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Random-matrix-theory approach to mesoscopic fluctuations of heat current
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We consider an ensemble of fully connected networks of N oscillators coupled harmonically with random
springs and show, using random-matrix-theory considerations, that both the average phonon heat current and
its variance are scale invariant and take universal values in the large N limit. These anomalous mesoscopic
fluctuations is the hallmark of strong correlations between normal modes.
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I. INTRODUCTION

The study of heat conduction by phonons in disordered or
chaotic structures have attracted recently considerable interest
[1–3]. A central issue of these investigations is the dependence
of the average heat current J on the system size N . A naive ex-
pectation is that disorder or phonon-phonon interactions scat-
ters normal modes and induces a diffusive energy transport that
leads to a normal heat conduction described by Fourier’s law
which states that e.g., in one dimension J ∼ N−1. Many stud-
ies [2–8], however, find that in low-dimensional chains J scales
as J ∼ N−α , where α is usually different from one. In fact,
experiments on heat conduction in nanotubes and graphene
flakes have reported observations of such anomalous behavior
[9–11].

However, many real stuctures such as biological sys-
tems [12] and artificial networks in thin-film transistors
and nanosensors [13] are not simple one-dimensional or
two-dimensional lattices. Rather they are characterized by a
complex connectivity that can be easily designed and realized
in the laboratory [14–16]. Therefore, understanding the normal
and anomalous heat conduction in complex networks is a
timely fundamental problem.

The complexity of coherent wave interferences in such
networks calls for a statistical treatment of their transport
characteristics. Such statistical treatment, based on the random
matrix theory (RMT) [17], proved very fruitful in various
branches of physics [18–21], ranging from nuclear and
atomic physics to mesoscopic physics of disordered and
chaotic systems. The RMT approach often uncovers the most
fundamental, universal properties of complex systems, and it
is the purpose of the present paper to develop this kind of
approach for the heat transport problem [22].

At the same time one needs to be aware that the actual
networks have various features involved, like sparsity, finite
long-range coupling, etc. In our study we do not consider all
these important features at all as our primary goal is to point
out that the toolbox of wave chaos and RMT modeling can be
used for the study of thermal transport. On the other hand one
needs to know the importance of these features. The obvious
way towards achieving this goal is to solve and understand first
the most simple RMT case. Any deviations from its predictions
will signify the importance of these other features.

In this paper we address heat transport and the associ-
ated sample-to-sample mesoscopic fluctuations of complex

networks of N equal masses connected with one another via
random harmonic springs. In Sec. II we present the theoretical
model associated with a network of N coupled oscillators and
express (in the weak coupling limit with the bath) the heat
current in terms of the normal modes of the corresponding
Hamiltonian. In Sec. III we write down the random matrix
corresponding to our model. We show that the standard RMT
models cannot explain the scaling form of the variance.
Instead, the statistical description of heat transport can be
effectively described by an ensemble of random matrices with
diagonal elements that fluctuate with a variance N times
larger than the corresponding variance of the off-diagonal
elements. Using RMT considerations we show that both the
average heat current 〈J 〉 and its variance (�J )2 are scale
invariant and assume universal values in the large N limit.
These anomalous mesoscopic fluctuations are the hallmark of
strong correlations between normal modes of the system. In
Sec. IV we investigate the effects of boundary conditions. For
moderate size networks, with random springs taken from a
distribution with variance σ 2 < 1/N , we find that the heat
transport is sensitive to the boundary conditions imposed on
the two end sites which are coupled to the thermal baths. A
numerical confirmation that our system reach nonequilibrium
steady state is given in Sec. V. Our conclusions are given in
Sec. VI. We hope that our analysis will motivate the use of
RMT models and provide new insight into the mesoscopic
fluctuations of heat transport.

II. ZERO-DIMENSIONAL HARMONIC CHAIN

We consider a network of N harmonic oscillators of equal
masses m = m0. The system is described by the Hamiltonian
[24],

H = 1
2P T M̂−1P + 1

2QT �̂Q, (1)

where QT ≡ (q1,q2, . . . ,qN ), P T ≡ (p1,p2, . . . ,pN ), and
qn,pn are, respectively, the individual oscillator displacements
and momenta. The mass matrix is Mnm = δnmm0, and �̂

is the force matrix that also contains information about the
boundary conditions (b.c.). For a fully connected network of
coupled oscillators with free b.c. �̂ takes the form �nm =
(
∑

l knl)δnm − knm where knm are the spring coupling con-
stants. These spring constants knm are chosen to be symmetric
(knm = kmn) and uniformly distributed according to knm ∈
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[−W
2 + 1,W

2 + 1] where the disorder strength parameter W

has to be smaller than 2 in order to ensure that knm � 0. In
the case of fixed b.c. �̂ has to be modified by considering
the coupling of the first and last oscillator to hard walls,
i.e., �fix

nm = �nm + (k01δn1δm1 + kNN+1δnNδmN ). We note that
Hamiltonian Eq. (1) describes a scalar phonon model, where
the vectorial properties of the modes have not been taken
into consideration (and thus the matrix has N and not 3N

modes) [24].
Next, we want to study the nonequilibrium steady state

(NESS) of this network driven by a pair of Langevin reservoirs
set at temperatures T B

1 and T B
N (we assume T B

1 > T B
N ),

and coupled to the first n = 1 and last n = N masses
with a coupling strength γ . The corresponding equations of
motion are q̇n = ∂H/∂pn, ṗn = −∂H/∂qn + (−γpn/m0 +√

2γ T B
n ζn)(δn1 + δnN ), where ζn(t) is delta-correlated white

noise ζn(t)ζn′(t ′) = δnn′δ(t − t ′). The NESS current is eval-
uated as J = γ

m0
(T B

1 − T1) = γ

m0
(TN − T B

N ) where the tem-

perature of the nth oscillator is defined as Tn ≡ p2
n/m0. The

notation · · · which will be implicitly assumed from now on,
indicates the thermal statistical average. In Sec. V we show
some molecular dynamics simulations that confirm that our
system reaches a NESS.

In our analysis below we will consider the weak coupling
γ limit. In this case, it was shown in Ref. [1,2] that

J =
∑

μ

J (μ); J (μ) = C0
I

(μ)
1 I

(μ)
N

I
(μ)
1 + I

(μ)
N

, (2)

where I
(μ)
n ≡ |ψ (μ)

n |2 and ψ
(μ)
n indicates the nth component

of the μth normal mode of the Hamiltonian Eq. (1) and the
coefficient C0 ≡ γ

m0
(T B

1 − T B
2 ). Thus the analysis of heat flux

J reduces to the study of the normal modes of Hamiltonian H
given by Eq. (1).

III. RANDOM-MATRIX-THEORY FORMULATION

We separate out the random component of the spring
constants and rewrite them as knm = 1 − Wnm where Wnm ∈
[−W

2 ,W
2 ]. The force matrix �̂ can be decomposed into a

constant matrix Â and a random part R̂:

�̂ = Â + R̂ where Â ≡ N 1̂ − Û ; R̂ ≡ D̂ + Ŵ , (3)

where 1̂ is the N × N unit matrix, Û is a matrix whose all
elements are equal to unity, i.e., Unm = 1, D̂ is a diagonal
matrix with Dnn = −∑

l �=n Wnl , and Ŵ is a random matrix
(RM) defined below. The above decomposition allows us to
distinguish the various contributions. The matrix Ŵ can be
treated as a “standard” RMT ensemble (note though that it
has zero diagonal elements) [25]. It is convenient to rewrite
it as Ŵ = σŴ0 where Ŵ0 is an RM with elements having
unit variance where σ 2 ≡ (�Wnm)2 = W 2/12. The diagonal
matrix D̂ has Gaussian distributed random elements with
〈Dnn〉 = 0 and variance (�Dnn)2 = (N − 1)σ 2.

A. Standard RMT considerations

The constant matrix Â can be diagonalized exactly. It has
(a) one eigenvalue ω0 = 0 with a corresponding eigenvector
(1/

√
N )(1,1,1, . . . ,1)T and (b) N − 1 degenerate eigenvalues
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FIG. 1. (Color online) Free boundary conditions. (a) A typical
distribution of rescaled heat flux J̃ ≡ J/C0 for a network of N = 103

oscillators and W = 1. (b) The rescaled average heat current 〈J̃ 〉
(open symbols) and variance ˜(�J )2 ≡ (�J )2/C2

0 (solid symbols)
versus σ . Various system sizes N (indicated in the figure) have been
used. The dashed lines are the results of D-RMT ensemble. Both in
(a) and (b) we have used Eq. (2) in order to evaluate the heat current J .

ωμ = N (μ = 1,2, . . . N − 1). Now, neglect for the moment
D̂, and consider adding to Â the RM Ŵ ,

�̂′ = Â + σŴ0. (4)

For any arbitrary small σ , the N − 1 degeneracy will be
removed and the corresponding eigenvectors will be those of
an (N − 1) × (N − 1) RM. The (N − 1)-time degenerate level
is broadened into a band of width ∼σ

√
N . The perturbation

theory applies for σ
√

N < N , i.e., for σ <
√

N . However,
even for larger σ the RMT still applies because then we can
simply neglect the matrix Â in Eq. (4). In short, for small σ

we have an RMT for (N − 1)-rank matrices [the contribution
to current of the level with ω0 ≈ 0 can be neglected, in
comparison to the (N − 1) levels], whereas for large σ we
have an RMT for N -rank matrices. Thus, in the large N limit
we treat Eq. (4) as an ensemble of N × N GOE matrices [18].

Normalization requires that 〈I (μ)
1 〉 = 〈I (μ)

N 〉 = 〈In〉 = 1/N .
Defining a rescaled variable X

(μ)
n = I

(μ)
n /〈In〉, we can rewrite

Eq. (2) as

J = C0

N
Z; Z =

N∑
μ=1

z(μ); z(μ) ≡ X
(μ)
1 X

(μ)
N

X
(μ)
1 + X

(μ)
N

. (5)

According to the standard RMT, and omitting the mode label
μ, the joint probability distribution of the rescaled eigenmode
intensities Xn is a product of two Porter-Thomas distribu-
tions P (X1,XN ) = (1/2π )(1/

√
X1XN ) exp[−(X1 + XN )/2].

Assuming further that the various z(μ) terms appearing in
Eq. (5) are statistically independent we get

〈J 〉 = 1

4
C0; (�J )2 = 1

8N
C2

0 . (6)

Comparison of these theoretical predictions with a numerical
evaluation of the mean and the variance of heat current J via
Eq. (2) [see Fig. 1(b)] leads us to conclude that standard RMT
considerations describe well the scaling of the average current
but not the variance. This is due to the fact that in the standard
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RMT case different eigenvectors (and, thus, different z(μ)’s)
are only weakly correlated, due to their orthogonality, i.e.,

〈z(μ)z(ν)〉 = 〈z(μ)〉〈z(ν)〉 + a

N
= 〈z〉2 + a

N
, (7)

with some constant coefficient a. In fact, these weak correla-
tions result in the replacement of the coefficient 1/8 in Eq. (6)
by the (numerically evaluated) coefficient 1/16.

Below we show that the matrix D (which is not considered
up to now) induces strong correlations between different z(μ)’s,
thus, invalidating the assumption which led to Eq. (6) for the
variance. To obtain the correct description of the variance, it
is necessary to treat the full force matrix, as given in Eq. (3).

B. Strongly fluctuating diagonal elements and D-RMT ensemble

We now consider the ensemble given by Eq. (3). Again
for large N , the matrix Â has no effect, so it is enough to
understand the eigenvectors of the random matrix R̂. The
eigenvalues of D̂ are of order |Dnn| ∼ σ

√
N , so that they

occupy a band of order σ
√

N and are separated by a typical
energy interval σ

√
N/N = σ/

√
N . The same is true for the

eigenvalues of Ŵ . In this sense D̂ and Ŵ are “of the same
strength” and neither can be treated as perturbation to the other.
However, the qualitative understanding of the eigenvectors
of the combined matrix R̂ is along the following lines: The
eigenvectors of D̂ are localized on the individual sites, i.e.,
the μth eigenvector is ψ

(μ)
n = δnμ. The matrix Ŵ mixes these

eigenvectors, so that eigenvectors of R̂ are spread over all
sites and resemble those of a standard RMT. Therefore 〈J 〉 is
qualitatively the same as the standard RMT result of Eq. (6).
The only difference is that the coefficient 1/4 now assumes
the numerical value ≈ 0.19 [see Fig. 1(b)].

As far as the variance (�J )2 is concerned we get results
that are qualitatively different from the standard RMT result
of Eq. (6). It turns out that in this case each eigenvector of
R̂ “remembers” the set (D11, . . . ,DNN ) of the eigenvalues of
D̂ so that correlations between different eigenvectors of R̂ are
significantly stronger than those for the standard RMT. Namely
the mode-mode correlations between the different z(μ)’s of the
matrix R̂ are described by

〈z(μ)z(ν)〉 = 〈z(μ)〉〈z(ν)〉(1 + ε) = 〈z〉2(1 + ε), (8)

where ε is a constant. Using Eq. (8) we calculate the variance
(�Z)2 of the random variable Z [see Eq. (5)]:

(�Z)2 = N2ε〈z2〉 + O(N ). (9)

Expressing (�J )2 in terms of Z via Eq. (5) we get

(�J )2 = C2
0ε〈z〉2, 〈z〉 ≈ 0.19. (10)

Direct numerical evaluation of the variance (�J )2 based on
Eq. (2) confirms the above theoretical estimates. In Fig. 1(b)
we show some of our numerical results for rescaled variance˜(�J )2 ≡ (�J )2/C2

0 . The data indicate that (�J )2 is scale
invariant for any disorder strength σ . Further 1/N numerical
analysis allows us to extract the asymptotic value ε ≈ 0.075.

Thus, the large anomalous current fluctuations originate
from the large variances of the matrix elements Dnn, in
combination with the RMT W (D alone, being diagonal in
n, cannot produce any current).

We have also checked that correlations between the ma-
trices D̂ and Ŵ do not play a role in our arguments. Detail
numerical analysis indicates that if instead of the actual D̂

(i.e., Dnn = −∑
i Wni) we consider a diagonal random matrix

completely independent of Ŵ so that

(�Rnm)2 = σ 2[1 + (N − 1)δnm], (11)

we still obtain the same behavior for 〈J 〉 and (�J )2 [dashed
lines in Fig. 1(b)]. We remark that this kind of D-RMT ensem-
bles have previously appeared in the context of mescoscopic
physics [26].

IV. FIXED BOUNDARY CONDITIONS

Finally we investigate the effect of b.c. on the statistics of
heat flux. We consider the other limiting case of fixed b.c.
We assume that the first and the last oscillator are coupled to
the left and right walls with spring constants k01 = 1 − W01

and kNN+1 = 1 − WNN+1, respectively, which are taken from
the same ensemble of random springs as the ones in the bulk
of the network. The random components are then included
in the matrix elements D11 and DNN , respectively. The
constant matrix Â also changes to Âfix = Â + Ĉ where Cnm =
δn1δm1 + δnNδmN . This results in a slight shift of the zero
mode ω0 = 0 of the matrix Â together with a “deformation”
of the (1,1, . . . ,1)T eigenvector. Contribution of this level
to the total current is of order 1/N , and it is disregarded
below.

In addition, two new levels emerge from the N − 1
degenerate subspace of the matrix Â. The first one has
the highest energy ωN−1 = N + 1 with a corresponding
eigenmode ψ (N−1) = (1/

√
2)(1,0, . . . ,−1)T . This is an exact

eigenvalue and eigenvector of Âfix. The second level is slightly
lower than N + 1 (approximately by 2/N ) and its eigenvec-
tor is symmetric, i.e., ωN−2 ≈ N + 1 − 2/N with ψN−2 ≈
(1/

√
2)(1 − 1/N, − 2/N, . . . ,−2/N,1 − 1/N )T . Below we

refer to these states as “surface” modes.
It turns out that for a network described by the constant force

matrix Âfix, most of the current is carried by the two surface
modes. Using Eq. (2) we find that J (N−1) = J (N−2) = 1

4C0.
At the same time, the remaining N − 3 degenerate modes
do not contribute to the current (in the large N limit). Since
any of these eigenvectors ψ (μ) is orthogonal to both ψ (N−1)

and ψ (N−2) we get that ψ
(μ)
1 = ψ

(μ)
N and ψ

(μ)
1 = −ψ

(μ)
N . These

constraints are satisfied simultaneously only if ψ
(μ)
1 = ψ

(μ)
N =

0 for any μ = 1, . . . ,N − 3. Thus the total heat current is

J =
N∑

μ=1

J (μ) ≈ 1

2
C0. (12)

Equation (12) will hold as long as the RM R̂ does not destroy
the pair of states ψ (N−1) and ψ (N−2). As σ increases we observe
a coupling of the two states towards a linear combination, i.e.,
(1/

√
2)[ψ (N−1) ± ψ (N−2)]. The origin of this reorganization is

traced to the matrix D̂ which in the {ψ (N−1),ψ (N−2)} subspace,
would produce a pair of eigenvalues separated by a distance of
order σ

√
N . This has to be compared to the separation of order

1/N between the surface mode eigenvalues ωN−1 and ωN−2 of
the matrix Âfix. When σ reaches a value σc ∼ N−3/2 the two
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“surface” eigenstates are destroyed giving rise to a set of new
modes that have components (0, . . . ,0,1)T and (1,0, . . . ,0)T .
Consequently, the average current will drop to approximately
a zero value. As σ continues to increase, the matrix Ŵ lifts the
degeneracy of the N − 3 levels centered around ω = N and
creates a spectral band of size δW ∼ σ

√
N . For some critical

value of σ = σRMT ∼ 1/
√

N the bandwidth δW becomes as
broad as the gap that separates the degenerate states from the
surface states. The latter now merge with the states in the band,
and the RMT results are recovered.

For disorder strength such that the dominant contribution
comes only from the two surface states, a quantitative
description of the heat transport can be achieved by considering
a two-level system described by a 2 × 2 Hamiltonian �̂(2) =
Â(2) + D̂(2). The diagonal matrix D̂(2) has elements D(2)

nm =√
NWnmδnm where Wnm ∈ [−W/2,W/2]. The perfect system

is described (in the site representation) by the 2 × 2 matrix
Â(2) = − 1

N
Û (2) where U (2)

nm = 1. The matrix Â(2) has eigen-
values ω1 = 0,ω2 = −2/N and corresponding eigenvectors
ψ (1) = (1/

√
2)(1, − 1)T and ψ (2) = (1/

√
2)(1,1)T . We can

diagonalize �̂(2) and get the corresponding eigenvectors. Using
Eq. (2) we obtain J2 = 2C0

4+N3(W11−W22)2 . The corresponding
average heat current is

〈J2〉 = 2C0
w arctan

[
w
2

] − log
[
1 + (

w
2

)2]
w2

; w = N3/2W,

(13)

while for the variance we get

(�J2)2 = w3 arctan
[

w
2

] − 8
(

log
[
1 + (

w
2

)2] − w arctan
[

w
2

])2

2w4

×C2
0 . (14)

These theoretical predictions are compared in Figs. 2 and 3
with the numerically evaluated average heat current and
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FIG. 2. (Color online) Fixed boundary conditions. The rescaled
average heat current 〈J̃ 〉 ≡ 〈J 〉/C0 vs disorder strength for various
system sizes N . In (a) we scale the x axis as σN3/2 while in (b) (RMT
domain) we scale it as σN1/2. The dashed lines are the predictions of
D-RMT while the solid lines represent Eqs. (13) and (14).
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FIG. 3. (Color online) Fixed boundary conditions. The rescaled
variance (�̃J )2 ≡ (�J )2/C2

0 vs disorder strength for various system
sizes N . In (a) we scale the x axis as σN3/2 while in (b) (RMT
domain) we scale it as σN1/2. The dashed lines are the predictions of
D-RMT while the solid lines represent Eqs. (13) and (14).

variance via Eq. (2) for various system sizes N and disorder
strength W . Obviously Eqs. (13) and (14) do not apply for
σ � σRMT ∼ N−1/2 when RMT dominates the transport.

V. NESS FOR A FULLY CONNECTED NETWORK

In order to establish that the fully connected network of
harmonic oscillators Eq. (1) reaches the NESS, we have also
performed independent molecular dynamics (MD) simulations
for both free and fixed boundary conditions. Since these
simulations are time consuming we confine ourselves to
moderate N sizes. In Fig. 4 we report such representative
simulations for a case of a fully connected network of
N = 5 coupled oscillators with random springs knm taken
from a uniform distribution knm ∈ [1 − W/2; 1 + W/2] and

FIG. 4. (Color online) Molecular dynamics (MD) simulations
(open and solid symbols) for the case of a network of N = 5 fully
connected oscillators. The results from the MD are compared with
the results coming from Eq. (2). A nice agreement, both for the mean
heat current (upper) and the variance (lower) is observed, indicating
that our system can reach a NESS.
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compare these results with the ones coming from a direct
diagonalization of the associated force matrix �̂ with the use
of Eq. (2).

In Fig. 4 open symbols correspond to the average heat
current and full symbols to its variance evaluated from the
MD simulations, while the solid lines are the results of the
diagonalization method that makes use of Eq. (2). For the MD
simulations we have used typically 100 disorder realizations
(this has to be compared to the diagonalization method where
typically we had more than 5000 realizations). An additional
time average (over the last 20 time units) was performed in
order to average out the oscillations of the chain elements. In
order to check the convergence of the MD simulations, we
have compared the flux J for two different times (the time t is
measured in units of mean inverse frequency). A convergence
towards the theoretical results of Eq. (2) is evident indicating
that our system reached a NESS.

VI. CONCLUSIONS

In conclusion, we have employed RMT modeling as a
valuable tool for the analysis of mesoscopic fluctuations of

heat current J in complex (chaotic) networks. For the most
basic chaotic system consisting of a fully connected network
of random springs we have found that both the average heat
current and its variance are scale invariant. For large N limit,
these quantities assume a universal value which is independent
of the specific boundary conditions. Our analysis indicated that
the statistical properties of J are affected by the existence of
correlations between normal modes. It would be interesting to
investigate the statistical properties of heat current for other
more realistic network geometries where finite long-range
coupling [27] and/or sparsity are considered, or anharmonicity
is present [1,28] and establish analogies with mesoscopic
phenomena observed in the realm of electron transport.
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