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Particle dynamics in two-dimensional random-energy landscapes: Experiments and simulations
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The dynamics of individual colloidal particles in random potential energy landscapes was investigated
experimentally and by Monte Carlo simulations. The value of the potential at each point in the two-dimensional
energy landscape follows a Gaussian distribution. The width of the distribution, and hence the degree of roughness
of the energy landscape, was varied and its effect on the particle dynamics studied. This situation represents
an example of Brownian dynamics in the presence of disorder. In the experiments, the energy landscapes were
generated optically using a holographic setup with a spatial light modulator, and the particle trajectories were
followed by video microscopy. The dynamics is characterized using, e.g., the time-dependent diffusion coefficient,
the mean squared displacement, the van Hove function, and the non-Gaussian parameter. In both experiments and
simulations the dynamics is initially diffusive, showing an extended subdiffusive regime at intermediate times
before diffusive motion is recovered at very long times. The dependence of the long-time diffusion coefficient
on the width of the Gaussian distribution agrees with theoretical predictions. Compared to the dynamics in a
one-dimensional potential energy landscape, the localization at intermediate times is weaker and the diffusive
regime at long times reached earlier, which is due to the possibility to avoid local maxima in two-dimensional
energy landscapes.
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I. INTRODUCTION

The Brownian motion of colloidal particles is one of
the classical phenomena in statistical physics [1–4]. In real
situations, the particles often do not move freely, but their
dynamics is modified by an external potential [5–7]. Especially
a random potential, and thus Brownian motion in the presence
of disorder, leads to interesting transport phenomena [8,9].
Up to now, the dynamics in random potentials has been
studied mainly by theory and computer simulations [10–19].
Theoretical models include the random barrier model [13], the
random trap model [14], the random walk with barriers [15]
and the continuous time random walk [16] as well as studies of
diffusion in a rough potential [20] and in materials with defects
such as zeolites [21]. In particular, the long-time limit has been
investigated for different realizations of random potentials
[8,9]. In contrast, less is known on the intermediate regime and
the time needed to reach the long-time limit. To our knowledge,
only very few systematic experimental tests of theoretical
and simulation predictions have been performed [22–24].
Nevertheless, the theoretical predictions have been applied
successfully to experimental data and the concept of particles
diffusing through an energy landscape has proven to be very
useful in understanding very different phenomena. This in-
cludes particle diffusion in inhomogeneous media (e.g., single
molecule dynamics in porous gels [25] or in cells [26–28]), the
dynamics on rough surfaces [29,30], the dynamics of particles
moving along the walls between magnetic domains [22,31], the
dynamics of independent charge carriers in a conductor with
impurities (in the parameter range where conduction can be
modeled as a classical process) [32,33]. In particular, random
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potentials with a Gaussian distribution of energy levels have
been suggested for different systems [9,22,34]. Furthermore,
some processes can be represented by a trajectory in the
systems’ configuration space, for example vitrification leading
to glassy systems [35–41] or protein folding [42–47]. Often
diffusion in a random potential energy landscape represents
a crude approximation only, but it can nevertheless provide
a useful first description of the effect of disorder on the
dynamics [8,48]. Disorder may modify the value of the
diffusion coefficient or it may alter Brownian motion leading to
anomalous diffusion. Which effect dominates depends not only
on the specific process, but also on the time scale of interest.

An external potential can be imposed on a polarizable
colloidal particle by exposing it to a light field [49–52].
Light exerts different forces on particles if their refractive
index differs from (typically exceeds) that of the solvent: a
scattering force or radiation pressure, which pushes particles
along the laser beam, and a gradient force, which attracts
particles toward regions of high light intensity [50–52]. A
classical application of this effect is optical tweezers, which
are used to trap individual particles by a tightly focused laser
beam [50–55]. Furthermore, above a certain light intensity, a
periodic light field can induce a disorder-order transition in
a two-dimensional (2D) charged colloidal system, known as
light-induced freezing. If the intensity is increased further, the
induced crystal melts into a modulated liquid; this process is
called light-induced melting [56–58]. In addition to the particle
arrangement, the particle dynamics can be affected by periodic
[59] and random [23] light fields, resulting in anomalous
diffusion. Light fields hence provide a means to manipulate
the spatial arrangement and dynamics of colloidal particles.

Recently, we experimentally realized one-dimensional
random-energy landscapes [23,53] and periodic potentials
[49,59] using laser light fields and studied the dynamics of
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individual particles in these potentials. Here, this is extended
to the dynamics of individual colloidal particles in two-
dimensional random potentials. In our experiments and simu-
lations, the values of the two-dimensional random potential
were drawn from a Gaussian distribution, whose width ε

represents the degree of roughness of the potential and, in the
experiments, was controlled by the laser power P . The static
properties of the potential were determined quantitatively.
Furthermore, the trajectories of individual particles in this
potential were followed using video microscopy [60–62]
and compared to our simulation results. The dynamics was
characterized by, e.g., the time-dependent diffusion coefficient,
the mean squared displacement (MSD), the non-Gaussian
parameter, and the van Hove function. The dynamics is initially
diffusive but then, at intermediate times, show an extended
subdiffusive regime before diffusive behavior is reestablished
at very long times. Our findings are compared to the particle
dynamics in one-dimensional random potentials [23,24] and
periodic potentials [59]. In two-dimensional potential energy
landscapes, particles can bypass large barriers. Therefore,
the particle dynamics is controlled by minima and saddle
points instead of minima and maxima. Moreover, compared to
periodic potentials, the barriers have different heights, which
significantly affects the particle dynamics.

II. MATERIALS AND METHODS

A. Sample preparation

Each sample consisted of surfactant-free sulfonated
polystyrene particles with a radius R = 1.4 μm and poly-
dispersity 3.2 % (Interfacial Dynamics Microspheres &
Nanospheres) suspended in heavy water (D2O), so that the
particles cream rather than sediment. Stock solutions of
the particles were diluted to result in an area fraction of the
creamed sample, σ < 0.10, which represents a compromise
between negligible particle-particle interactions and reason-
able statistics. Area fractions were estimated from micrographs
according to σ = πR2N/A with N and A being the number of
particles and the area covered by the light field, respectively.

The heavy water (D2O) was deionized by stirring with ion
exchange resin to increase the particle-glass repulsion and thus
reduce the fraction of particles sticking to the glass surface. To
further reduce sticking, all glassware was sonicated in 2%
Helmanex II solution at about 60 ◦C and then rinsed with
Millipore water and dried in air prior to use. Each sample cell
was constructed from a microscope slide and three cover slips,
two used as spacers (number 0 with thickness 0.085–0.13 mm,
supplied by VWR) with a gap between them and the third on
top to create a narrow capillary (number 1 with thickness
0.13–0.16 mm, supplied by VWR) [63]. Thin cover glasses
were used as spacers to allow imaging of the creamed particles
using a high resolution objective with a working distance of
0.13 mm. The sample chamber was filled using capillary action
and subsequently sealed with UV glue.

B. Light field generation

The setup contains a laser with a wavelength of 532 nm
(Ventus 532-1500, Laser Quantum). Its beam is expanded
and then reflected from a spatial light modulator (Holoeye

2500-LCR). Subsequently, it is directed through two tele-
scopes to reduce its diameter and reflected off three mirrors
to steer it through an inverted microscope (Nikon Eclipse
2000-U) into the sample [23,53,64]. One of the mirrors is
a dichroic mirror to introduce the beam into the microscope
beam path and to use the microscope objective (60× oil
immersion, numerical aperture NA 1.4, Nikon) to image the
light field into the sample plane. The beam passes upwards
through the sample and hence, due to radiation pressure,
pushes the particles against the top of the cell, which reinforces
the creaming of the particles. A notch filter in the imaging path
prevents laser light from reaching the ocular or camera. To aid
alignment, the notch filter can be removed and the sample
replaced by a mirror, so that the light intensity distribution in
the sample plane can be imaged using the microscope.

A kinoform (phase hologram) was calculated using the
Gerchberg-Saxton iterative algorithm [65] [Fig. 1(a)] and
displayed in the center of the spatial light modulator. The
kinoform corresponds to a homogeneous disk surrounded by
a ring to prevent particle movements into and out of the
disk. The Fourier transform of the kinoform is, as expected, a
homogeneous disk surrounded by a ring [Fig. 1(b)]. In order
to account for the angle at which the laser impinges on the
spatial light modulator (22.5◦), the disk and ring are a factor
1/ cos (22.5◦) = 1.08 taller than they are wide [23,53]. The
observed light field intensity I (x,y) [Fig. 1(c)] corresponds
to the disk of the Fourier-transformed kinoform. Indeed, the
illumination is overall flat but, crucially, has some fluctuations
due to the finite size and pixelation of the light modulator [23].
These fluctuations are exploited in the following. Furthermore,
there is a bright zeroth-order peak in the center. Using this

FIG. 1. (a) Kinoform calculated by applying the Gerchberg-
Saxton algorithm to a homogeneous disk surrounded by a ring and
(b) its Fourier transform. (c) Micrograph of the observed intensity
I (x,y) of the disk taken at very low laser power P � 0.2 mW.
(d) Potential U (x,y) as experienced by a pointlike test particle
obtained by convoluting I (x,y) with the volume of a spherical particle
with radius R = 1.4 μm =̂ 12.7 px.
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peak, a particle was trapped and used to monitor any drift of
the setup [23]. Global drifts were found to be negligible during
individual measurements (up to 4 h).

C. Video microscopy and particle tracking

The samples were observed using the inverted microscope.
Micrographs were recorded using a CMOS camera (PL-
B742F, Pixelink). Particle coordinates were extracted from
the time series of micrographs and the trajectories determined
using IDL routines [60]. To allow for an unambiguous
reconstruction of the trajectories, the distance particles move
between two images was required to be much smaller than
the average interparticle distance and thus limited to 1.2 R.
Furthermore, care was taken that particles do not approach
each other or the boundary closely such that particle-particle
and particle-boundary interactions can be neglected. Typical
measurement times were 2–3 h. Particles which were stuck
to the glass were identified by comparing the particles’
short-time friction coefficient ξi , i.e., the inverse mobility,
determined from the mean squared displacement, to the
expected bulk value ξ0 = 6πηR with the solvent viscosity
η = 1.19 × 10−3 Pa s at room temperature. Particles with
ξi > 20 ξ0 were declared stuck and removed from the analysis.
Typically, one particle was stuck to the glass in the field of view,
which contained about 20 particles.

For identical conditions, measurements at different posi-
tions in the sample yielded very similar results, despite slightly
different particle area fractions σ . This reproducibility allowed
us to average several independent measurements of equal
recording time Texp to improve statistics.

D. Monte Carlo simulations

The Monte Carlo simulations were performed on a 4096 ×
4096 square lattice with the lattice points separated by a
distance �s in both directions, where we have set �s = 1. The
potential values at the lattice points, Ũ (x,y), were produced
using a Box-Muller algorithm generating numbers, which are
Gaussian distributed with zero mean and standard deviation ε̃.
The potential Ũ (x,y) was convoluted with the particle volume
to obtain the potential U (x,y) felt by a pointlike test particle

U (x,y) =
∑

k

∑
l Ũ (x−k�s,y−l�s) a(k,l)

√∑
k

∑
l a

2(k,l)
, (1)

where the double sum runs over the projected particle, i.e.,
k2 + l2 � m2 with k�s and l�s the distances from the particle
center in the two directions, and R = m�s the radius of the
particle. The volume of the particle is represented by

a(k,l) = 2
√

(m2 − k2 − l2). (2)

As a compromise between negligible discretization effects and
viable computation time, we have chosen m = 32 and thus
−32 � k,l � 32.

The convolution leads to a potential U (x,y) (Fig. 2), which
is smoother than Ũ (x,y). Its values follow the same Gaussian
distribution, albeit with a spatial correlation decaying on the
length scale of the particle size. It is supposed to resemble the
potential energy landscape experienced by a colloidal particle
in the light field (Sec. III A).

FIG. 2. (Color online) Some region of the spatially correlated
Gaussian potential energy landscape U (x,y)/kBT obtained by
convolution of a spatially uncorrelated Gaussian energy landscape
with the particle volume. It thus reflects the potential felt by a particle
[Fig. 1(d)] and is used in the Monte Carlo simulations.

Once the potential energy landscape U (x,y) was fixed, a
particle was positioned on a randomly chosen lattice point.
During the simulation, a direction is chosen randomly and,
depending on the energy difference �U to the neighboring
lattice point, the particle is moved in any case if �U � 0, or
moved with a finite probability exp (−�U/kBT ) if �U >

0 (where kBT is the thermal energy). By averaging over
1024 different initial positions of the particle, representative
averages can be determined. For each Monte Carlo run, the
short-time diffusion coefficient D0 and the related Brownian
time tB = R2/4D0 were calculated by a linear fit to the MSD at
short times. In analogy to the experiment, data were acquired
up to Tsim = 1000 tB. This yielded particle trajectories as in the
experiments. Thus, the different parameters, such as the mean
squared displacement, were determined as in the experiments,
including averaging over waiting times (see below). It turned
out that within statistical uncertainty the results for different
realizations of the potential energy landscape U (x,y) are
identical. As in the experiments, separate simulations were
performed for different values of the degree of roughness
0 kBT � ε � 3 kBT to investigate its effect on the dynamics.

III. RESULTS AND DISCUSSION

We studied the behavior of individual colloidal particles in
two-dimensional random potential energy landscapes. At first,
the properties of the experimentally created energy landscapes
are presented. Then, the particle dynamics in these energy
landscapes are discussed and compared to the results of our
Monte Carlo simulations and theoretical predictions. Finally,
our experimental and simulation results are contrasted with the
dynamics in one-dimensional random and periodic potentials.

A. Properties of the optically generated random potential

A realization of the light field at very low laser power is
displayed in Fig. 1(c). The light field interacts with polarizable
particles [50–52]. The polarizable particle volume is taken into
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FIG. 3. Azimuthally averaged spatial correlation function
〈�(x̃,ỹ)〉	 of the laser intensity I (x,y) (dashed line) and of the
potential energy landscape felt by a pointlike test particle U (x,y)
(solid line) vs the distance �r as determined from Figs. 1(c) and 1(d),
respectively.

account by convolving the local light intensity I (x,y) with the
particle volume. The effect of the light field on the particle is
then represented by an external potential U (x,y) as felt by a
point-like test particle [Fig. 1(d)].

To determine the characteristic length scales of the light
field intensity I (x,y) and of the potential felt by a pointlike
test particle U (x,y), the spatial correlation functions were
determined and their azimuthal average 〈�(x̃,ỹ)〉	 calculated.
The spatial correlation of the light field intensity I (x,y) decays
on a short length scale compared to the particle size. However,
the convolution with the particle volume introduces a length
scale, namely the particle diameter 2R. The spatial correlation
of the potential U (x,y), which was similarly determined,
indeed decays on a characteristic length of 2R (Fig. 3).

Based on the observed light intensity I (x,y) and potential
energy landscape U (x,y) [Figs. 1(c) and 1(d)], the distributions
of the light intensity values p(I ) and potential values p(U )
were determined (Fig. 4). The distribution p(I ) follows the
probability density function of a 
 distribution [66]

f
(I ) = bk


(k)
I k−1e−bI , (3)

where I � 0, 
(k) is the 
 function and b the scale parameter.
A fit to the experimental p(I ) yielded a shape parameter k =
3.1 ± 0.1 [Fig. 4(a)], corresponding to a 3D speckle pattern
[66,67]. The distribution p(U ) can be described by a Gaussian
distribution

fG(U ) = 1√
2πε2

e
− (U−〈U〉)2

2ε2 (4)

with the average 〈U 〉 and width or standard deviation ε

[Fig. 4(b)]. Due to the convolution with the particle volume,
U (x,y) represents a weighted average of several independent
(random) values of I (x,y) and thus p(U ) has a significantly
reduced width compared to p(I ). The width ε characterizes
the degree of roughness of the random potential U (x,y),
which is controlled by the laser power P , but cannot easily be
determined experimentally. Thus, to establish a quantitative
relation between the roughness ε, used in the simulations, and
the laser power P , applied in experiments, the experimental

FIG. 4. (Color online) Distribution of (a) values of the intensity
of the light field, p(I ), and (b) values of the potential as felt by a
pointlike test particle, p(U ), based on the observed intensity I (x,y)
and potential U (x,y) shown in Figs. 1(c) and 1(d), respectively. Dark
lines are fits based on a 
 and Gaussian distribution, respectively.

potential energy landscape was calibrated. This was achieved
by a direct comparison of the experimental and simulation
results, namely of the time-dependent diffusion coefficient
D(t) at very short and long times (Sec. III C). The calibration
resulted in an approximately linear relation between ε and P ,
which might saturate for large P (Fig. 5).

B. Dynamics in the random potential: experiments

The effect of two-dimensional random-energy landscapes
on the particle dynamics is qualitatively illustrated in Fig. 6.

FIG. 5. Standard deviation ε of the distribution of potential energy
values, p(U ), as a function of laser power P .
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FIG. 6. (Color online) Trajectories of particles undergoing diffu-
sion in a two-dimensional plane, part of which contains a random
potential (green background), which is separated by a barrier
(white/green rings) from the surroundings (white background).
Particle radius R = 1.4 μm, particle surface fraction σ = 0.04,
laser power P = 1.32 W corresponding to a standard deviation
ε = 2.8kBT , and a recording time Texp = 3.8 h. Coordinates are given
in μm.

Outside the light field (white background), particles undergo
free diffusion, exploring a large area. This region is separated
by a large barrier (white/green rings) from the two-dimensional
random light field (green disk). Within the random potential,
the excursions of the particles are limited and hence the particle
dynamics is slowed down. The particles remain longer at some
positions, which correspond to local minima of the potential.
For a potential with a larger degree of roughness ε, i.e., a larger
width of p(U ), this effect is more pronounced with particles
being more efficiently trapped and hence exploring a smaller
region.

Based on the particle trajectories, different statistical prop-
erties were computed to characterize the particle dynamics.
We found identical behavior along the x and y directions as
expected for an isotropic system. The dynamical properties
were hence determined as a function of the distance, �r =
[(�x)2 + (�y)2]1/2, where distances are scaled by the particle
radius R = 1.4 μm and times by the Brownian time tB =
R2/(4D0) = (6.4 ± 0.1) s with D0 experimentally determined
in the absence of a random potential, i.e., ε = 0, but in the
vicinity of the water-glass interface. This renders the data
independent of the specific experimental conditions, except for
a radiation pressure effect (Sec. III C). Moreover, the statistical
properties were obtained by averaging over different particles,
which are well separated and thus noninteracting, and over
waiting times t0 to improve statistics. Since, initially, the oc-
cupancy of energy levels was homogeneous but tended toward
a Boltzmann distribution in the course of the experiment, the
average over waiting times depends on the total measurement
time Texp, which was Texp ≈ 1000 tB.

Depending on the particle positions, the particles expe-
rience various potential values U (x,y) and are trapped for
different times, reflecting the different heights of the saddle
points to the neighboring minima. The time t required to
explore at least a distance l in a potential with roughness ε has
been determined and the particle residence time distribution

FIG. 7. (Color online) Particle residence time distribution �l,ε(t)
representing the probability that it takes a particle a time t to travel
at least a distance l in a random potential with standard deviation ε.
All curves are smoothed by a moving five-points average. (a) �l,ε(t)
for different length l/R (as indicated, increasing left to right) and
ε = 2.8kBT , scaled plot as inset. (b) �l,ε(t) for l/R = 2 and different
ε (as indicated, decreasing from top at maxima).

�l,ε(t) calculated. To explore a distance l by free diffusion with
diffusion coefficient D0, on average the time t = l2/(4D0) is
required. To explore larger distances l and/or in the presence
of a random potential, on average larger times are required.
For short distances l < 2R, i.e., within a minimum, �l,ε(t)
does not significantly depend on ε but depends on the distance
l [Fig. 7(a)]. The l dependence is mainly governed by the
longer time required to diffuse a larger distance l as shown
by a rescaling assuming diffusive motion [Fig. 7(a), inset]. In
contrast, to travel a distance of at least 2R, which corresponds
to the typical minimum-minimum separation (Fig. 3), in
general requires to cross a barrier or saddle point, whose
average height depends on ε. Accordingly, �l,ε(t) depends
on the roughness ε [Fig. 7(b)] and the mean residence time
exceeds the average time t = 4tB required to diffuse 2R in the
absence of a potential.

The probability distribution of particle displacements �r ,
i.e., the self part of the van Hove function, P (�r,t), at
different delay times t is calculated based on the trajectories
by averaging over all waiting times t0 and particles i

P (�r,t) = 〈δ {�r − [ri(t0+t) − ri(t0)]}〉t0,i , (5)

where ri(t) is the position of particle i at time t and the average
is taken over particles i and waiting times t0 to improve statis-
tics. In the case of free two-dimensional diffusion, i.e., without
any external potential, P (�r,t) follows a Rayleigh distribu-
tion, P (�r,t) ∼ �r/(2D0t) exp (−�r2/4D0t), whose width
increases linearly with time t [Fig. 8(a)]. In the presence of a
random potential, P (�r,t) changes qualitatively [Fig. 8(b)].
The potential tends to trap the particle so that it explores
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FIG. 8. (Color online) Distribution of particle displacements �r

within time t , P (�r,t) (a) in the absence of a potential (ε = 0),
i.e. for free diffusion, with the scaled P (�r,t) as an inset, (b) in
the presence of a random potential with roughness ε = 2.8kBT for
different times t (as indicated, increasing left to right) and (c) with
different roughnesses ε (as indicated, increasing right to left) for time
t = 50 tB.

less space and the distributions P (�r,t) get much narrower.
This is more pronounced for longer times, when the dynamics
include barrier crossing. Accordingly, at long delay times, the
roughness of the potential significantly effects P (�r,t), which
becomes narrower with increasing ε [Fig. 8(c)].

The width of the distribution of particle displacements,
P (�r,t), can be characterized by the mean squared displace-
ment (MSD)

〈�r2(t)〉 = 〈�x2(t)〉 + 〈�y2(t)〉, (6)

which is calculated from the particle trajectories according to

〈�x2(t)〉 = 〈[xi(t0 + t) − xi(t0)]2〉t0,i
− 〈[xi(t0 + t) − xi(t0)]〉2

t0,i
(7)

and 〈�y2(t)〉 correspondingly, with the second term correcting
for possible drifts. In the absence of a potential (ε = 0),
〈�r2(t)〉 increases linearly with time, as expected for free
diffusion [Fig. 9(a)]. In the presence of a random potential,

FIG. 9. (Color online) (a) Normalized mean squared displace-
ment 〈�r(t)2〉/R2, (b) normalized diffusion coefficient D(t)/D0, (c)
exponent μ(t) in the relation 〈�r2(t)〉 ∼ tμ(t) and (d) non-Gaussian
parameter α2(t) as a function of delay time t normalized by the
Brownian time tB in the presence of a two-dimensional random
potential with roughness ε (as indicated, increasing from top (a)-(c)
and bottom (d), respectively). For clarity, only every fifth data point
is plotted as a symbol. Black crosses indicate minima and maxima of
μ(t) and α2(t), respectively.

the particle dynamics exhibit three distinct regimes. Both,
at short times (t/tB � 0.1) and long times (t/tB � 30), the
particle dynamics are diffusive. At small t , the diffusive
behavior reflects small excursions within local minima and is
thus essentially independent of the roughness ε. Nevertheless,
diffusion is reduced compared to free diffusion (ε = 0)
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because laser pressure pushes the particles closer to the
water-glass interface and thus reduces their mobility [68–70],
with only a weak dependence on laser power P > 0 and
hence ε > 0. Furthermore, the averaging over waiting times
t0 [Eqs. (6) and (7)] leads to a reduction of the MSD,
especially at short times. This is due to the evolution of
the system towards an equilibrium (Boltzmann) distribution,
which leads to an increasing occupation of deep minima.
(Both effects are discussed in more detail in Sec. III C.) For
large enough t , hopping between minima becomes important
and constitutes a random walk. Thus, diffusive behavior is
reestablished at long times, although with a strongly reduced
diffusion coefficient. At intermediate t , the MSDs exhibit an
inflection point, which becomes increasingly pronounced as ε

increases. This subdiffusive behavior is caused by the particle
being trapped in local minima for prolonged times before it
escapes to a neighboring minima. Since there is a wide range
of residence times (Fig. 7), reflecting barriers of different
heights, the subdiffusive regime extends over a broad range
of times.

From the two-dimensional MSD 〈�r2(t)〉, the time-
dependent diffusion coefficient D(t) can be calculated accord-
ing to

D(t) = 1

2d

∂

∂t
〈�r2(t)〉, (8)

where in the present case the dimension d = 2. The three
regimes discussed above are also reflected in the normalized
time-dependent diffusion coefficient D(t)/D0 [Fig. 9(b)].
Toward very short times, D(t)/D0 tends toward one (actually
slightly below one due to the radiation pressure and the
averaging mentioned above and discussed in Sec. III C). It
strongly decreases at intermediate times to reach a much
smaller value D∞ at long times, where hopping between
minima dominates and diffusion is reestablished, reflected
in the plateau of D(t) at long times. The asymptotic
diffusion coefficient D∞ was determined experimentally
and will be discussed together with the simulation results
in Sec. III C.

In order to characterize deviations from diffusive behavior,
in particular the subdiffusion at intermediate times, the
exponent μ in the relation 〈�r2(t)〉 ∼ tμ(t) is determined from
the slope of the MSD in double-logarithmic representation

μ(t) = ∂ log10 (〈�r2(t)〉)
∂ log10 (t)

. (9)

For free diffusion μ = 1, while μ < 1 in the case of subdiffu-
sion. The subdiffusive dynamics at intermediate times results
in a minimum in μ(t). It becomes more pronounced with
increasing ε, but remains at about the same time [Fig. 9(c),
crosses]. In contrast, the diffusive behavior at short and long
times is reflected in the trend of μ(t) toward one in these two
limits.

While the exponent μ(t) characterizes deviations from dif-
fusive behavior, the non-Gaussian parameter α2(t) quantifies,
in the case of one dimension, the deviation of the distribution
of particle displacements from a Gaussian distribution. It
corresponds to the first non-Gaussian correction [40]. In
two dimensions, it quantifies deviations from a Rayleigh

FIG. 10. (Color online) Characteristic times, namely of the
minimum in the exponent μ(t), i.e. tμ, and the maximum in the
non-Gaussian parameter α2(t), i.e. tα , as a function of the degree
of roughness ε of the potential from experiments (filled symbols,
corresponding to the crosses in Figs. 9(c) and 9(d) but taking the
radiation pressure effect, as quantified in the inset of Fig. 11, into
account) and simulations (open symbols). The solid line is a guide to
the eye.

distribution (Fig. 8). Following a previous definition [71]

α2(t) = 〈�r4(t)〉
(1 + 2/d)〈�r2(t)〉2

− 1, (10)

where 〈�r4(t)〉 = 〈�x4(t)〉 + 〈�y4(t)〉 + 2〈�x2(t)〉〈�y2(t)〉
and 〈�x4(t)〉 and 〈�y4(t)〉 are defined in analogy to 〈�x2(t)〉.
The time dependence of α2(t) also shows three different
dynamic regimes [Fig. 9(d)]. At very short and very long times,
when the particle dynamics are diffusive, α2(t) ≈ 0, while at
intermediate times α2(t) develops a peak, which becomes more
pronounced and moves to larger times with increasing ε. This
reflects the broader distribution of barrier heights and hence
residence times �l,ε(t) at larger ε (Fig. 7).

All parameters indicate an intermediate time regime char-
acterized by subdiffusive dynamics. In particular, a minimum
in the exponent μ(t) at tμ and, at a later time tα , a maximum
in the non-Gaussian parameter α2(t) are observed [Figs. 9(c)
and 9(d)]. While the time tμ hardly depends on ε, the maximum
in α2(t) shifts to significantly larger times tα with increasing ε

(Fig. 10). The minimum of μ(t) is reached when diffusion
is most efficiently suppressed. This occurs just before a
significant fraction of the particles start to escape the minima.
This implies relatively shallow minima, which have a similar
depth for essentially all ε. Thus the dependence of tμ on ε is
very small. On the other hand, the maximum of α2(t) occurs
when the dynamics is maximally heterogeneous, i.e., some
minima have long been left, others only recently, and some not
yet. This spread increases with ε and hence does the maximum
of α2(t). Accordingly, to reach this maximally heterogeneous
state takes longer and thus tα increases with ε.

C. Dynamics in the random potential: simulations

The simulations also show three regimes: initially diffusion
followed by subdiffusive behavior and finally again diffusion
with a considerably reduced diffusion coefficient D∞ (Fig. 11),
consistent with our experimental findings (Fig. 9).
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FIG. 11. (Color online) Normalized diffusion coefficient
D(t)/D0 as a function of delay time t/tB for different rough-
nesses ε from simulations (black solid lines, for ε/kBT =
1,1.25,1.5,1.75,2,2.25,2.5,2.75,3) and experiments (coloured lines
with symbols as in Fig. 9 and sequence top to bottom). Here, the
experimental data are scaled with an effective diffusion coefficient
and effective Brownian time to account for the effect of radiation
pressure (see text for details). The dependence of the scaling factor
f on radiation pressure, which is proportional to the laser power P

and hence the degree of roughness ε (Fig. 5), is shown as inset.

Already at short times, the diffusion coefficient D(t) is
noticeably reduced. The reduction, caused by the random
potential, is considerably enhanced by the averaging over
waiting times t0 [Eqs. (6) and (7)]. As time progresses, the
initially homogeneous particle distribution develops into the
equilibrium distribution with the energy levels occupied ac-
cording to the Boltzmann distribution. This implies a growing
occupation of deep minima, in which the particles reside for
a long time, and hence slower dynamics. With increasing
simulation time Tsim (or measurement time Texp), and hence an
increasing range of waiting times 0 � t0 � Tsim−t included
in the average, the weight of near-equilibrium distributions
with a large fraction of less-mobile particles increases. Hence,
the averaging over t0 leads to a smaller mean diffusion
coefficient D(t) with the decrease becoming more pronounced
as Tsim increases and t decreases. The decrease of D(t) is
thus particularly noticeable at short times t . Furthermore, the
simulation time has to be matched to the measurement time,
Tsim ≈ Texp, to allow for a meaningful comparison.

At long times, diffusion is reestablished although with
a significantly smaller diffusion coefficient D∞(ε), which
is estimated by the value at t = 80 tB, i.e., D∞ ≈ D(80tB)
(Fig. 12). The diffusion coefficient at long times, D∞(ε), has
been linked to the free diffusion coefficient D0 [9,72–74]

D∞(ε)

D0
= e− 1

2 ( ε
kBT

)2

. (11)

The most dominant feature of this equation is the dependence
on −(ε/kBT )2, which is just the ratio of the equilibrium energy
of a Gaussian distribution −ε2/kBT and kBT . This first term
dominates the temperature dependence of the barrier because
the typical energies to be crossed for transitions between
different regions are essentially temperature independent, as
suggested by a percolation picture (cf. [19]). The simulation
findings and theoretical prediction show very good agreement
at small ε and deviations at large ε � 2kBT (Fig. 12). These

FIG. 12. (Color online) Ratio of the long-time diffusion coeffi-
cient D∞ ≈ D(80tB) and the diffusion coefficient D0 in the absence
of a potential as a function of the degree of roughness ε as obtained
from simulations. Solid symbols: total simulation time similar to the
experimental recoding time, Tsim ≈ Texp, open symbols: one order of
magnitude longer simulation time, Tsim ≈ 10 Texp, D∞ ≈ D(1000 tB).
The red solid line represents a spline interpolation of the simulation
data and the blue dashed and dotted lines the theoretical predictions
for a two-dimensional [9] and one-dimensional [20] random potential,
respectively. The inset shows the ratio D(t)/D0 at different times
t = tB, 10 tB and 100 tB. The black lines are guides to the eye.

deviations are due to the increasingly longer times required
to reach the asymptotic long-time value D∞, which, for
ε � 2kBT , is beyond the simulation time Tsim (Fig. 11). This
is illustrated by the approach of D(t,ε) toward D∞(ε) for
different ε, which is particularly slow and eventually beyond
the simulation time Tsim for large ε (Fig. 12, inset). Note
that the simulation time was matched to the experimental
recording time, Tsim ≈ Texp, in order to obtain equivalent
averaging. If the simulation time is increased by an order
of magnitude, Tsim ≈ 10 Texp, a significantly better agreement
with the theoretical prediction is observed (Fig. 12).

At intermediate times, the dynamics is dominated by the
slow transition from the initial to the long-time diffusion. This
transition can be characterized by the times discussed above:
tμ and tα at which the minimum of μ(t) and the maximum
of α2(t) occur, respectively. These times have been extracted
from the simulation data and quantitatively agree with the
experimental results (Fig. 10). Based on the Stokes-Einstein
equation, the α-relaxation time is expected to be inversely
proportional to the long-time diffusion coefficient D∞ [75].
Furthermore, the maximum of the non-Gaussian parameter,
i.e., tα , is typically close to the α-relaxation time. Together
with Eq. (11), this suggests ln tα ∼ (ε/kBT )2. This is indeed
observed (Fig. 10). The range of ε is, however, too small to
unambiguously confirm this relation.

We now quantitatively compare our experimental and
simulation results. This requires us to determine the relation-
ship between ε and the experimentally applied laser power
P as well as the friction coefficient of the particles, ξ ∗

0 ,
which implicitly also depends on the laser power P . Due
to hydrodynamic effects, the friction coefficient varies with
the particles’ distance from the water-glass interface [68–70].
The distance is controlled by a balance between the repulsive
particle-wall interaction [76–79] and the radiation pressure
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(and gravity) [50–52], which pushes the particles toward the
glass slide and depends on P [64]. Both, ε(P ) and ξ ∗

0 (P ), are
together determined in an iterative procedure, which is based
on a comparison of the experimental and simulation results
and is described in the following.

Although the degree of roughness ε of the optically
generated potential U (x,y) can be tuned via the laser power
P and we expect a linear relationship ε ∼ P , ε(P ) cannot
easily be determined experimentally. Therefore, in a first step,
this relation has been estimated using D∞, which depends
on ε (in the simulations, Figs. 11 and 12) and P (in the
experiments, Fig. 9). Since the asymptotic limit D∞ is not
accessible, we use D∞/D0 ≈ D(80tB)/D0 for the simulation
results and D∞/D0 ≈ D(80tB)/D(0.2tB) for the experimental
results since the short time limit of the diffusion coefficient
is not accessible experimentally (and affected by radiation
pressure as described below). An interpolation of D∞(ε)/D0

determined in simulations (Fig. 12, red line) was used to assign
an ε to the D∞(P )/D(0.2tB) from experiments with different
P . This yields a first approximation for ε(P ).

The friction coefficient of the particles implicitly also
depends on the laser power P . A finite P > 0 will lead to
radiation pressure pushing the particles closer to the water-
glass interface and hence increases the friction coefficient
ξ ∗

0 > ξ0 and reduces the diffusion coefficient D∗
0 < D0. At

short times, the diffusion coefficient tends to a value, Ds,
which can be used to guide the correction. Although the
short-time dynamics is hardly affected by the random potential,
the averaging over waiting times t0 [Eq. (8)] affects Ds [24],
as mentioned above. Thus, the experimental value Ds = D(ts),
where ts ≈ 0.2 tB, was fitted to the corresponding simulation
value, which is equally affected by the averaging. The choice
of Ds affects tB and in turn ts and hence D(ts). Therefore,
the procedure was iterated until consistent relations were
obtained.

This procedure yielded a relation ε(P ) (Fig. 5), which
appears linear up to large P where ε starts to saturate.
The slope is consistent with a previous calibration of a
one-dimensional random potential when taking the different
illuminated areas into account [23]. Furthermore, the iterative
procedure provides the friction coefficient; ξ ∗

0 ≈ 1.4 ξ0 for
P > 0 and ξ ∗

0 = ξ0 for P = 0 and the simulations (Fig. 11,
inset). This implies a scaling factor f = ξ ∗

0 /ξ0, leading to
an effective diffusion coefficient D∗

0 = D0/f and an effective
Brownian time t∗B = f tB in the experiments with P > 0, while
in the simulations and experiments with P = 0, D∗

0 = D0

and t∗B = tB. Also other procedures have been followed to
determine ε(P ) and ξ ∗

0 (P ); they all resulted in a linear relation
ε(P ) ∼ P with slopes within 20% and also very similar ξ ∗

0 (P ).
Having determined ε(P ) and corrected the experimental

data for radiation pressure effects, we can compare the
experimental and simulation results (Fig. 11). While the
dynamics at short and long times have been exploited to obtain
ε(P ) and ξ ∗

0 , a comparison of the intermediate subdiffusive
behavior with the transition from short- to long-time diffu-
sion and the corresponding time scales is meaningful. The
dynamics at intermediate times indeed quantitatively agree.
In addition, the quantitative agreements of the time scales, tμ
and tα , determined from the experimental and simulation data
(Fig. 10) have already been discussed.

FIG. 13. (Color online) Normalized diffusion coefficient
D(t)/D0 as a function of normalized delay time t/tB for particles
in a one-dimensional (lines) and two-dimensional (symbols) random
potential with different standard deviations ε (as indicated) as ob-
served in simulations. Solid horizontal lines at large t/tB correspond
to theoretical predictions [9,20].

D. Comparison to particle dynamics in one-dimensional
random and periodic potentials

As in two-dimensional random potentials, in one-
dimensional random potentials the particle dynamics also
show three distinct regimes: diffusion at short and long times
and subdiffusion at intermediate times (Fig. 13) [23,24].
The dynamics are much slower in the one-dimensional case.
In particular, it takes a much longer time to approach the
asymptotic long-time limit. In general, the characteristic times,
for example tμ and tα , are considerably longer and show
a stronger dependence on ε. Furthermore, the long-time
diffusion coefficient D∞ is smaller (Fig. 12, blue dotted
line) [20]

D∞(ε)

D0
= e−( ε

kBT
)2

. (12)

In two dimensions, D∞ is larger because large barriers can be
avoided, but the exponential dependence on (ε/kBT )2 remains,
consistent with the percolation argument.

In addition to random potentials, colloidal particles have
also been investigated in periodic potentials [56–59,80,81]. In
a sinusoidal potential [59], only one barrier height exists and
thus the distribution of escape times is narrower. The dynamics
at intermediate times exhibit a smaller slope at the inflection
point of the mean squared displacement, corresponding to
a more pronounced subdiffusive behavior with a deeper
minimum of the exponent μ(t). On the other hand, long-
time diffusion is established earlier as very deep minima
are absent.

IV. CONCLUSION

We investigated the dynamics of individual colloidal parti-
cles in two-dimensional random potential energy landscapes,
whose values follow a Gaussian distribution with a standard
deviation ε, which characterizes the degree of roughness of
the potential. In the experiments, the potential was created
using an optical setup and the roughness ε was controlled
via the laser power P . The experimentally observed dynamics
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agree with our Monte Carlo simulation results. Three distinct
regimes have been observed. At short times, the particles
exhibit diffusive behavior within their local minima, in which
they remain until they cross a barrier, i.e., a saddle point, to a
neighboring minima. The wide distribution of barrier heights
leads to a significant spread in residence times. In the mean
squared displacement this is reflected as a broad subdiffusive
region with a relatively large slope at the inflection point
at intermediate times. At long times, the hopping between
minima resembles a random walk and diffusive dynamics
are recovered although with a significantly reduced diffusion
coefficient. The long-time diffusion coefficient decreases with
increasing degree of roughness ε in agreement with theoretical
predictions [9]. This decrease is less pronounced than in
one-dimensional potential energy landscapes [20]. This is
attributed to the possibility to bypass large barriers in two-
dimensions.

The system presented here can also serve as a well-
controlled, tunable, and easily observable model for other

systems, which either explore space or configuration space,
i.e., a potential energy landscape. These systems include
crowded systems, such as concentrated colloidal suspen-
sions, supercooled liquids, glasses [33,35–40], or living cells
[26–28], but also complex potential energy landscapes, such
as those suggested in protein folding [42–44,46,47].
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