potassium chromate (B ≡ K2CrO4) and copper
chloride (A ≡ CuCl2) as the inner and outer electrolytes,
respectively. The solid precipitate emerged from the reac-
tion Cu2+ + CrO4

2− → CuCrO4 ≡ C, which took place in
a 1% agarose gel with the temperature kept constant (T =
22 ◦C). Below we display results for the following initial
concentrations of the electrolytes: [Cu2+]0 = a0 = 0.5M and
[CrO4

2−]0 = b0 = 0.01M . The experiments were carried out
for a set of test-tube radii in the range 1.5 mm � R � 12.5 mm
and an estimate of the probability PH of the emergence
of helices was obtained from ten experiments for each R

(Table I).
As one can see from Table I, the probability has a maximum

around R ≈ 7–8 mm, it decreases for large R (due to the
emergence of more complex structures such as double helices
or chaotic patterns) as well as for small R, and it goes to

TABLE I. Probability of the emergence of helical pattern PH in
experiments in which the test tube radius R was the only parameter
varied (see also Fig. 1 in Ref. [7]).

R (mm) 1.5 2 3 4 5 6 7 8 9 10 12.5
PH 0 0.1 0.1 0.2 0.1 0.2 0.3 0.7 0.2 0.2 0.1

zero at Rc ≈ 1.5 mm. Below we shall analytically derive the
nonexistence of helices for R < Rc.

III. THEORY

Since the helical structures emerge at the macroscale and
they can be viewed as slight variations of the usual Liesegang
bands, we expect that they can also be analyzed within
the framework of Cahn-Hilliard dynamics combined with a
moving reaction front providing the precipitating material [26].
This approach has been successful in deriving the various
laws describing the Liesegang bands and it has helped in the
understanding of how to control the band spacing by external
fields [27,28].

We shall actually further simplify the description, namely,
the stage of the formation of the reaction product is replaced
by an initial condition where the reaction product is homo-
geneously distributed with the concentration c0. It is known
that the diffusive reaction front leaves behind a homogeneous
state of the reaction product [17,19], and helices usually form
when a fast moving front prepares a relatively large region of
the system in an unstable state [7]. We shall assume that this
unstable state is the initial state for the precipitation dynamics
studied by using the Cahn-Hilliard equation [9,29]

∂tm = −�(m − m3 + �m). (1)

Here the field m is a shifted and rescaled concentration with
m = ±1 corresponding to the high- and low-concentration
equilibrium values and F(m) = −m2/2 + m4/4 + (∇m)2/2
is the free-energy density underlying the drive towards equi-
librium. The coefficients in Eq. (1) are set to unity by choosing
the length, time, and concentration scales appropriately.

Equation (1) is considered in a two-dimensional strip
corresponding to the tube-in-tube experiments [7] where the
helices emerge in a thin layer of gel in between two tubes of
nearly equal radius. The cylinder can be cut and opened into
a strip as shown in Fig. 2, with the transformation implying
that we have periodic boundary conditions across the strip.
Initially, a homogeneous state m(x,y,t = 0) = m0 is prepared
that is linearly unstable, i.e., the concentration is within the
spinodal decomposition range |m0| < 1/

√
3.

Such an initial state is stationary and so we add a small
local perturbation m0 → m0 + δm(x,y,0) with δm(x,y,0)
restricted to the region x ≈ 0, 0 < y < Ly . The perturbation
develops into two precipitation fronts moving in the ±x

direction and the question we pose is about the nature of
patterns left behind the fronts. More precisely, we ask if a helix
that is a striped pattern tilted with respect to the propagation
direction is present among the solutions. In order to answer
this question, we assume that the dynamics in the front region
(where δm = m − m0 	 1) can be described by the linearized
theory, i.e., we assume that the front belongs to the pulled-front
family [12]. The theory of pulled fronts has been employed
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FIG. 2. (Color online) Liesegang-type experiments with the
precipitation patterns forming in the gel placed in between two tubes
of nearly equal radius (Liesegang rings in the leftmost tube and a
helix in the next one). On the right, a schematic drawing is displayed
showing the transformation of the thin layer of gel in the tube-in-tube
experiment into a two-dimensional strip.

successfully to the d = 1 Cahn-Hilliard equation [30–32].
Below we repeat (in a nonrigorous form) the main steps of
the theory in order to clearly outline the assumptions needed
for the generalization to the strip geometry of interest.

The first step in the theory of pulled fronts is the lineariza-
tion of the equation in question, i.e., we write m = m0 + δm

and obtain from Eq. (1)

∂tδm = −�(a + �)δm, (2)

where a = 1 − 3m2
0 is a measure of the distance of the initial

state from the spinodal (a = 0). Equation (2) can be solved by
Fourier transformation

δm(x,y,t) = 1√
2πLy

∑
ky

∫ ∞

−∞
dkxe

i(kxx+kyy)mk(t), (3)

where k = (kx,ky) and, due to the periodic boundary con-
ditions in the y direction, we have ky = 2πn/Ly with n =
0,±1, . . . , ± (Ly/2 − 1),Ly/2. The Fourier components of
the perturbation mk evolve independently

mk(t) = eωktm0
k, (4)

with ωk obtained by substituting (4) into (2),

ωk = ak2 − k4, (5)

where k2 = k2
x + k2

y .
In order to evaluate (3), the initial amplitudes m0

k need
to be specified. Since the initial perturbation is restricted to
the x ≈ 0 region, m0

k is practically independent of kx and so
m0

k ≈ m0
ky

. Thus we can write (3) in the form

δm(x,y,t) ≈ 1√
2πLy

∑
ky

eikyym0
ky

∫ ∞

−∞
dkxe

ikxx+ωkt . (6)

We shall now analyze the above expression term by term.

IV. LIESEGANG-LIKE PATTERNS

It is clear that the ky = 0 term describes a one-dimensional
pattern that is homogeneous in the y direction. This brings us
back to the one-dimensional case where, in the frame moving
with the velocity v0 of the front, we have

δm(v0t + ξ,0,t) ∼
∫ ∞

−∞
dkxe

ikxξ exp
(
ikxv0 + ωkx

)
t . (7)

A saddle-point evaluation of the t → ∞ asymptote of the
above integral, together with the requirement that δm remains
finite in the front region, leads to the basic equations of the
theory of pulled fronts [12]

iv0 + dωkx

dkx

∣∣∣∣
k∗
x

= 0, Re
(
ik∗

xv0 + ωk∗
x

) = 0. (8)

The above equations determine v0 and k∗
x = p0 + iq0 with p0

and q0 related to the characteristic wave number of the pattern
in the comoving frame and to the steepness of exponential
decay of the front profile

δm(v0t + ξ,0,t) ∼ exp
[−q0ξ + ip0ξ + i

(
p0v0 + Imωk∗

x

)
t
]
.

(9)

The values of v0, p0, and q0 can be easily calculated from (8)
and one obtains [12]

p0 = 1

2

√√
7 + 3

2
a1/2 ≈ 0.840a1/2, (10)

q0 = 1

2

√√
7 − 1

6
a1/2 ≈ 0.262a1/2, (11)

v0 = 2

3

√
7
√

7 + 17

6
a3/2 ≈ 1.622a3/2. (12)

As we can see from the above results [Eqs. (10)–(12)], the spin-
odal (a = 0) can be viewed as a critical point. Indeed, when
approaching the spinodal (a → 0), the characteristic length
scales (� ∼ 1/p0 ∼ 1/q0 ∼ a−1/2) and the characteristic time
scale (τ ∼ �/v0 ∼ a−2) diverge as in mean-field theories of
critical phenomena.

The wave number of the pattern in the laboratory frame pst
0

is obtained by noting that, apart from the late stage coarsening
process, the pattern becomes stationary in the laboratory
frame. Thus pst

0 is calculated by equating the frequency of
precipitation bands leaving from the front region (v0p

st
0 /2π )

to the frequency of the arrival of the perturbation maxima in
the comoving frame (p0v0 + Im ωk∗

x
)/2π . As a result we find

pst
0 = p0 + Imωk∗

x

v0
=

√
7 + 1

4
p0 ≈ 0.766a1/2. (13)

Accordingly, the wavelength of the pattern (spacing of the
precipitation bands) before the possible coarsening may take
place is given by

λst
0 = 2π

pst
0

= 16π

3

√
19 − 7

√
7

2
a−1/2 ≈ 8.206a−1/2. (14)

In some forms, the results embodied in Eqs. (10)–(13)
have been derived in Refs. [12,27,30–35] where the front

022141-3
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velocity and the characteristic length were calculated in
various quench-related problems. The results were also used to
describe enslaved phase separation dynamics [27,33,34] where
the velocity of the front was slowly changing as prescribed by
external fields. The logic in the present paper is similar to
that used in the latter works. Namely, the wavelength of the
pattern is identified as a changing local wavelength related to
the velocity of the front and frozen in the wake of the front [27].
In the case of Liesegang bands, this means that the front moves
diffusively and slows down and, consequently, the distance
between consecutive bands increases, yielding the observed
geometric series for the band positions [34].

V. SINGLE-HELIX PATTERN

Next we consider the case when the longest-wavelength
(n = 1) transverse mode is excited only, i.e., the only nonzero
amplitude in Eq. (6) is related to the mode ky = 2π/Ly ≡ κ1.
Thus the initial perturbation takes the form

δm(x,y,t = 0) ∼ eiκ1y

∫ ∞

−∞
dkxe

ikxx+ωkt . (15)

As in the d = 1 case, the above expression is analyzed in the
frame moving with the velocity v1 of the front

δm(v1t + ξ,y,t = 0) ∼ eiκ1y

∫ ∞

−∞
dkxe

ikxξ+(ikxv1+ωk)t , (16)

where one expects a new value for the velocity front v1 since
ωk now depends on k2 = k2

x + κ2
1 . The equations to be solved

remain the same (8) with ωkx
replaced by ωk . Let us denote

the solution of the equations by k∗
x = p1 + iq1, where p1 and

q1 depend not only on a but also on κ1. Then the perturbation
in the comoving frame takes the form

δm(v1t + ξ,y,t = 0)

∼ exp[−q1ξ + i(κ1y +p1ξ + Imωk∗ t)], (17)

with

p1 =
√√

(1 − θ )2 + 6 + 3(1 − θ )√
7 + 3

p0, (18)

q1 =
√√

(1 − θ )2 + 6 − (1 − θ )√
7 − 1

q0, (19)

v1 = Re ωk∗

Im k∗

=
√

[(1 − θ )2 + 6]3/2 − (1 − θ )3 + 18(1 − θ )

7
√

7 + 17
v0, (20)

where the parameter θ is related to the width of the strip Ly

and the radius of the cylinder (Ly = 2πR) through

θ = 2
κ2

1

a
= 2

(2π )2

L2
ya

= 2

R2a
. (21)

It can be easily verified that, in the infinite width limit
(R → ∞ or θ → 0), we recover the parameters of the solution
homogeneous in the y direction [Eqs. (10)–(12)]. The scaled
variables p1/p0, q1/q0, and v1/v0 are displayed in Fig. 3.
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FIG. 3. (Color online) Characteristic wave numbers p1 and q1 and
the velocity v1 of the propagating single-helix pattern scaled by the
corresponding homogeneous values p0, q0, and v0. The parameter θ

is inversely proportional to the square of the diameter of the tube (21).
As can be seen, propagating helix solutions exist only for θ � θc, i.e.,
only for tubes with large enough diameter.

According to Eq. (16), the solution (18)–(21) is a wave of
tilted precipitation bands propagating in the comoving frame.
Due to the periodic boundary conditions in the transverse
direction, the corresponding pattern on the cylindrical surface
is a propagating helix. The pitch of the helix in the comoving
frame is given by λ1 = 2π/p1 and to obtain the pitch in
the laboratory frame λst

1 = 2π/pst
1 we have to use again

the stationarity of the pattern in the laboratory pst
1 = p1 +

Im ωk∗/v1, resulting in

λst
1 = 2π

pst
1

= 16π
√

2

3

√
(1 − θ )2 + 6 + 2(1 − θ )

[
√

(1 − θ )2 + 6 + 3(1 − θ )]3/2
a−1/2.

(22)
We have thus found helix solutions with well-defined prop-
agation velocity and pitch determined by the parameter a of
the Cahn-Hilliard equation and by the width Ly = 2πR of the
system.

VI. EXISTENCE AND RELEVANCE
OF THE HELIX SOLUTIONS

Examining p1, q1, and v1 (18)–(21) reveals that the
propagating helix solutions exist only for sufficiently small
values of θ . Indeed, as θ is increased from zero, the expressions
under the square root in p1 and v1 become negative, thus
contradicting our assumption that p1, q1, and v1 are real.
The smallest critical value of θ is obtained from the equation
p1(θc) = 0 with the result

θc = 1 +
√

3/2 ≈ 1.866. (23)

Thus we arrive at our main result, namely, helix solutions exist
only if θ � θc. In terms of the radius R of the test tubes, this
inequality means that helices may emerge in a test tube only
if R exceeds a critical value

R � Rc =
√

2

θca
≈ 1.035a−1/2. (24)

022141-4



HELICES IN THE WAKE OF PRECIPITATION FRONTS PHYSICAL REVIEW E 88, 022141 (2013)

Estimating Rc for a given system runs into the problem that
Rc is measured in unknown units since the details of mapping
of the system onto the Cahn-Hilliard dynamics are usually
lacking. We can go around this problem by obtaining the length
scale from the results for the spacing of bands formed parallel
with the front (θ = 0). The remarkable feature of this case is
that the band spacing λst

0 is independent of R. Thus, using
Eq. (14), we can write the inequality (24) in a simple form

R � Rc ≈ 0.126λst
0 . (25)

To a good approximation, the above inequality means that
helices can form if the diameter of the test tube is larger than
1/4 of the band spacing in identical experiments where bands
were formed.

We can try now to carry out a straightforward comparison
with the experiments and examine whether the inequality (25)
is violated in cases in which no helices are observed. In the
experiments, the diameters of the tubes D = 2R range in the
interval 25 mm � D � 3 mm. The radius is fixed for a given
experiment, in contrast to the band spacing λst

0 (or to the pitch
λst

1 ≈ λst
0 of the helices), which changes within each pattern.

In order to look for violation of the inequality (25), we took the
largest values of λst

0 or λst
1 for each pattern and determined the

corresponding smallest possible ratios D/λst
0 = u or D/λst

1 =
u. For the experiments displayed in Figs. 1(a)–1(d), we found
ua > 3.8, ub > 3.6, uc > 1.6, and ud > 1.2. Thus the smallest
u are significantly larger than 1/4 and the inequality (25)
is not violated even in cases when helices are not formed.
The conclusion remains the same if all the smallest u are
calculated for the experiments and simulations studied in
Ref. [7]. Clearly, the comparison with experiments works
only at the qualitative level, namely, decreasing R leads to
the violation of the inequality and to the absence of helices,
and this is in agreement with the observations.

We should emphasize that it is not surprising that we see
only qualitative agreement. One should remember that the
results, including the inequality (25), apply to propagating
precipitation fronts. Thus, extending them to diffusive fronts
such as the ones producing Liesegang bands or helices involves
additional assumptions. First, the local velocity of the front is
assumed to be identical to the linearly selected pulled-front
velocity. Second, the local wavelength of the pattern (band
spacing or pitch) emerging in the wake of the front is assumed
to be frozen without any further coarsening. Using these two
assumptions seems to work well when interpreting patterns
formed in enslaved phase separation processes [27,33,34], thus
they can be viewed as reasonable assumptions. Naturally, one
should suspect that while the mapping of the propagating front
onto a diffusive one may leave the inequality (25) qualitatively
valid, the constant u in 2R > uλst

0 (25) will be affected.
Unfortunately, there are additional problems when com-

paring the inequality (25) with Liesegang-type patterns. The
pattern often evolves from a homogeneous precipitate called
plug (see the upper part of the precipitation in Fig. 1) with
the initial band spacing λst

0 being small and not always well
resolved. Furthermore, the band spacing grows exponentially,
thus the 2R > λst

0 /4 rule (25) should always be violated for
long enough tubes. Of course, the experimental tubes are
finite and, as can be seen in the example shown in Fig. 1(a),
the 2R > λst

0 /4 rule is satisfied throughout the system. Thus,

in this case one expects that there is no problem observing
helical patterns, as is indeed the case [Fig. 1(b)]. We have
also seen examples when the band spacing is larger and
the helical pattern becomes unstable as its pitch increases
[Fig. 1(c)] or when no helix forms at all [Fig. 1(d)]. Whether
this is the result of violating the inequality D/λ > u with an
effective (and presently unknown) u remains an open question
since coarsening and other nonlinear effects may always have
unexpected effects on the stability of helices.

The trends in the experimental observations and in the
related simulations [7] are, however, in agreement with the
analytical result (25). Thus we feel that the assumptions
required to extend the results of the pulled-front theory to
diffusive fronts are valid and, consequently, the inequality
D/λ > u is a relevant condition for helix formation in the
wake of diffusive reaction fronts.

VII. DISCUSSION

One can easily verify that in addition to the propagating
helix solutions (18)–(21), one can also find double-, triple-,
and multiple-helix solutions. Indeed, one just repeats the
helix calculation with κ1 replaced by κn = n2κ1, where n is
the multiplicity of the helix. One can also verify, by noting
that the effective θ for a helix with multiplicity n is n2θ ,
that larger multiplicity results in smaller velocity and larger
pitch. Furthermore, it also follows then that θc(n) = θc/n2

and, consequently, the larger the multiplicity, the larger the
threshold is for the tube diameter for the multiple-helix
solution to exist.

In our experiments and simulations, we did observe single
helices with large probability. Double helices had significant
probabilities in large systems and at high noise levels (in
the simulations). Although triple helices were also seen, their
probability was negligible (could not be measured within the
number of experiments and simulations carried out). Thus the
modes we have been investigating do appear in the system and
the outcome of their competitions seems to be determining the
patterns emerging.

There are, of course, a number of problems to solve
before the mode competition in the helix formation is fully
understood. The stability of the helix solutions is clearly a
relevant issue. One may expect that the helices are unstable
in the linear regime (their velocity, e.g., is smaller than the
velocity of the θ = 0 band solutions). As the experiments and
simulations suggest, however, the helices are stabilized by the
nonlinear effects. Thus, investigating the lifetime of the helices
in the linear regime (as compared to the time the front moves
the distance of the band spacing) may give an indication of
how to start a calculation of PH .

Clearly, the effect of noise is also important since the
probability of the emergence of helices PH is negligible at
small noise and it becomes of the order of 0.5 for appropriate
noise amplitude. The origin of noise is not entirely clear. It
may come as an initial-state noise left behind the fast moving
reaction front. Another view (taken in Ref. [7]) is that the
inhomogeneities produced by the front are negligible and the
noise present in the precipitation process is the relevant effect.
Finding the origin of noise would be essential in deciding
whether the emergence of chirality is due to the initial-state
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effects or it is a symmetry breaking occurring in the course of
the precipitation dynamics.

Another unclarified aspect of the problem is related to
the boundary conditions. In the present paper, we assumed
that the front is already at infinity and we have to care only
about the transverse boundary conditions (which are obviously
periodic). In reality, the front is diffusive and, although it may
move fast at the beginning, it can be seen to interact with
the developing pattern [7]. Thus the front may be relevant
in the delicate interplay of the unstable modes and so, even
if we would consider the front as a stationary wall, the
boundary condition on it is highly nontrivial and needs to be
explored.

In summary, we used analytical methods to understand a
spatial constraint (R > Rc) in the formation of helices. Along
the way, we also found that while the helices (and helicoids) are
simple geometric objects, their formation through precipitation
processes is a rather complex and intriguing problem and much
remains to be understood.
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Lett. 577, 38 (2013).
[9] J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958); J.

W. Cahn, Acta Metall. 9, 795 (1961).
[10] D. S. Chernavskii, A. A. Polezhaev, and S. C. Müller, Physica

D 54, 160 (1991).
[11] A. A. Polezhaev and S. C. Müller, Chaos 4, 631 (1994).
[12] W. van Saarloos, Phys. Rep. 386, 29 (2003).
[13] H. K. Henisch, Periodic Precipitation (Pergamon, Oxford,

1991).
[14] R. E. Liesegang, Naturwiss. Wochenschr. 11, 353 (1896).
[15] S. C. Müller and J. Ross, J. Phys. Chem. A 107, 7997 (2003).
[16] R. Matalon and A. Packter, J. Colloid Sci. 10, 46 (1955);

A. Packter, Kolloid Z. 142, 109 (1955).
[17] T. Antal, M. Droz, J. Magnin, Z. Rácz, and M. Zrinyi, J. Chem.
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