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Efficiency of harvesting energy from colored noise by linear oscillators
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We investigate the performance of a linear electromechanical oscillator as an energy harvester of finite-
bandwidth random vibrations. We derive exact analytical expressions for the net electrical power and the efficiency
of the conversion of the power supplied by the noise into electrical power for arbitrary colored noise. We apply
our results to the important case of exponentially correlated noise and discuss the tuning of parameters to achieve
good performance of the device.
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I. INTRODUCTION

The concept of harvesting ambient energy to provide power
for small self-contained sensors and actuators, where batteries
and other power sources are inconvenient because they need
to be replaced or refueled regularly, has attracted considerable
interest in recent years. A wide range of energy harvesting
systems and applications have been studied; for recent re-
views, see, for example, Refs. [1–3]. The most prominent
type of systems are mechanical vibration energy harvesters
that convert kinetic energy via electromagnetic, electrostatic,
or piezoelectric transductions into electrical energy [4–8].
A recent study considers flexoelectric membranes as the
electromechanical transduction mechanism [9]. Mechanical
vibration harvesters can be modeled as mass-spring systems.
Early studies considered linear springs and harmonic oscilla-
tors and treated the external vibrations as sinusoidal vibrations.
In such systems, the harvester extracts maximum energy from
the ambient vibrations, if the excitation frequency matches
the natural frequency of the system, known as resonant energy
harvesting [4]. Nearly all current vibration transducers operate
in this regime [3]. Efficient operation of the vibration harvester
then requires appropriate active or passive tuning [5,7,10].

The ambient energy is however rarely concentrated in a
narrow band around a dominant excitation frequency and
is typically distributed over a broad range of frequencies.
To overcome the limitations of resonant energy harvesting,
various groups have begun to study mass-spring systems
with nonlinear springs and nonlinear oscillators [11–14]. In
particular, the power output of unimodal and bimodal Duffing
oscillators has been investigated [12,13,15–23]. Broadband
ambient vibrations are typically modeled by Gaussian white
noise, and the performance of linear resonant and nonlinear
energy harvesters has been investigated [17,23–25]. Using
the Fokker-Planck equation to describe Duffing-type energy
harvesters in a Gaussian white noise environment, Daqaq [17]
and Green et al. [23] established that the mean power output
of the device is not affected by the nonlinearity of the spring.
These findings were recently confirmed by Halvorsen [25]
who obtained upper bounds on the power out of linear and
nonlinear energy harvesters driven by Gaussian white noise.
Halvorsen [25] concluded that “nonlinear harvesters are not
fundamentally better than linear ones.” Nonlinear oscillators
may still be advantageous in that the size of the harvesting
device can be reduced without affecting the power output [23].

Most studies of vibration energy harvesters have consid-
ered either sinusoidal excitations or Gaussian white noise
excitations. However, ambient vibrations in applications can
deviate from these idealizations [26]. The case of finite-
bandwidth random vibrations, i.e., external colored, noise has
received very little attention [14,17,26]. References [14,26]
consist of experimental and simulation studies. Daqaq [17]
employs approximate methods to obtain the power output of
a Duffing oscillator driven by Ornstein-Uhlenbeck noise. A
comprehensive theory of linear and nonlinear vibration energy
harvesters driven by colored noise is lacking. Our aim is to
provide rigorous analytical results for the power output and
the efficiency of linear harvesters driven by arbitrary colored
noise. The paper is organized as follows. In Sec. II we introduce
the evolution equations for the vibration energy harvester. We
assume transduction via piezoelectricity. We show that the
stationary state is stable in the mean. In Sec. III we derive
closed-form expressions for the second moments of the state
variables of the harvester for arbitrary colored noise. Section
IV deals with the power output and the efficiency of the energy
harvesting device. We obtain analytical expressions for the
power and the efficiency in terms of the correlation function
of the colored noise. These results are applied in Sec. V to
exponentially correlated random vibrations. We also consider
the white noise limit and compare the power and efficiency for
the finite-bandwidth case and the broadband case. We provide
a summary of our results in Sec. VI.

II. ELECTROMECHANICAL OSCILLATOR

An electromechanical oscillator is a device that converts
the power supplied by external noise, usually from an ambient
source, into electrical energy (Fig. 1). The conversion is
done in two steps. First, the external noise drives a damped
oscillator. Second, the oscillator is coupled to a capacitor
that stores the electrical energy. The coupling between the
first and second steps is done by a transducer mechanism
based on piezoelectricity. The equation for the position of the
stochastically driven damped oscillator is

ẍ + bẋ + c(x,V ) + dU

dx
= ξ (t), (2.1)

where U (x) is the potential energy, b is the damping co-
efficient, ξ (t) is the random driving force, and c(x,V ) is
the reaction force due to the motion-to-electricity conversion
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FIG. 1. (Color online) Schematic of the conversion mechanism
of the external random power to the net electrical power. The power
transferred is shown for each step.

mechanism and the dot stands for temporal derivative. It has
the same sign as the dissipative force and opposes the motion.
This arises from the energy fraction that is taken from the
kinetic energy and converted into electric energy. The simplest
expression for this function is c(x,V ) = kvV , where kv > 0 is
a piezoelectric parameter and V (t) is the voltage. The equation
for the dynamics of the voltage has to take into account
the capacitor with capacitance C, the load resistance of the
piezoelectric component, and the connecting function F (ẋ,V )
with the oscillator:

V̇ = F (ẋ,V ) − V

τp

, (2.2)

where τp = RLC is the characteristic time of the capacitor’s
charge process. This time is larger than any other characteristic
time of the system. The simplest form of the connecting
function F (ẋ,V ) is kcẋ, where kc is another positive piezo-
electric parameter. Finally, the stochastic equations for the
electromechanical energy harvester are given by

ẍ + bẋ + kvV + U ′(x) = ξ (t), (2.3a)

V̇ = kcẋ − V

τp

. (2.3b)

If we assume a harmonic potential U (x) = ω2
0x

2/2, take the
Laplace transform, and combine both equations in (2.3), we
obtain a single equation for the random variable x(t),

ẍ + b

∫ t

0
ẋ(t ′)M(t − t ′)dt ′ + ω2

0x = ξ (t) − kvV0e
−t/τp ,

(2.4)

where the memory kernel is given by

M(t) = δ(t) + kvkc

b
e−t/τp (2.5)

and V0 = V (t = 0) and is constant. The stochastic equation
(2.4) resembles a generalized Langevin equation; however
M(t) and ξ (t) do not obey the fluctuation-dissipation theorem.

We expect the electromechanical oscillator to reach a stable
stationary state as time goes to infinity. To check this, we write
(2.3) as a three-variable first-order system:

dx

dt
= v, (2.6a)

dv

dt
= −bv − kvV − ω2x + ξ (t), (2.6b)

dV

dt
= kcv − V

τp

, (2.6c)

or in matrix notation

du
dt

= Au + z(t), (2.7)

where

u =

⎛
⎜⎝

x

v

V

⎞
⎟⎠, A =

⎛
⎜⎝

0 1 0

−ω2 −b −kv

0 kc − 1
τp

⎞
⎟⎠,

(2.8)

z(t) =

⎛
⎜⎝

0

ξ (t)

0

⎞
⎟⎠.

Taking the average of (2.6) or (2.7), we obtain

dm
dt

= Am, (2.9)

where m = 〈u〉. Clearly, in the stationary state the mean
m vanishes, 〈x〉 = 〈v〉 = 〈V 〉 = 0. We apply the the Routh-
Hurwitz stability criterion [27] to the system (2.9) and find
that all Hurwitz determinants are positive:

c3 = ω2

τp

, (2.10a)

�1 = b + 1

τp

, (2.10b)

�2 = bkckv + bω2 + b

τ 2
p

+ b2 + kckv

τp

, (2.10c)

�3 = bω2

τ 3
p

+ (b2 + kckv)
ω2

τ 2
p

+ bω4

τp

. (2.10d)

This implies that the oscillator is stable in the mean and
approaches m = 0 for large times.

III. SECOND MOMENTS

From (2.6) we obtain the following equations for the second
moments of the electromechanical oscillator:

d〈x2〉
dt

= 2〈xv〉, (3.1)

d〈xv〉
dt

= 〈v2〉 + 〈xξ 〉 − b〈xv〉 − kv〈xV 〉 − ω2〈x2〉, (3.2)

d〈v2〉
dt

= −2b〈v2〉 − 2kv〈vV 〉 − 2ω2〈xv〉 + 2〈vξ 〉, (3.3)

d〈xV 〉
dt

= 〈vV 〉 + kc〈xv〉 − 1

τp

〈xV 〉, (3.4)

d〈vV 〉
dt

= −
(

b + 1

τp

)
〈vV 〉 − kv〈V 2〉

−ω2〈xV 〉 + 〈V ξ 〉 + kc〈v2〉, (3.5)

d〈V 2〉
dt

= 2kc〈vV 〉 − 2

τp

〈V 2〉. (3.6)

To close the system of equations for the second moments, we
need to find the correlations of the electromechanical oscillator
state variables with the external noise, 〈xξ 〉, 〈vξ 〉, and 〈V ξ 〉.
We assume that the noise is stationary with vanishing mean
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and correlation function C(s):

〈ξ 〉 = 0, 〈ξ (t)ξ (t + u)〉 = C(u). (3.7)

We write the solution of (2.4), or (2.6), formally as

x(t) = 〈x(t)〉 +
∫ t

0
H (t − u)ξ (u)du, (3.8)

where H (t) is a Green’s function to be determined. Taking the
Laplace transforms of (2.4) and (3.8), we obtain

x̂(s) = f̂ (s) + Ĥ (s)ξ̂ (s). (3.9)

Here the hat symbol denotes the Laplace transform with
parameter s, f̂ (s) is the Laplace transform of 〈x(t)〉, and

Ĥ (s) = 1

s2 + bsM̂(s) + ω2
, (3.10a)

M̂(s) = 1 + kvkc

b
(
s + 1

τp

) , (3.10b)

f̂ (s) = Ĥ (s)

{
x0[s + bM̂(s)] + v0 − kvkc

s + 1
τp

}
, (3.10c)

where x0 = x(t = 0) and v0 = v(t = 0). Analogously, we can
find for the velocity a solution of the form

v(t) = 〈v(t)〉 +
∫ t

0
G(t − u)ξ (u)du, (3.11)

where the Laplace transform of 〈v(t)〉 is sf̂ (s) − v0 and
Ĝ(s) = sĤ (s). Finally, from (3.7), (3.8), and (3.11) we obtain

〈x(t)ξ (t)〉 =
∫ t

0
H (u)C(u)du, (3.12)

〈v(t)ξ (t)〉 =
∫ t

0
G(u)C(u)du. (3.13)

From (2.6c) we find that

〈V (t)ξ (t)〉 = kc

∫ t

0
e−(t−u)/τp 〈v(u)ξ (t)〉du

= kc

∫ t

0
C(u)

[ ∫ u

0
G(z)e−(u−z)/τpdz

]
du.

(3.14)

IV. ENERGY BALANCE AND EFFICIENCY

The energy of the oscillator is sum of the kinetic and the
potential energy, E = v2/2 + U (x). The energy rate or power
of the oscillator can be calculated by taking the time derivative
of the energy,

dE

dt
= v[ẍ + U ′(x)]. (4.1)

Taking into account (2.3a) and averaging, we obtain the mean
power balance equation

d〈E〉
dt

= −b〈v2〉 − kv〈vV 〉 + 〈vξ 〉, (4.2)

where 〈vξ 〉 is the power supplied by the noise, b〈v2〉 the power
dissipated by friction, and kv〈vV 〉 is the power transferred from
the oscillator to the transducer. In the steady state, the power
transferred from the oscillator to the transducer, kv〈vV 〉, can

be related to the net power converted into electrical power
kcτp〈vV 〉/RL, which is equal to the power dissipated by the
capacitor through the resistance RL, i.e., 〈V 2〉/RL, see (3.6).
Denoting steady state values by the subscript s, we have

〈V 2〉s = kcτp〈vV 〉s . (4.3)

The transducer’s efficiency of converting mechanical to elec-
trical power is given by the quotient of kcτp〈vV 〉/RL and
kv〈vV 〉, that is,

ηme = kcτp〈vV 〉/RL

kv〈vV 〉 = kcC
kv

< 1. (4.4)

Our aim is to determine the overall efficiency of the
conversion from the power supplied by the noise to the final net
electrical power. This efficiency can be defined as the quotient
of the corresponding powers,

η = ηmeηnm = 〈V 2〉s/RL

〈vξ 〉s , (4.5)

where ηme is given in (4.4) and ηnm is the efficiency of power
converted from the external noise to the power transferred from
the oscillator to the transducer, that is, ηnm = kv〈vV 〉s/〈vξ 〉s .
By combining (3.1)–(3.6) in the steady state we have

〈V 2〉s
RL

= φηme

(
〈vξ 〉s + b

kc

〈V ξ 〉s
)

, (4.6)

where φ is an electromechanical parameter defined as

φ = kckvτp

kcτpkv(1 + bτp) + b + bτp(b + ω2τp)
. (4.7)

Using (4.5), (4.6), (3.13), and (3.14), we can write the
efficiency as

η = φ

RL

[
1 + b

kc

〈V ξ 〉s
〈vξ 〉s

]

= φ

RL

{
1 + b

∫ ∞
0 C(u)

[ ∫ u

0 G(u − z)e−z/τpdz
]
du∫ ∞

0 G(u)C(u)du

}
. (4.8)

Note that this is a general exact expression for the efficiency
of energy harvesting by a linear electromechanical oscillator.
Note further that the efficiency depends on the statistical
properties of the noise only via the correlation function. The
power dissipated by the oscillator can also be obtained in terms
of the noise correlation function. In the steady state it follows
from (4.2) and (4.6) that

b〈v2〉s = −kv〈vV 〉s + 〈vξ 〉s
= (1 − φ)

∫ ∞

0
G(u)C(u)du

− bφ

∫ ∞

0
C(u)

[ ∫ u

0
G(u − z)e−z/τpdz

]
du, (4.9)

where we have made use of (3.13) and (3.14). Let us analyze
the limit case when τp → ∞. From Eqs. (2.4) and (2.5)
it can be appreciate that the dynamical equations for the
elecro-mechanical oscillator reduce to that of the mechanical
oscillator ẍ + bẋ + ω2

0x = ξ (t). Since no power is converted
to net electrical power this case lacks any practical interest. The
efficiency of the conversion from the power supplied by the
external noise to mechanical power is the quotient between
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the net power obtained and the power supplied by the noise,
〈vξ 〉s . The net power of the mechanical oscillator is the
difference between the power supplied by the noise and
the dissipated power: 〈vξ 〉s − b〈v2〉s . In the stationary state
it is expected that the mean energy is constant, so the net
power is zero. This can also be checked from Eq. (4.2) taking
τp → ∞. Therefore, in this limit both the net power and the
efficiency are zero.

V. EXPONENTIALLY CORRELATED NOISES

In this section we apply our general results to an exponen-
tially correlated stationary noise, i.e.,

C(u) = a exp(−λ|u|), (5.1)

where a and λ are the amplitude and the inverse of the
correlation time λ = τ−1

c . The limit λ → ∞ and a → ∞, with
D = a/λ constant, corresponds to the white noise limit. It
follows from (5.1), (3.13), and (3.14) that the power delivered
by the noise is

〈vξ 〉s = aλ(1 + λτp)

λ(1 + λτp)(b + λ) + λkcτpkv + ω2(1 + λτp)
.

(5.2)

Equation (4.8) implies that the efficiency is given by

η = φ
1 + λτp + bτp

1 + λτp

. (5.3)

Note that the efficiency of the whole conversion process,
energy conversion from noise to net electrical energy, does
not depend on the noise amplitude a but only on λ. The net
electrical power is, from (4.6), (5.2), and (3.14), given by

P = 〈V 2〉s
RL

= φηme
aλ(1 + λτp + bτp)

λ(1 + λτp)(b + λ) + λkcτpkv + ω2(1 + λτp)
.

(5.4)

The power dissipated by the oscillator,

b〈v2〉s = aλ
(1 − φ)(1 + λτp) − bφτp

λ(1 + λτp)(b + λ) + λkcτpkv + ω2(1 + λτp)
,

(5.5)

is obtained from (4.9). We would like to reiterate that the
efficiency and net electrical power depend on the noise source
only via the noise correlation function C(u). The above
results hold, for example, for two such different noise sources
as dichotomous Markov noise (non-Gaussian process) and
Ornstein-Uhlenbeck (OU) noise (Gaussian process). Note also
that the net electrical power is proportional the noise amplitude
a; however its dependence on λ is more intricate. To check our
analytical results we have performed numerical simulations of
the Langevin equations (2.3) with an OU noise.

The numerical simulations are performed by solving nu-
merically the Langevin equations (2.6c). We have discretized

FIG. 2. Comparison of the results obtained from (5.2), (5.3),
(5.4), and (5.5) (solid curves) with simulations (symbols). a = b =
ω = kc = kv = V0 = 1; C = τp = 2. Inset: Comparison of the result
obtained from (4.3) with numerical simulations.

the equations by using the so-called Heun algorithm [28].
At each time step we generate Gaussian white random
numbers by means of the Box-Mueller-Wiener algorithm
[28]. For the case of OU noise we have added to the
system (2.6c) a fourth equation for the variable ξ (t), namely,
dξ/dt = −ξλ + a

√
λη(t), where η(t) is Gaussian white noise

with correlation 〈η(t)η(t ′)〉 = 2a2δ(t − t ′)/λ. In this case the
system of stochastic equations has been discretized again by
using the Heun method and the random numbers for η(t) have
been generated by the Box-Mueller-Wiener algorithm.

We have averaged over 104 realizations of the noise for
large times to determine 〈vξ 〉s , P , and 〈v2〉s independently
of each other. In Fig. 2 we show the comparison between
the results provided by (5.2), (5.3), (5.4), and (5.5) with
numerical simulations. Note that the net electrical power
P passes through a maximum, P ∗, as λ increases. On
the other hand, the efficiency decreases monotonically with
λ. Consequently, the maximum efficiency does not occur
when the net electrical power is maximal and vice versa.
In the inset of the figure we have checked the result
〈V 2〉s = kcτp〈vV 〉s .

With the goal to optimize the performance of the energy
conversion, we have studied how the maximum net electrical
power, P ∗, the efficiency at the maximum power, η∗, and the
characteristic frequency of the noise at the maximum power,
λ∗, depend on the parameters τp, kc, kv , and ω of the energy
harvester. The three first parameters are related to the electrical
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FIG. 3. Maximum net electrical power, P ∗, efficiency at the
maximum power, η∗, and characteristic frequency of the noise at the
maximum power, λ∗, as a function of τp , kc, kv , and ω. In each panel
we vary the corresponding parameter and set all other parameters
equal to 1. For all plots we have taken C = 1.

circuit of the transducer, and the last one characterizes the
mechanical oscillator, the mass-spring system. In each panel
of Fig. 3 we have varied the parameter specified and set the
other parameters to 1. Both P ∗ and η∗ decrease with ω [see
Fig. 3(d). The maximum net electrical power, P ∗, displays the
same behavior as function τp, whereas η∗ increases for small
values of τp, passes through a maximum, and then decreases
monotonically [see panel (a). The efficiency at maximum
power η∗ (see panels b and c) increases with kc and kv for
small values, reaches a plateau for intermediate values, and
then begins to decrease slowly (not shown)]. The roles of
kc and kv on P ∗ are opposite to each other. P ∗ increases
with kc, but decreases with kv [see Figs. 3(b) and 3(c)].
The characteristic frequency of the noise at the maximum
power, λ∗, decreases monotonically as τp increases, whereas
it increases monotonically as the remaining three parameters
increase. In conclusion, to improve performance it would be
desirable to tune τp and ω to low values and kc and kv to
intermediate values.

To compare the above results with those for white noise,
broadband random ambient vibrations, we define a = Dλ and
take the limit λ → ∞ with D being a nonzero constant in the
above expressions. We find

〈vξ 〉Ws = D, (5.6)

ηW = φ, (5.7)

〈V 2〉Ws
RL

= Dφ

RL
, (5.8)

b〈v2〉Ws = D(1 − φ), (5.9)

where the label W denotes white noise. It is not difficult to
check that

〈vξ 〉Ws > 〈vξ 〉Cs , (5.10)

ηW < ηC, (5.11)

〈V 2〉Ws
RL

>
〈V 2〉Cs
RL

, (5.12)

b〈v2〉Ws > b〈v2〉Cs , (5.13)

where the label C denotes colored noise, finite-bandwidth
random ambient vibrations. In consequence, the white noise
delivers higher power than the colored noise and the net
electrical power obtained is also higher. However, in terms
of efficiency, the electromechanical device is more efficient if
the noise is colored than if it is white.

VI. CONCLUSIONS

We have derived exact analytical expressions for the power
output and efficiency of converting ambient random vibrations
into electrical power for a linear electromechanical oscillator
driven by colored noise. An important finding is the fact that
the efficiency and net electric power do depend only on the
correlation function of the ambient noise. They do not depend
on the probability distribution of the colored noise.

We evaluate the net electrical power and the efficiency
explicitly for exponentially correlated noise. For such noises,
the twin goals of maximum power and maximum efficiency
cannot be achieved at the same time. A compromise has to be
struck, and we find that the best performance of the energy har-
vester occurs if the natural frequency of the oscillator and the
characteristic charging time of the capacitor are tuned to low
values, while the parameters of the piezoelectric transducer
are set to intermediate values. The efficiency of the overall
conversion process depends only on the correlation time and
the bandwidth of the noise and not on the noise amplitude.
We also find that the device operates more efficiently in
a finite-bandwidth environment, i.e., colored external noise,
while the net electrical power is higher for broadband random
vibrations, i.e., white noise.

While linear oscillators are widely used in energy har-
vesting, nonlinear oscillators have gained attention recently.
We plan to investigate the performance of nonlinear energy
harvesters driven by colored noise in future work.
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