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Force fluctuations in stretching a tethered polymer
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The recently proposed fluctuation relation in unfolding forces [Phys. Rev. E 84, 060101(R) (2011)] is
reexamined taking into account the explicit time dependence of the force distribution. The stretching of a
tethered Rouse polymer is exactly solved and the ratio of the probabilities of positive to negative forces is shown
to be an exponential in force. Extensive steered molecular dynamics simulations of unfolding of deca alanine
peptide confirm the form of fluctuation relation proposed earlier, but with explicit correct time dependence of
unfolding forces taken into account. From exact calculations and simulations, a linear dependence of the constant
in the exponential of the fluctuation relation on average unfolding forces and inverse temperature is proposed.
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I. INTRODUCTION

Fluctuation theorems provide a mechanism for character-
izing fluctuations in nonequilibrium processes [1–5]. These
fluctuations become increasingly relevant as the system size
becomes smaller. Many biological systems are nanosized
and have inherently nonequilibrium processes. Fluctuation
theorems have been realized in single molecule experiments
such as dragging of a colloidal particle in an optical trap [6,7],
RNA unfolding experiments [8,9], and mechanical unfolding
of proteins [10,11].

Nonequilibrium transient and steady states follow transient
[2,12–14] (TFT) and steady state (SSFT) [15–20] fluctuation
theorems, respectively. In this paper, we are concerned with
TFT-like relation in unfolding forces of a tethered polymer.
In TFT, the system is initially in an equilibrium state and
fluctuations of quantities such as entropy, work, power flux,
and heat absorbed are measured over an arbitrary time interval
[6,21–25]. For instance, the transient work fluctuation theorem
[12,26] has the form P (W )/P (−W ) = eβW , where P (W ) is
the probability of work W being done on the system. The
Jarzynski’s relation [27], which relates the equilibrium free
energy to nonequilibrium work, is a special form of transient
work fluctuation theorem, when the initial and final states are
equilibrium states.

More recently, fluctuation theorems of nontraditional ther-
modynamic variables like reaction coordinates [28,29] and
unfolding forces [30] have been studied. In Ref. [30], based
on constant velocity steered molecular dynamics (SMD)
simulations of unfolding of contactin1 protein and deca alanine
peptide, a fluctuation relation of the form

Pv(+f )

Pv(−f )
= exp[�(T ,v)f ] (1)

was proposed, where v is the unfolding velocity and f is
the unfolding force at constant temperature T . The constant
�(T ,v) was observed to have the scaling form

�(T ,v) ∼ vαT −δ. (2)
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For contactin1 protein α ≈ 0.15 and δ ≈ 0.7 and for deca
alanine α ≈ 0.03 and δ ≈ 3.8 [30]. However, analytical
calculations for a Brownian particle in a harmonic potential,
moving at a constant velocity, show that though the form of
the fluctuation relation as proposed in Ref. [30] is retained, the
exponents α and δ are equal to 1 [31,32]. It is to be noted that
while the SMD simulations [30] were for a tethered molecule,
the calculations [31,32] are for a nontethered particle. For a
tethered molecule, the unfolding process is nonstationary and
the fluctuation relation, if it exists, should include an explicit
time dependence. To address this issue, in this paper, we solve
exactly the time-dependent force distribution Pv(f,t) for a
Rouse polymer and show that Pv(f,t) is Gaussian and hence
follows a fluctuation relation

Pv(+f,t)

Pv(−f,t)
= exp[�(T ,〈f (t)〉)f ], (3)

with

�(T ,〈f (t)〉) = 2〈f (t)〉
α′T

, (4)

where 〈f (t)〉 is the time-dependent average force and α′ is
a system dependent constant. In the case of Rouse polymer,
the time-dependent average force is linear in extension and
hence unfolding velocity. We then perform extensive SMD
simulations of deca alanine in vacuum and show that, though
the system has nonlinear force-extension relation, the data for
force distribution is still consistent with Eq. (3).

II. FORCE DISTRIBUTION WHILE STRETCHING
A ROUSE POLYMER

In this section, we solve for the time-dependent force
distribution in a tethered Rouse polymer. We closely follow
the solution for the work distribution derived in Ref. [33].
Consider a one-dimensional Gaussian chain consisting of
N + 2 particles. The particles are connected to each other by
harmonic springs such that the Hamiltonian of the system is

H = k

2

N+1∑
i=1

(xi − xi−1)2, (5)

where xi is the position of the ith particle and k is a constant.
The first particle is held fixed at the origin and the last
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particle is pulled with a constant velocity v, i.e., x0(t) = 0 and
xN+1(t) = xN+1(0) + vt . We assume Rouse dynamics, where
the overdamped Langevin equation for the chain is given by

dxi

dt
= − k

γ
(2xi − xi+1 − xi−1) + ηi(t), i = 1,2, . . . ,N,

(6)

where γ is the friction coefficient and η is white Gaussian
noise with 〈ηi(t)〉 = 0 and 〈ηi(t)ηj (t ′)〉 = 2

βγ
δ(t − t ′), where

β is the inverse temperature. For convenience, we set γ = 1. It
can be recovered in the later expressions by letting k → k/γ

and β → βγ . Equation (6) may be written in matrix notation as

dx
dt

= −Ax + h(t) + η(t), (7)

where x = (x1, . . . ,xN )T , η = (η1, . . . ,ηN )T , and h =
(0, . . . ,hN )T , with hN being k[xN+1(0) + vt]. A is a
tridiagonal symmetric matrix with nonzero entries Ai,i = 2k

and Ai,i+1 = Ai,i−1 = −k.
A is diagonalized by an orthogonal transformation

OT AO = �, where OT = O−1 and � is diagonal with �mn =
λmδmn, where λm’s are the eigenvalues of A. The eigenvalues
λm of A and the orthogonal matrix O are given by [34]

λm = 2k

[
1 − cos

(
mπ

N + 1

)]
, (8)

Omn =
√

2

N + 1
sin

(
mnπ

N + 1

)
. (9)

Multiplying Eq. (7) with OT , we obtain

dx̃
dt

= −�x̃ + h̃ + η̃, (10)

where x̃ = OT x, h̃ = OT h, and η̃ = OT η. The general solu-
tion of Eq. (10) is

x̃(t) = e−�t x̃(0) +
∫ t

0
dt ′e−�(t−t ′)[h̃(t ′) + η̃(t ′)]. (11)

The positions x(t) can be obtained from x̃(t) by x = Ox̃.
Since all the eigenvalues of the matrix A are positive [see
Eq. (8)], the first term in Eq. (11) does not contribute in the
limit of large time and for convenience we set x̃(0) = 0. Then,
the position of the N th particle is given by

xN (t) =
N∑

m=1

ONm

∫ t

0
dt1e

−λm(t−t1)[h̃m(t1) + η̃m(t1)]. (12)

The stretching force in the spring connecting the N th and the
(N + 1)th particle is given by f (t) = k[xN+1(t) − xN (t)] =
k[vt − xN (t)]. From Eq. (12) we see that xN is linear in the
white noise η and therefore its probability distribution function
will be a Gaussian. Likewise, Pv(f,t), the distribution for force
will be a Gaussian with 〈f 〉 = k[vt − 〈xN (t)〉] and 〈f 2〉 −
〈f 〉2 = k2[〈x2

N 〉 − 〈xN 〉2]. We have to compute only the first
two moments of xN (t).

Averaging over noise in Eq. (12), and using h̃m = kvtONm,
we obtain

〈xN (t)〉 =
N∑

m=1

O2
Nm

kv

λm

[
t − 1 − e−λmt

λm

]
(13)

and

〈
x2

N (t)
〉 − 〈xN (t)〉2 = 1

β

N∑
m=1

O2
Nm

1 − e−2λmt

λm

. (14)

The results simplify in the limit of large time, when the
exponential terms in Eq. (13) and Eq. (14) can be dropped.
Then,

〈xN (t)〉 = vtα1 − v

k
α2, (15)

〈
x2

N (t)
〉 − 〈xN (t)〉2 = T

k
α1, (16)

where

α1 = k

N∑
m=1

O2
Nm

λm

= 1

N + 1

N∑
m=1

sin2
(

Nπ
N+1m

)
[
1 − cos

(
mπ
N+1

)] (17)

and

α2 = k2
N∑

m=1

O2
Nm

λ2
m

= 1

2(N + 1)

N∑
m=1

sin2
(

Nπ
N+1m

)
[
1 − cos

(
mπ
N+1

)]2 , (18)

are constants which depend only on N . Rewriting in terms of
force, we obtain

〈f 〉 = kvt[1 − α1] + vα2, (19)

σ 2 = 〈f 2〉 − 〈f 〉2 = kT α1. (20)

The force is then distributed as

Pv(f,t) = 1

(2πkT α1)1/2
exp

[
− (f − 〈f 〉)2

2kT α1

]
, (21)

with 〈f 〉 as in Eq. (19). Clearly,

ln

[
Pv(+f,t)

Pv(−f,t)

]
= 2f 〈f 〉

kT α1
, (22)

where the unfolding velocity v is absorbed into 〈f 〉 through
Eq. (19). For the Rouse model considered here, 〈f 〉 ∝ v, and
hence Eq. (22) has the same form as the fluctuation relation
Eq. (1) with α = 1 and δ = 1, identical to the results obtained
for a Brownian particle in a harmonic potential [31,32].
However, if the dependence of 〈f 〉 on v is more complicated,
then the exponent in unfolding velocity, α, may not be well
defined.

We now do a numerical validation of the solution. We nu-
merically solve the Rouse model by integrating the equations
of motion, Eq. (6), with initial condition xi(0) = 0 for all i.
The force f is then obtained by f = k(vt − xN ). In Fig. 1 we
show the data collapse of ln[Pv(+f,t)/Pv(−f,t)] for various
values of v and T , when scaled as in Eq. (22) with 〈f 〉 ∼ v.
The agreement between the numerical and exact solutions is
excellent.

Now, we would like to confirm whether Eq. (22) holds for
a more realistic polymer. For contactin1 protein simulations
done in Ref. [30], the prohibitive computational time due to
the presence of a large number of solvent molecules limited
the number of SMD runs from 3 to 30. Obtaining reliable
time-dependent Pv(f,t) from such a limited data set is not
possible. On the other hand, deca alanine in vacuum is a good
test system that is computationally inexpensive. In the next
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FIG. 1. (Color online) Ratio ln[Pv(+f,t)/Pv(−f,t)] for different
temperatures and unfolding velocities for the Rouse model collapse
onto a single curve when scaled as in Eq. (22). The data are for T = 1,
2, and 4. The unfolding velocities are 1.0 (�), 2.0 (◦), and 4.0 (
).
The data points are averaged over 3 × 106 realizations.

section, we describe set up and results of extensive SMD runs
for deca alanine.

III. STEERED MD SIMULATIONS OF DECA ALANINE

In this section, we describe the results of SMD simulations
on deca alanine molecule, a prototypical system that has been
used earlier for demonstrating calculation of potential of mean
force using Jarzynski’s relation [35–37] and adaptive bias
force methods [38,39]. Deca alanine molecule adopts a helical
conformation in vacuum and the SMD simulations have been
performed by fixing the C-terminal Cα atom and unfolding
the molecule by pulling the N-terminal Cα atom along the
helical axis with a constant velocity. SMD simulations were
performed at three different temperatures using three different
unfolding velocities (details of simulation setup are given
in Table I). For each of the parameter sets, 1000 SMD
simulations were performed. Deca alanine was equilibrated
for 10 ns in vacuum in constant temperature-volume (NVT)
conditions and from the last 5 ns of the run, the initial
configurations for the SMD simulations were generated by
extracting 1000 snapshots. All the equilibrium and SMD
simulations were performed by NAMD (version 2.7b3) [40]
using the CHARMM22 force field supplemented by CMAP
corrections [41] for deca alanine. A cutoff of 12 Å was used for

TABLE I. SMD simulation details of unfolding deca alanine
for different unfolding velocities v and temperatures T for spring
constant K = 10 Kcal/mol/Å2.

v T Number of
(Å/ps) (K) SMD runs

0.05 300 1000
0.1 300 1000
0.1 250 1000
0.1 150 1000
0.2 300 1000
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FIG. 2. (Color online) Ratio ln[Pv(+f,t)/Pv(−f,t)] for different
extensions and temperatures for deca alanine collapse onto a single
curve when scaled as in Eq. (22). The data are for T = 150, 250, and
300 K. The extensions are 2 Å (�), 4 Å (◦), and 7 Å (
). All data are
for unfolding velocity v = 0.1 Å/ps.

van der Waals interactions and particle mesh Ewald method
was used to handle long-range electrostatics interactions.
Langevin dynamics were used for temperature control and the
box size was chosen to be large enough to accommodate the
stretched deca alanine molecule and to avoid interactions with
the periodic images. A spring constant of 10 Kcal/mol/Å2

was used for all the SMD runs.
To construct Pv(f,t), we consider all the unfolding forces

in a time window (t − �,t + �) and average over 1000 SMD
runs, where an optimum value of � is chosen such that we
obtain good statistics that are independent of �. In Fig. 2, we
show that the data for different temperatures and times, for the
same unfolding velocity, collapse onto one curve when scaled
as in Eq. (22). Likewise, we find good collapse for data for dif-
ferent unfolding velocities and same temperature (see Fig. 3).
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FIG. 3. (Color online) Ratio ln[Pv(+f,t)/Pv(−f,t)] for different
extensions and unfolding velocities for deca alanine collapse onto a
single curve when scaled as in Eq. (22). The data are for v = 0.05,
0.10, and 0.20 Å/ps. The extensions are 2 Å (�), 4 Å (◦), and 7 Å
(
). All data are for temperature T = 300 K.
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FIG. 4. (Color online) Average force as a function of extension
for different temperatures and fixed unfolding velocity v = 0.10 Å/ps
for deca alanine.

It is to be noted that, for the collapse in Figs. 2 and 3, we
scaled the ratio of probabilities by the mean force 〈f 〉 rather
than by v as in Fig. 1. The average force 〈f 〉 for deca alanine
is not a simple linear function of the extension vt (see Fig. 4).
Therefore, α [see Eq. (2)] is ill defined for deca alanine, though
δ is seen to be 1. From the exact calculations and simulations,
we expect that Eq. (4) rather than Eq. (2) will hold for the
stretching of a generic molecule.

IV. CONCLUSION

In this paper, we reexamine the recently proposed fluctua-
tion relation, Eqs. (1) and (2), in unfolding forces observed
in the SMD simulations of single molecules [30]. Here,
we include the essential time dependence into the force

distributions, which was ignored in Ref. [30]. First, we solved
exactly the time-dependent force distribution for a tethered
Rouse polymer that is being unfolded at constant velocity. For
this system, we obtain the fluctuation relation Eq. (3) which
has the same form as Eq. (1) when the average unfolding force
is proportional to the unfolding velocity as is the case in the
Rouse model. Second, using extensive SMD simulations of
deca alanine peptide in vacuum for varying temperatures and
unfolding velocities, we show that the data are consistent with
the fluctuation relation as in Eq. (3) even though the average
unfolding force is not a simple function of unfolding velocity.
The constant � defined in Eq. (1) was proposed to be of the
form vαT −δ [30]. Rather, we find � ∝ 〈f 〉T −1 as in Eq. (4),
where 〈f 〉 is a system-dependent function of the unfolding
velocity. It reduces to the form vT −1 for simple cases of a
Brownian particle in a harmonic potential [31,32] or the Rouse
model considered here.

If the time-dependent force distribution is Gaussian, then
the fluctuation relation will have the form Eqs. (3) and (22).
In this paper, we showed that for a Rouse polymer the force
distribution is indeed Gaussian. A priori, there is no obvious
reason to expect Gaussian distribution for a more realistic
polymer. However, for the prototypical deca alanine peptide
studied here, the force distribution appears to be Gaussian
throughout the range of unfolding forces considered and also
at various times along the unfolding trajectory making it
plausible that the force distribution is Gaussian for an arbitrary
molecule.

The proposed fluctuation relation in Ref [30] and its
time-dependent form in this paper augment the list of fluc-
tuation relations (albeit in more conventional variables) in
the literature. This may be realized in the single molecule
unfolding experiments.
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