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From local force-flux relationships to internal dissipations and their impact on heat engine
performance: The illustrative case of a thermoelectric generator
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We present an in-depth analysis of the sometimes understated role of the principle of energy conservation
in linear irreversible thermodynamics. Our case study is that of a thermoelectric generator (TEG), which is a
heat engine of choice in irreversible thermodynamics, owing to the coupling between the electrical and heat
fluxes. We show why Onsager’s reciprocal relations must be considered locally and how internal dissipative
processes emerge from the extension of these relations to a global scale: The linear behavior of a heat engine
at the local scale is associated with a dissipation process that must partake in the global energy balance. We
discuss the consequences of internal dissipations on the so-called efficiency at maximum power, in the light of our
comparative analyses of exoreversibility and endoreversibility on the one hand and of two classes of heat engines,
autonomous and periodically driven, on the other hand. Finally, basing our analysis on energy conservation, we
also discuss recent works which claim the possibility to overcome the traditional boundaries on efficiency
imposed by finite-time thermodynamics in thermoelectric systems with broken time-reversal symmetry; this we
do by introducing a “thermal” thermopower and an “electrical” thermopower which permits an analysis of the
thermoelectric response of the TEG considering a possible dissymmetry between the electrical/thermal and the
thermal/electrical couplings.
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I. INTRODUCTION

Conversion of heat into work is an old problem which led to
the development of a variety of heat engines. Thermodynamics
emerged as an engineer’s activity devoted to finding practical
solutions to real-life problems but Carnot’s work [1] on the
optimization of the operation of heat engines initiated the
scientific development of thermodynamics. Carnot’s main
finding boils down to the fact that a heat engine placed between
two thermostats at temperatures Thot and Tcold, respectively
(Thot > Tcold), operates with a heat-to-work conversion effi-
ciency which cannot exceed the so-called Carnot efficiency
ηC = 1 − Tcold/Thot. The upper bound ηC may be reached if
and only if the thermodynamic cycle followed by the heat
engine is reversible, implying that it takes an infinite time
to produce work with an efficiency ηC, as reversibility is
associated with quasistatic processes.

Efficiency is a measure of the quantity of heat that cannot be
made available for work. The relationship between efficiency
and irreversibility, though not obvious at the time of Carnot’s
work [1], came prior to the discovery by Joule [2] of the
mechanical equivalence of heat, which led to the principle
of the conservation of energy. It is interesting to note that
though time seems to play no role at all in classical equilibrium
thermodynamics, both the first and the second principles of
thermodynamics appear to be closely linked to time nonethe-
less, albeit in a different fashion: Conservation of energy
follows from invariance with respect to translation in time (a
consequence of Noether’s first theorem [3]), and irreversibility
characterizes a “preferred direction,” or asymmetry, of time.

*yann.apertet@gmail.com

The extension and refinement of classical thermodynamics
has its roots in engineering problems too: Optimization of the
production of power in nuclear plants [4] during the 1950s
led engineers and scientists to include a time variable in
thermodynamics. The finite-time character of actual processes
is fundamental in that it embodies energy dissipation hence
irreversibility. In the simplest situation, neglecting parasitic
heat leaks, dissipation takes place because of the finite
thermal conductance of the elements that couple a perfect
heat engine to the thermostats. Dissipation negatively impacts
on heat-to-work conversion efficiency but it certainly is
necessary, hence useful, for power production. The field of
finite-time thermodynamics, which took off with the work
of Curzon and Ahlborn [5], is about trading efficiency for
power: The quantity of interest is no longer the efficiency of
heat-to-work conversion but the efficiency at maximum power,
ηCA = 1 − √

Tcold/Thot, also named the Curzon and Ahlborn
efficiency. For recent reviews on this topic, see Refs. [6].

In a recent publication, Van den Broeck stated that “the
Curzon-Alhborn efficiency is a fundamental result that fol-
lows, without approximation, from the theory of linear irre-
versible thermodynamics” [7]. This assertion is based on a lin-
ear nonequilibrium thermodynamics analysis of three systems:
a generic heat engine, a cascade construction, and a tandem
construction, which convert the heat that flows through them
into work. Assuming a general heat engine operating between
two thermal reservoirs, at temperatures Thot and Tcold, respec-
tively (in our notation), Van den Broeck described the heat-to-
work conversion process with a linear force-flux formalism [8],

(
J1

J2

)
=

(
L11 L12

L21 L22

) (
X1

X2

)
, (1)
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where J1 is the time derivative of an extensive variable x,
which is the thermodynamic conjugate of a force F applied to
the engine, and J2 is the heat flux. The quantities X1 and X2

are the thermodynamic forces [9]. The matrix elements Lij

are the kinetic coefficients. Now, a question naturally comes
to mind: As the thermal contacts between the heat engine and
the temperature reservoirs are assumed to be perfect, what
is the process that ensures causality for this system? The
first principle of thermodynamics, sometimes overlooked in
thermodynamic analyses, provides a clear answer to this ques-
tion. To illustrate our analysis we consider a thermoelectric
generator as the heat engine: This class of engines provides
a sound physical picture of the coupled processes at work,
hence permitting a rigorous and fine study of irreversible
thermodynamics [10]. Note that in his seminal paper [8]
Onsager started with the specific case of thermoelectricity
and generalized his concepts on coupled transports; however,
for a rigorous and complete description of thermoelectricity
one should refer to Callen [11] and Domenicali [12].

The article is organized as follows. In Sec. II we show that
Onsager’s reciprocal relations must be considered locally and
that the extension of these relations to a global scale reveals
the existence of an internal dissipative process. We discuss the
consequences of such dissipations on finite-time thermody-
namics and more particularly on efficiency at maximum power
in Sec. III. Finally, in Sec. IV, basing our analysis on energy
conservation, we discuss recent works which conclude to the
possibility to overcome the traditional boundaries on efficiency
imposed by finite-time thermodynamics in thermoelectric
systems with broken time-reversal symmetry.

II. LOCAL LINEARITY AND GLOBAL DISSIPATION

Irreversible coupled thermodynamic processes may be
described by a force-flux formalism [8]. In this framework, the
first-order kinetic coefficients relating the fluxes to the affini-
ties are supposed constant, thus permitting a linear description
of the system’s thermodynamics. However, this linearity truly
holds only locally. The hypothesis of local equilibrium is
indeed a prerequisite to the definition of thermodynamic
variables, which essentially describe equilibrium states; for
a comprehensive discussion on this point, see Pottier’s book
[13].

In the case of thermoelectricity, for which the coupled pro-
cesses are the electrical charge transport and the heat transport,
one may express Eq. (1) on a local scale using the charge carrier
current density �JN and the thermal flux density �JQ [11]. The
associated thermodynamic forces are then X1 = −�∇μ/T and
X2 = −�∇T/T 2, with μ the local electrochemical potential
and T the local temperature. Equation (1) becomes( �JN

�JQ

)
=

(
L11 L12

L21 L22

) (
−�∇μ/T

−�∇T/T 2

)
. (2)

In his paper [11], Callen expressed the previous equation in
terms of three appropriate quantities for a phenomenological
description of thermoelectricity:

(i) the electrical conductivity under isothermal condition
σ , used in the local formulation of Ohm’s law, �J = σ �E, where

FIG. 1. Thermodynamic picture of a heat engine.

�E = −�∇μ/e is the local electrical field and e is the elementary
electric charge;

(ii) the thermal conductivity under open-circuit condition
(≡ �J = �0) κ , in Fourier’s law, �JQ = κ �∇T ;

(iii) the Seebeck coefficient α, which characterizes the
coupling between the electrical current density �J = e �JN and
the thermal flux density �JQ.

The affinities are also modified to derive a form close to
both Ohm’s and Fourier’s laws so that the force-flux relations
for thermoelectricity are given by( �J

�JQ

)
=

(
σ ασ

ασT α2σT + κ

) ( �E
−�∇T

)
. (3)

The relationships between the kinetic coefficients Lij and the
traditional thermoelectric parameters σ , α, and κ are given in
Ref. [11]. These force-flux relations are, as already stressed,
linear only on a local scale: The coefficients in the matrix
of thermoelectric coefficients (sometimes referred to as the
conductivity matrix [14]) are given as an explicit function of
the local temperature T as σ , α, and κ are supposed constant.

The thermoelectric generator we consider is placed between
two heat reservoirs, at temperatures Thot and Tcold (with Thot >

Tcold), and delivers work to a load as depicted in Fig. 1. To
keep our calculations and analysis simple, we consider a one-
dimensional structure associated with the spatial variable x.
The hot reservoir is placed at x = 0 and the cold reservoir
is placed at x = l. The section A of the generator and the
parameters σ , κ , and α are supposed constant. One last (trivial)
assumption that we make but which is often not explicit: The
generator can exchange heat only with the reservoirs at their
junctions; hence, there are no heat leaks on the generator’s
sides.

A. From local to global scale

To move from the local description of the intrinsic prop-
erties of the engine to a global description at the system
level, we apply the principle of conservation of energy. The
thermal current density is the sum of a convective term [15]
and a conductive term, respectively, associated with the global
movement of charge carriers that transports heat and Fourier’s
law:

�JQ(x) = αT (x) �J − κ �∇T (x). (4)

The local variation of the thermal flux then reads

�∇ · �JQ = �∇T · α �J − κ �∇ · �∇T . (5)

Now, since

�∇ · �JQ = �J · �E, (6)
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for a thermoelectric heat engine, a combination of Eqs. (5) and
(6), yields the heat equation (sometimes called Domenicali’s
equation [16]), which reflects the conservation of energy:

κ
d2T

dx2
= −

�J 2

σ
. (7)

From this stage, the boundary conditions must be taken into
account: By placing the hot and cold heat reservoirs at x = 0
and x = l, respectively, we set T (0) = Thot and T (l) = Tcold.
The solution of Eq. (7) gives the temperature gradient inside
the structure:

dT (x)

dx
= −Thot − Tcold

l
+

�J 2(l − 2x)

2σκ
(8)

and injection of the above expression into Eq. (4) yields
the complete profile of the thermal current density along the
thermoelectric generator. The incoming and outgoing thermal
fluxes are defined as IQin = AJQ(0) and IQout = AJQ(l),
respectively, so that they read

IQin = αThotI + K(Thot − Tcold) − 1
2RI 2,

(9)
IQout = αTcoldI + K(Thot − Tcold) + 1

2RI 2,

with K = κA/l being the thermal conductance, R = l/(Aσ )
being the electrical resistance, and I = AJ being the electrical
current.

B. Discussion

It is of importance to note that our reasoning made thus
far would have been quite impractical had we considered
Eq. (1) only as the starting point. In Callen’s study of
thermoelectricity [11] the transport coefficients σ , κ , and α

are constant and do not depend on the temperature while it
may not be the case for the kinetic coefficients Lij . As the
output energy is directly related to the decrease of temperature
experienced by the electrical charge carriers along the device,
the knowledge of the explicit temperature dependence of each
variable is essential to clearly express the condition of energy
conservation.

The power produced by the system is given by the difference
between IQin and IQout :

P = α(Thot − Tcold)I − RI 2. (10)

The first term on the right-hand side of this expression reflects
the fact that, as stated above, the energy extracted from the hot
reservoir is linked to the movement of charge carriers from
the hot to the cold reservoir; and an entropy per particle α

is associated with each carrier. The second term, however,
lowers the electrical power: Part of the expected output power
α(Thot − Tcold)I is converted back to heat. This is the Joule
heating, redistributed equally between the two reservoirs [see
Eq. (9)].

Equations (9) and (10) exhibit terms that are quadratic in the
electrical current I , and one issue that naturally comes to mind
is the linear character of the model. In a recent article, Izumida
and Okuda presented their so-called minimally nonlinear

model for heat engines adding quadratic terms in the linear
expression of incoming and outgoing thermal fluxes [17]. More
precisely, they introduced a third flux in the Onsager formalism
but actually this additional flux is merely a way to characterize
the spatial variation of the thermal flux. We had already (though
briefly) discussed the question of linearity in Ref. [18], but here
we have clearly demonstrated that a thermodynamic analysis
based a local linear model necessarily yields a quadratic
term associated with Joule heating in order to satisfy the
principle of energy conservation. Once again we refer to Callen
and Welton, who associated a quadratic dissipation to linear
systems [19]: “The system may be said to be linear if the power
dissipation is quadratic in the magnitude of the perturbation.”
Therefore, we argue that ad hoc additions of nonlinear terms
to models such as those usually discussed in the frame on
linear irreversible thermodynamics to account for dissipation
are misleading since these quadratic terms naturally appear
in the equations as long as they are related to dissipation
and ensure that the principle of conservation of energy in the
conversion process is fully satisfied. An interesting discussion
on the influence of friction, i.e., the mechanical analog of the
electrical resistance, on the heat engine performance can be
found in Ref. [20]. We also stress that for the particular case of
thermoelectricity, the traditional model completely integrates
the Joule heating in both the determination of the power and
of the efficiency [21].

Finally, we analyze the confusion between continuous and
discrete approaches to thermodynamic systems, which may be
found in several recent papers: The thermodynamic affinities
are often expressed as some spurious combination of the defi-
nitions for continuous media, i.e., gradients of thermodynamic
potentials, and the definitions for the discrete description, i.e.,
differences of thermodynamic potentials taken on the hot and
cold sides of the engine. For clarity, we assign the following
labels to the thermodynamic affinities X: discrete, local, and
mixed. The latter expresses the combination of continuous
and discrete descriptions. In the case of a discrete description
of a thermoelectric engine, the affinities read X

(discrete)
1 =

−(μhot/Thot − μcold/Tcold) and X
(discrete)
2 = 1/Thot − 1/Tcold

(μhot and μcold being, respectively, the electrochemical po-
tential on the hot and cold ends of the engine) [9]; in several
works they are rather defined as X

(mixed)
1 = −(μhot − μcold)/T

and X
(mixed)
2 = −(Thot − Tcold)/T 2, where T is the temperature

of the system. These definitions should be compared to those
at the local level, X

(local)
1 = −∇μ/T and X

(local)
2 = −∇T/T 2

[14]. We thus see that X
(mixed)
1 and X

(mixed)
2 are obtained by

replacing the gradients of the local electrochemical potential
and local temperature by the differences of these quantities
taken on the hot and cold sides as though a discrete description
was given. The major problem is that the temperature T may no
longer be considered as a local temperature and hence cannot
be defined since the system is in an out-of-equilibrium state.
In our view, this confusion is possibly one of the main reasons
why the effects of internal dissipations are neglected: This
mixed, hence inappropriate, formulation of Onsager’s relations
leads to consider all systems as discrete, and inasmuch as
the distributions of the thermodynamic potentials within the
system remains unknown, internal dissipations are completely
neglected.
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III. CONSEQUENCES ON FINITE-TIME
THERMODYNAMICS

A. Preliminary comments

We just saw that internal dissipations derive from the
linearity of the relationship between forces and fluxes at the
local level. Now we seek what process ensures causality for
this system. Since entropy production arises from internal
dissipation, e.g., the Joule heating for thermoelectricity, the
presence of finite thermal contact conductances in finite-time
thermodynamics (FTT) models of nonideal heat engines may
no longer be viewed as mandatory: Causality is ensured by the
internal dissipation processes.

In this section, we propose an in-depth analysis of the
recent literature on FTT and particularly the derivation of
the efficiency at maximum power (EMP) in the light of our
“internal dissipation viewpoint.” We assume that the engine
works in the strong coupling regime: The coupling parameter
q = L12/

√
L11L22 equals ±1 so that the two fluxes J1 and

J2 are proportional [7,22]. The strong coupling assumption
amounts to neglecting the bypass heat, namely, the heat flowing
from the hot to the cold reservoir without contributing to
the energy conversion process (e.g., conduction through the
walls of an engine’s pipe). In thermoelectricity, in the strong
coupling regime, thermal conduction contributes very little to
energy conversion: K�T � α�T I . As discussed in Ref. [23],
the bypass heat cannot be used to ensure causality: It is merely
a form of energy degradation that one must minimize.

B. Endoreversibility vs exoreversibility

Most of the recent papers on EMP consider systems that
are not endoreversible, but rather exoreversible: The thermal
coupling between the engine and the heat reservoirs is assumed
to be perfect (see, e.g., Refs. [7,18,24–27]). It is interesting
to note that the Curzon and Ahlborn (CA) efficiency often
is considered as a touchstone even if the endoreversible
hypothesis used to derive it is no longer true. Yet, in 2008,
Schmiedl and Seifert (SS) obtained a different expression for
the EMP of a stochastic heat engine [26],

ηSS = ηC

2 − γ ηC
, (11)

where γ is a function of the entropy production repartition
along the thermodynamic cycle with 0 < γ < 1.

In a recent publication, we provided an explanation for
the discrepancy between the two different expressions for
the EMP that are ηCA and ηSS [23]: Studying the specific
example of a thermoelectric generator, we demonstrated that
ηCA is associated to the endoreversible configuration only
while ηSS is associated to the exoreversible configuration
only. Such a distinction between the system configurations,
despite its primary importance from a theoretical point of view,
seems to have been overlooked in many recent publications,
even leading to the association of the CA efficiency with an
exoreversible engine [7]: Van den Broeck found that if each
engine in the chain works at ηC/2 (the linear CA efficiency),
then the whole system works at maximum power and has a
global efficiency corresponding to the exact expression of CA
efficiency: ηCA = 1 − √

Tcold/Thot. Yet we demonstrated that

the maximum global power production is not always reached
when all components work at maximum power [18] and the
expression derived [7] does not necessarily correspond to
the EMP. Furthermore, Van den Broeck’s result is intriguing
since, as the exact expression of ηCA reproduces itself upon
concatenation, it is surprising to obtain this exact expression
for the global system without using the exact expression
for each component; we thus believe that Van den Broeck’s
analysis is incomplete since a consideration for the internal
dissipations is missing. The resulting confusion between
endoreversible and exoreversible engines not only leads to the
wrong expression of the EMP, i.e., ηCA instead of ηSS, but also
to some imprecision in the interpretation of the thermodynamic
cycle of the nonideal Carnot engine, as discussed below.

C. Isothermal vs adiabatic steps

Carnot’s cycle serves as a reference for the quantitative
analysis of the impact of irreversibilities on a heat engine’s
operation. It is composed of two isothermal steps and two
adiabatic steps. In their paper, Curzon and Ahlborn intro-
duced entropy production during the isothermal steps only
considering finite thermal resistances between the engine and
the thermal baths while the adiabatic steps were assumed to
be isentropic [5]. The recent studies based on Curzon and
Ahlborn’s analysis also assumed that the adiabatic steps are
isentropic. However, this is not mandatory since, as discussed
in Ref. [23], the introduction of dissipative thermal contacts
is not the only way to ensure causality. Indeed, internal
dissipation may also play this role. If only internal dissipations
are accounted for, as for the case of exoreversible engines,
entropy production may occur during the whole cycle and the
adiabatic steps may no longer be considered as isentropic;
hence, the duration of these adiabatic steps should not be
neglected.

Why is there entropy production during the whole cycle for
exoreversible engines? The answer lies in the foundation of
the FTT: Causality prevents a potential discontinuity between
the heat engine and the load (e.g., continuity of the pressure
on each side of the piston in the case of the classical Carnot
engine described in Ref. [1] or the continuity of the electrical
potential in the case of thermoelectric heat engine). In all cases,
friction (in a general acception) must be present at all times
to ensure the continuity of the potentials, hence the entropy
production during the whole thermodynamic cycle over which
a heat engine operates. Yet, if the external load’s potential
evolves infinitely slowly, the system may react as to always
equilibrate with the external potential and no entropy may be
produced if the friction depends on the actual state of the heat
engine, as is the case for, e.g., viscous friction. However, note
that this is not true in cases with constant friction forces such as
that considered in Ref. [28]: Entropy production cannot vanish
even in the limit of quasistatic processes and hence Carnot’s
efficiency cannot be reached.

In Ref. [24] Esposito and co-workers derived a general
expression of the EMP based on the so-called low dissipation
assumption: The entropy production (the causes of which were
not specified) in each isothermal step of a nonideal Carnot
cycle is inversely proportional to the duration of this step.
Further, by considering that the total duration of the cycle is
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given by the sum of the durations of both isothermal steps,
these authors neglected the contributions of the adiabatic steps
to the entropy production however long the durations of these
steps are. This latter consideration permits the assignment
of an instantaneous character to the adiabatic steps, which
corresponds to the most favorable configuration for power
production.

We distinguish endoreversibility from exoreversibility. In
the former case neglecting adiabatic steps is justified since
dissipations originate in heat exchanges with the thermal
reservoirs rather than in the internal conversion processes.
However, in the light of the discussion above, our view is that
for the latter case, for which dissipations are mandatory during
the whole cycle, the adiabatic steps should not be neglected,
which implies that Esposito and co-workers’ expression of the
EMP is incomplete for endoreversible engines.

The recent proposition of Wang and He to take into
account the entropy productions occurring both during the
isothermal and the adiabatic steps extends the study of Esposito
and co-workers [24] to the exoreversible configuration [27].
Wang and He optimize four variables (while there were
only two in Ref. [24]) corresponding to the duration of
each step of the thermodynamic cycle. The optimal value of
each variable is given in Ref. [27] and we notice that the
optimization of periodically driven exoreversible engines is
actually quite tricky as the four steps must be considered. Yet,
we demonstrate in the next section that the optimization of
exoreversible autonomous engines remains simple.

D. Autonomous engine vs periodically driven heat engines

As emphasized in Ref. [29], classical engines are peri-
odically driven: A time-dependent external control ensures
that their operation follows their thermodynamic cycle,
while the operation of autonomous engines corresponds to a
nonequilibrium steady-state generated by externally imposed
time-independent boundary conditions (e.g., a load), which
means that all steps occur virtually at the same time in the
various parts of these engines. The main theoretical advantage
of this kind of engine is that they can be described with
Onsager’s formalism [8]. To discuss the finite-time behavior of
autonomous engines we consider the thermoelectric generator
(other examples of both autonomous and periodically driven
engines are considered in Ref. [29]) and we give next a
generalization from this particular case. Interestingly, the
equivalent cycle experienced by electrical charge carriers
is similar to a Carnot cycle: Heat exchanges with thermal
reservoirs indeed correspond to two isothermal steps while
transport across both the thermoelectric generator and the
electrical load may be viewed as two adiabatic steps.

As in Sec. II, we obtain from the local Onsager relations
and under the assumption of strong coupling, the expressions
for both the incoming and the outgoing thermal flux:

IQin = αThotI − 1
2RI 2, IQout = αTcoldI + 1

2RI 2. (12)

The interest for these expressions is that they capture the
whole behavior of the engine: They give the amount of heat
exchanged with the thermal reservoirs during the equivalent
isothermal steps of the cycle and contrary to Ref. [24];
the contribution of the adiabatic steps is also accounted for

through the Joule heating terms. As these latter result from the
contribution of the whole device (as demonstrated in Sec. II),
we may now consider only the isothermal exchanges. In order
to recover expressions similar to those of Ref. [24], we consider
the engine operation during a time τ , so that Qin = IQinτ

and Qout = IQoutτ . Since Iτ = eN , where e is the elementary
electric charge, N is the number of particles entering the engine
(from the load) during the hot isothermal step or (identically)
leaving the engine (to the load) during the cold isothermal step,
we get

Qin = Thot

(
αeN − Re2N2

2τThot

)
,

(13)

Qout = Tcold

(
αeN + Re2N2

2τTcold

)
.

One should then compare these expressions with those
of Eq. (5) of Ref. [24]. Rewriting Eq. (13) using the same
notations yields

Qin = Thot

(
�S − 	hot

τ

)
,

(14)

Qout = Tcold

(
�S + 	cold

τ

)
,

and we see that the exchanged heat is the sum of a reversible
contribution and an irreversible contribution for each isother-
mal step. The reversible entropy exchanged is �S = αeN ,
which is the product of the number of particles entering the
heat engine during a time τ and αe, sometimes referred to as
the entropy per particle [11]. The irreversible contributions
to the exchanged entropy are inversely proportional to τ . The
coefficients of proportionnality on the hot and cold sides are
respectively 	hot = e2N2R/2Thot and 	cold = e2N2R/2Tcold.

While the expressions derived here are very close to those
of Esposito and co-workers [24], the physical interpretation
is completely different: We find that the produced entropy
during the cycle is inversely proportional to the time τ , thus
recalling the low dissipation assumption, but this duration is
not associated here to any specific thermodynamical process.
Furthermore, the coefficients 	hot and 	cold do not represent
the same physical reality as for Esposito and co-workers:
They reflect only entropy production during the isothermal
steps while in our case they account for the entropy produced
during the whole cycle. It is interesting, though, that two
different approaches on two different engine models (au-
tonomous/periodically driven) yield the same mathematical
expressions.

We now turn to the optimization of the autonomous engine.
Assuming that the number of particles N entering the engine
during the time τ is constant, the variable used to perform
the analysis of power maximization is τ . We highlight the
fact that one only needs a single variable to drive and hence
to optimize an autonomous engine. This ascertainment is
consistent with the fact that an autonomous engine depends
only on a parameter imposed by the load. In the case of
the thermoelectric generator this parameter is the value of
the load resistance. Yet, controlling the load resistance Rload

or τ is equivalent as they are related through the definition
of the electrical current I (that might also be used as the
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control parameter): As I = eN/τ = α�T/(R + Rload), we
get τ = eN (R + Rload)/(α�T ).

The output power is defined as P = (Qin − Qout)/τ , so that

P = (Thot − Tcold)�S − (Thot	hot + Tcold	cold)/τ

τ
(15)

and the maximum power is then found for

τ = 2
Thot	hot + Tcold	cold

(Thot − Tcold)�S
. (16)

Further, as η = (Qin − Qout)/Qin, we obtain the EMP,

ηPmax = ηC

2 − Thot	hot (Tcold	cold + Thot	hot)−1 ηC
, (17)

which reduces to

ηPmax = ηC

2 − 1
2ηC

, (18)

using the expressions for 	hot and 	cold obtained from
Eqs. (13) and (14): 	hot = e2N2R/2Thot and 	cold =
e2N2R/2Tcold. The expression above is the Schmiedl-Seifert
efficiency with γ = 1/2 (it was already derived for an
exoreversible thermoelectric generator in Ref. [23]).

We now extend our analysis beyond the case of thermo-
electric generators for which the heat internally produced by
dissipation is equally distributed between the hot and cold
reservoirs. We thus consider a general autonomous heat engine
operating in the strong coupling regime. The proportion of
internally produced heat flowing back to the hot thermal
reservoirs is no longer set to 1/2 but to a number β, the
specific value of which is related to the constitutive equations
governing the heat engine. Equation (12) then becomes

IQin = αThotI − βRI 2,
(19)

IQout = αTcoldI + (1 − β)RI 2.

Following exactly the same analysis as above, we obtain Qin

and Qout as in Eq. (14) again, except that in the present case
	hot and 	cold read

	hot = e2N2βR

Thot
, 	cold = e2N2(1 − β)R

Tcold
. (20)

Finally, inserting these two relations into Eq. (17) yields the
complete Schmiedl-Seifert efficiency:

ηPmax = ηC

2 − βηC
. (21)

The major result associated with this derivation is the phys-
ical interpretation of the γ factor in the Schmiedl-Seifert
expression: As γ = β, it represents the proportion of heat
produced by internal dissipation that is delivered to the hot
thermal reservoir. It is consistent with the particular case of a
thermoelectric generator for which half of the Joule heating is
released in the hot reservoir. This result should be compared
to the expression of γ obtained by Schmiedl and Seifert (Eq.
(32) of Ref. [26]): γ was introduced using parameters called
irreversible action corresponding to Thot	hot and Tcold	cold.
The expression they derived for γ is γ = 1/[1 + √

β/(1 − β)]
and thus does not correspond to our result as one might expect
since the assumptions are not the same: In Ref. [26] Schmiedl
and Seifert used a periodically driven stochastic engine and

they also neglected the contribution of the adiabatic steps just
as Esposito and co-workers did [30].

To end this section we discuss the dependence of the
Schmiedl-Seifert efficiency on the γ factor (this discussion
was initiated in Ref. [18]). For the exoreversible model, we
may visualize the system as a classical energy converter,
electrical or mechanical, for which Jacobi’s theorem states
that at maximum power the efficiency is half of the maximum
value (here ηC/2) [31]. The power usually lost as heating
may, however, be internally recycled as the considered engine
converts heat into useful work. So, the incoming heat from
the hot reservoir is converted once but as a part of the work
produced is converted back to heat owing to the dissipations
ensuring causality, the rejected heat may also pass through
the conversion process once again if it is released on the
hot side. The EMP is then slightly increased compared to
ηC/2, and the enhancement depends on the proportion of
rejected heat allowed to undergo the conversion process again;
i.e., it depends on γ . This situation may be viewed as an
internal cogeneration system where the dissipated heat may
be converted in turn into useful power: The efficiency thus is
slightly increased when heat is rejected to the hot reservoir.

IV. ENERGY CONVERSION WITH BROKEN
TIME-REVERSAL SYMMETRY

In this section, we discuss recent results concerning the
possibility to obtain both a high energy conversion efficiency
(close to ηC) and a nonvanishing output power at the same time.
This is quite intriguing as one of the main principles of FTT is
the trade-off between efficiency and power. Recently, Benenti
and co-workers claimed that a thermoelectric system operating
under the condition of broken time-reversal symmetry may
boast an EMP up to the Carnot efficiency [32]. To achieve
this level of performance, the thermoelectric system must
be submitted to a magnetic field �B so that the time-reversal
symmetry is broken and Onsager’s relation L12 = L21 is no
longer true: In this case, it is the Onsager-Casimir relation
L12( �B) = L21(− �B) that holds [9]. If no magnetic field is
applied, Onsager’s relation is equivalent to the second Kelvin
relation relating the Peltier coefficient � to the Seebeck
coefficient α:

� = αT , (22)

with T being the local temperature [33]. However, for a
given applied magnetic field there is no reason, as stressed
in Ref. [32], for this equality to hold.

To clearly present our calculations we express the Peltier
coefficient as � = αthT , thus introducing a “thermal” ther-
mopower, αth. This form makes it clear that the transported heat
per particle in the convection process, namely �, depends on
the local temperature. Consequently, to avoid confusion, we
also define an “electrical” Seebeck coefficient: αel. We thus
split the thermoelectric response of the device into the electric
response to the temperature gradient represented by αel and
the thermal response to the presence of an electrical current
represented by the αth. Hence, we reexpress Eq. (3) as( �J

�JQ

)
=

(
σ αelσ

αthσT αelαthσT + κ

) ( �E
−�∇T

)
, (23)
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now considering the possibility to introduce a dissymmetry
as regards the electrical/thermal and the thermal/electrical
couplings, i.e., αel �= αth. Note that these may take negative
or positive values.

A. From local to global scale

Just as we did in Sec. II, we derive the expressions of
the incoming and outgoing thermal fluxes based on the above
linear relations and the appropriate boundary conditions which
still are T (0) = Thot and T (l) = Tcold. The local thermal flux
is given by

�JQ(x) = αthT (x) �J − κ �∇T (x), (24)

where the convective term now reflects the fact that each
particle carries a quantity of heat � = αthT . The local energy
balance is then

κ �∇ · �∇T = −| �J |2
σ

+ (αth − αel) �J · �∇T . (25)

We see the appearance of a second term proportional to
the difference between the thermal and electrical Seebeck
coefficients on the right-hand side. With this extra term, the
temperature profile is no longer polynomial but depends on
exponential functions of the spatial variable x:

T (x) = Thot + | �J |x
(αth − αel)σ

+ e
(αth−αel)| �J |

κ
x − 1

e
(αth−αel)| �J |

κ
l − 1

×
[
−�T − | �J |l

(αth − αel)σ

]
. (26)

It is possible to obtain a much simpler form of the temperature
profile by retaining the terms of its series expansion up to the
second order in x. To do this, we use the fact that the current
density is always smaller than αel�T σ/l in the generator
regime. Because within the framework used in this article it
is supposed that the temperature difference �T is very small,
it follows that (αth − αel)| �J |l/κ � 1 and that the following
result is justified:

T (x) = Thot − �T

l
x

+
[

| �J |2
2σκ

+ �T

l

(αth − αel)| �J |
2κ

]
(l − x)x. (27)

The derivative of T with respect to x,

dT (x)

dx
= −�T

l

+
[

| �J |2
2σκ

+ �T

l

(αth − αel)| �J |
2κ

]
(l − 2x), (28)

combined with of Eq. (24) yields the incoming and outgoing
thermal fluxes for the whole system:

IQin = αthThotI + K�T − RI 2

2
− (αth − αel)�T I

2
,

(29)

IQout = αthTcoldI + K�T + RI 2

2
+ (αth − αel)�T I

2
.

In the absence of an applied magnetic field Eq. (9) is
recovered and αth = αel; the additional terms on the right-hand
side of Eq. (29), which appear for B �= 0, are related to the
broken time-reversal symmetry and it is of interest to see that
the amount of thermal power (αth − αel)�T I is shared in two
equal parts: One is added to the outgoing thermal flux, whereas
the other one is subtracted from the incoming thermal flux
(similarly to the Joule heating). We assume in the following
discussion that αth and αel have the same sign; if not, the
temperature difference �T would indeed imply a thermal
flux flowing from the cold to the hot thermal reservoir in the
generator regime, which would be in contradiction with Le
Chatelier-Brown’s principle.

To understand the physical meaning of the additional
contributions to the thermal powers in Eq. (29), we consider
the two cases |αth| > |αel| [34] and |αth| < |αel|. The former
case corresponds to a situation where each charge carrier
transports more heat than it would in the absence of the
magnetic field so that the system needs to evacuate this
excess; and the heat generated this way is also equally shared
between the hot and the cold reservoirs. The latter case implies
that the charge carriers do not transport enough heat: This
lack is compensated by a higher thermal incoming flux and
a smaller thermal outgoing flux. Finally, we see that the
equipartition of generated heat remains valid.

B. Analysis of entropy production

It is essential to check whether the process associated with
the broken time-reversal symmetry always respects the second
law of thermodynamics. To do so, we express the rate of
entropy production, which is given by the difference between
the rate of entropy increase in the cold reservoir and the rate
of entropy decrease in the hot reservoir,

d�Sc

dt
= IQout

Tcold
− IQin

Thot
, (30)

and using Eq. (29), we get

d�Sc

dt
= K�T

(
1

Tcold
− 1

Thot

)
+ 1

2
RI 2

(
1

Tcold
+ 1

Thot

)

+ 1

2
(αth − αel) I

(
Thot

Tcold
− Tcold

Thot

)
. (31)

The transfer of heat from the hot to the cold reservoir, with
the related energy conversion, is physically allowed only if the
rate of entropy production is positive. As the first two terms
on the right-hand side of Eq. (31), associated with heat bypass
and Joule heating, respectively, are always positive, only the
last term may reflect a behavior “challenging” the second law
of thermodynamics. As above we may distinguish two cases.

(i) If |αth| � |αel|, entropy can only be produced [34]: The
additional process caused by broken time-reversal symmetry
is associated with pure dissipation just as Joule heating is.

(ii) If |αth| < |αel|, the last term may be negative, so
entropy destruction must always be compensated by entropy
production associated with the first two terms of Eq. (31).

To confirm that this latter condition is fulfilled for all
possible working conditions in the generator regime, we
determine the minimum entropy production rate and verify that
this minimum is positive. The electrical current corresponding
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to this minimum is

Imin = − (αth − αel)�T

2R
. (32)

In the generator regime, the current lies between the open-
circuit value, Ioc = 0, and the short-circuit value, Isc =
αel�T/R. It follows that in this range, the minimum entropy
production rate corresponds to the open-circuit condition when
|αth| � |αel| but depends on the thermoelectric parameters
when |αth| < |αel|. We take the opportunity here to highlight
that the condition for maximum efficiency does not always
correspond to the minimum entropy production rate as dis-
cussed in Ref. [35]: If the thermal conductivity does not vanish,
the maximum efficiency is reached for nonvanishing electrical
current.

Using Eqs. (31) and (32), we easily obtain the minimum
entropy production rate, and the condition (d�Sc/dt)min � 0
yields

K � (αth − αel)2

4R

Thot + Tcold

2
, (33)

which amounts to defining a lower bound for the thermal
conductance. This constraint is coherent with the limitation
of the figure of merit in the paper by Benenti et al. [32].

As we consider the case |αth| < |αel|, there is an additional
internal process converting heat into electrical energy as de-
scribed above. However, the energy transported by convection
is already involved in the basic thermoelectric process and is
not available for further conversion. The conversion associated
with the broken time-reversal symmetry is thus based on the
two sources of heat left: the Joule heat, which may be seen as
a by-product of the thermoelectric conversion, and the by-pass
heat, K�T . The process is thermodynamically possible as
long as there is enough heat to be converted; as Joule heating
vanishes when reaching the open-circuit condition, the amount
of by-pass heat must remain sufficient, which is equivalent to
Eq. (33).

C. Power versus efficiency

To complete our discussion on a thermoelectric generator
operating under the condition of broken time-reversal symme-
try, we also analyze the power versus efficiency curves. Using
Eq. (29), we easily express the produced electrical power as
a function of I : P = IQin − IQout = αel�T I − RI 2, and the
efficiency: η = P/IQin . Figure 2 displays the power P as a
function of the efficiency η for various configurations. We
first consider the strong coupling condition where the thermal
conductivity vanishes; i.e., there is no thermal bypass. For the
situation without magnetic field (|αth| = |αel|), the maximum
efficiency is, as expected, the Carnot efficiency, reached
when the electrical current I tends to zero. If |αth| > |αel|,
the maximum efficiency is still reached for I → 0, but the
maximum value is lower than ηC:

ηmax = ηC
1
2ηC + (

1 − 1
2ηC

)
αth
αel

. (34)

This difference arises from the fact that when approaching
the open-circuit condition, the Joule heating process becomes
negligible compared to the thermoelectric conversion, which
is not the case for the process induced by broken time-reversal

0 0.5 1 1.5 2
η / ηC

0

0.2

0.4

0.6

0.8

1

P
 / 

P
m

ax

αth > αel and K = 0
αth = αel and K = 0
αth < αel and K = Klim

αth < αel and K = 0

FIG. 2. (Color online) Normalized power P/Pmax vs relative
efficiency η/ηC under various working conditions. The curves are
obtained by varying the electrical current I . The vertical dash-dotted
line represents the limit imposed by the second law, i.e., η � ηC.

symmetry as this latter depends linearly on I , whereas
Joule heating varies as I 2. If |αth| < |αel|, we see at first
glance that the strong coupling assumption corresponds to
a nonphysical behavior since the generator may unrealistically
boast efficiencies greater than the Carnot limit [Eq. (34) still
holds].

To ensure that the second law of thermodynamics is not
violated, the thermal conductance K must satisfy Eq. (33).
Further, if K = Klim = (αth − αel)2T /4R, with T being the
average temperature between the hot and the cold reservoirs,
there exists a working condition for which the entropy
production vanishes, so that the associated efficiency is ηC. For
this particular condition, the “consumption of heat” by the loss-
of-time-symmetry-induced process is exactly compensated by
both the Joule heating and the thermal bypass. The power
vs efficiency curve is then a closed loop, characteristic of
nonvanishing thermal conductances, with a single point for
which η = ηC. The power associated to this point is different
from zero, a fact that was surprising in the first place and gave
hope for increasing thermoelectric conversion efficiency [32].
Note that the power further increases as the ratio |αel|/|αth|
increases.

D. Efficiency at maximum power

In addition to the maximum efficiency, we also derive the
EMP, the pillar of the FTT analysis, for the thermogenerator
operating under broken time-reversal symmetry. Since the
maximum power is obtained for I = αel�T/2R, we obtain
the following general expression:

ηPmax = ηC

(2 − ηC) αth
αel

+ 1
2ηC + 4KR

α2
elThot

. (35)

When the thermal conductance is set to K = Klim = (αth −
αel)2T /4R, the previous expression is simplified:

ηPmax = ηC

1 + (
1 − 1

2ηC
)(

αth
αel

)2 . (36)
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The EMP ηPmax has a Lorentzian shape. Interestingly, we re-
cover the Schmiedl-Seifert expression for ηPmax in the classical
situation where B = 0, i.e., αth = αel, instead of the approxi-
mated value ηC/2 obtained by Benenti and co-workers [32].

E. Discussion on Kelvin’s relation

If one considers that the thermal conductivity is independent
of the value of αth and αel, then the second law of thermody-
namics imposes that |αth| � |αel| for any finite value of the
applied magnetic field �B and in particular that

|αth( �B)| � |αel( �B)|, |αth(− �B)| � |αel(− �B)|. (37)

Further, considering the Onsager-Casimir relation,
αth( �B) = αel(− �B), we get

|αth( �B)| � |αel( �B)|, |αel( �B)| � |αth( �B)|, (38)

and, since αth and αel have the same sign, we conclude that the
only possible solution is

αth( �B) = αel( �B), (39)

which means that Kelvin’s second relation holds even under the
condition of broken time-reversal symmetry, and consequently
that the Seebeck coefficient is an even function of the magnetic
field. Such a conclusion was already given in Ref. [36], but
followed from different arguments. It is interesting to note that
every material actually exhibits a Seebeck coefficent, which is
even with respect to �B [37].

F. Mesoscopic realization

Recently, Saito et al. [38] and Sánchez and Serra [39]
proposed simultaneously a design of a mesoscopic system,
which authorizes obtainment of the performances theoretically
predicted in Ref. [32]. This system, in addition to the two heat
reservoirs, has a third probe/reservoir, which mimics the in-
elastic scattering processes supposed to enable a dissymmetry
between the Peltier and the Seebeck coefficients.

More recently, two articles by Balanchadran and co-
workers [40] and Brandner and co-workers [41] discussed
the impact of the presence of a third connected lead on the
behavior of a mesoscopic thermoelectric system. Constraining
the third lead connection to the system to ensure current

continuity, Brandner et al. obtained new bounds for the
maximum efficiency and the EMP, both lower than those
obtained for the simpler system involving only two reservoirs
studied here [41]. Our view is that the additional constraint on
the kinetic coefficients is due to the fact that the third terminal
may be viewed as a bypass to the ballistic channel whose
thermal conductance depends on the thermoelectric system’s
parameters, hence on αth and αel. Imposing no net exchange
of particles between the system and the third lead yields the
condition

K � (αth − αel)2

R

Thot + Tcold

2
, (40)

which is a way of expressing Eq. (15) of Ref. [41], and
constitutes a more stringent restriction on K than that imposed
by the second law of thermodynamics [see Eq. (33)]. In
practice, it seems that the introduction of a mechanism
allowing thermopower asymmetry leads to such an increase
of the thermal conductivity K for the whole system that the
second law is always satisfied.

V. SUMMARY AND CONCLUSION

We have demonstrated that internal dissipations must be
considered in a linear model to satisfy the principle of energy
conservation and to keep the model rigorously coherent. We
stress that these dissipations are essential in the framework of
FTT for the analysis of systems which are not endoreversible.
We also discussed the possibility of an additional internal
mechanism related to a broken time-reversal symmetry pro-
posed recently by Benenti and co-workers [32]. It is our hope
that our approach based on the Onsager-Callen formalism for
thermoelectricity will allow a sharper view of the physical
phenomena which underlie the general principle of energy
conservation.
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