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Renormalization group calculations for wetting transitions of infinite order and continuously
varying order: Local interface Hamiltonian approach
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We study the effect of thermal fluctuations on the wetting phase transitions of infinite order and of continuously
varying order, recently discovered within a mean-field density-functional model for three-phase equilibria in
systems with short-range forces and a two-component order parameter. Using linear functional renormalization
group calculations within a local interface Hamiltonian approach, we show that the infinite-order transitions are
robust. The exponential singularity (implying 2 − αs = ∞) of the surface free energy excess at infinite-order
wetting as well as the precise algebraic divergence (with βs = −1) of the wetting layer thickness are not modified
as long as ω < 2, with ω the dimensionless wetting parameter that measures the strength of thermal fluctuations.
The interface width diverges algebraically and universally (with ν⊥ = 1/2). In contrast, the nonuniversal critical
wetting transitions of finite but continuously varying order are modified when thermal fluctuations are taken into
account, in line with predictions from earlier calculations on similar models displaying weak, intermediate, and
strong fluctuation regimes.
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I. INTRODUCTION

In recent work [1,2] wetting transitions of infinite order
were uncovered in a mean-field density functional theory
(DFT) for systems with short-range forces and with a two-
component order parameter. Although infinite-order wetting
transitions were known to show up in certain fluctuation
regimes studied using functional renormalization group (RG)
theory for wetting or related methods [3–8], it was a surprise
that they can appear prominently already at mean-field level.
A revisitation of a variety of early DFTs for wetting [9,10] has
led to the conclusion [2] that segments of infinite-order wetting
transitions must be fairly ubiquitous, but have apparently long
been overlooked, in models with a multicomponent order
parameter. These segments typically connect a regime of
first-order wetting to one of critical wetting with continuously
varying (nonuniversal) critical exponents.

We start with recalling briefly the main ingredients of the
model, which has been described and discussed in detail in two
earlier papers [1,2]. The mean-field DFT is defined through
a functional σ̂ of two spatially varying densities, or density
components, ρ1(r) and ρ2(r). It represents the excess free
energy per unit area of an interface, oriented perpendicular
to z,

σ̂ [ρ1,ρ2] =
∫ ∞

−∞
dz

〈{
1

2
[∇ρ1(r)]2 + 1

2
[∇ρ2(r)]2

+F (ρ1(r),ρ2(r); a,b)

}〉
{x,y}

. (1)

The outer brackets denote that the integrand is averaged
over the directions x and y parallel to the interface. The
free energy per unit volume F is the following sixth-order
polynomial:

F (ρ1,ρ2; a,b) = [
(ρ1 + 1)2 + ρ2

2

]
[(ρ1/a)2 + (ρ2 − b)2]

× [
(ρ1 − 1)2 + ρ2

2

]
. (2)

The model parameter a is an asymmetry variable, a = 1
being its symmetric value. This presence of a may have various
grounds. In systems with an obvious geometrical symmetry
relating the two densities ρ1 and ρ2, a may be related to
spatial anisotropy. This is the case, e.g., of a ferromagnet
with cubic anisotropy [10] or in general of systems that
can be mapped onto a magnetic model with a magnetization
vector order parameter [9]. On the other hand, if the two
densities are unrelated by any symmetry, it is always possible
to redefine and scale them so that the gradient-squared part of
the functional is symmetric (and diagonal) in ρ1 and ρ2, as it is
in Eq. (1). Without loss of generality, our asymmetry parameter
a is defined adopting this convention. Different conventions
may lead to different definitions for a and consequently to
differences in a-dependent calculational results, but do not
affect the ultimate physical results (for the critical exponents,
etc.). A model for which in this regard different conventions
are used in different works is, e.g., the Ginzburg-Landau DFT
for superconductivity [2,11–13], in which one order parameter
pertains to the superconducting wave function and the other
to the magnetic vector potential. The model parameter b is a
control variable that allows wetting to be induced. Although
it has the same dimension as the density ρ2, it is physically
a fieldlike variable which may depend on temperature and/or
other external fields.

For arbitrary a and b, F reaches its minimum value, F = 0,
when the densities take their bulk-phase values at z = ±∞:

α phase: ρ1 = −1, ρ2 = 0,

β phase: ρ1 = 0, ρ2 = b, (3)

γ phase: ρ1 = 1, ρ2 = 0.

As in the pertinent foregoing work [1,2] we study the
wetting or nonwetting of the αγ interface by the β phase.
In the DFT defined through (1) the wetting transition was
found to be of first order for a > 1. A second-order wetting
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FIG. 1. The global wetting phase diagram of the model in the
(a,b) plane, reproduced from Refs. [1,2]. Indicated are the line of
first-order wetting (a > 1), the second-order wetting point (a = 1 and
b = 0.681 . . .), the line of infinite-order wetting (a = 1) and the line
of wetting transitions of continuously varying order (“nonuniversal”,
b = 0). These wetting phase boundaries separate nonwet from wet
equilibrium states.

transition was found for a = 1 (symmetric model), when b

is lowered towards bw(1) ≡ 0.681 . . ., already in Ref. [14].
For that transition the critical exponent associated with the
free-energy singularity, 2 − αs , takes the value 2, and the
critical exponent of the wetting layer thickness takes the value
βs = 0(log), signifying a logarithmic divergence at wetting.
Further, a nonuniversal critical wetting transition was obtained
for a < 1, upon lowering b towards bw = 0. For this transition,
2 − αs = 1/(1 − a) and βs = 0(log). Finally, a segment of
infinite-order wetting transitions was found at a = 1 and for
0 < b < bw(1) = 0.681 . . . . The singularity in the spreading
coefficient near wetting was conjectured to be of the form, in
the limit a ↑ 1,

−S ∝ e−C/(1−a); with C > 0, (4)

implying 2 − αs = ∞, and the wetting layer thickness was
conjectured to diverge in the algebraic manner, for a ↑ 1,

	 ∝ (1 − a)−1, (5)

implying βs = −1. These conjectures were based on the
analytical solution of a different but related model, for which
the leading terms, for large 	, of an interface potential
V (	) could be calculated. Furthermore, accurate numerical
computations for the original model support the validity of the
results (4) and (5). The global wetting phase diagram in the
(a,b) plane has been presented in Refs. [1,2] and is, for the
sake of clarity, reproduced in Fig. 1 in annotated version.

The remainder of this paper is organized as follows. In
Sec. II we discuss the occurrence of infinite-order wetting
transitions in mean-field theories and RG theories. Section III
presents a new derivation of an interface potential V (	)
using the simplest possible crossing criterion for the interface
position. Section IV is devoted to RG calculations for wetting
transitions that are of infinite order already at mean-field
level. In Sec. V we point out that the renormalization of the
wetting transitions of finite but continuously varying order
qualitatively reproduces previously obtained RG corrections

for similar wetting transitions with, however, interesting
quantitative differences. Conclusions are drawn in Sec. VI.

II. OCCURRENCES OF INFINITE-ORDER WETTING

A. Mean-field theories

One of the main conclusions of Ref. [2] is that every mean-
field DFT whose properties in the vicinity of the β phase can
be “mapped” onto those of (1) is susceptible of displaying a
segment of infinite-order wetting along the “symmetric” line
a = 1, spanning some range of field variables. However, it
must be checked case by case whether the line a = 1 belongs to
the physical subspace in which wetting transitions are possible.
Let us comment in this regard on the three examples discussed
in Ref. [2].

In the pioneering two-component order parameter DFT of
Hauge [9] for wetting at a wall the asymmetry parameter is the
ratio of two curvatures, λ1 and λ2, that characterize the shape
of the potential −F in the vicinity of the bulk wetting-phase
point M = (−M,0) in the plane of the order parameters M =
(M1,M2). For a ≡ λ1/λ2 > 1 the wetting transition is of first
order. For a = 1 it is a standard second-order transition (αs =
0), for 1/2 < a < 1 it is of higher order and nonuniversal [2 −
αs = 1/(1 − a)], and for 0 < a < 1/2 it is (again) a standard
second-order transition (αs = 0). However, recent insights [2]
imply that precisely at a = 1 the regimes of first- and higher-
order wetting are connected by a segment of infinite-order
transitions. We infer that this segment extends, in the notation
of [9], from τ = 0 to τ = −H2α2/α1(>0), where τ ≡ cM +
H1 is the control parameter that allows one to induce wetting
by varying the temperature, through M , and/or by varying
the surface field H = (H1,H2). Here α2/α

λ2/λ1
1 = a0,2/a

λ2/λ1
0,1

(>0), with a0,1 and a0,2 parameters associated with the “free”
interface between the wetting and nonwetting phases in bulk
and c(>0) a surface enhancement parameter. We note that in
this model the interface potential features the following leading
two terms, for λ1 � λ2 (critical wetting):

V (	) = −τα1e
−λ1	 − H2α2e

−λ2	 + O(e−2λ1	), (6)

with 	 a suitably scaled wetting layer thickness.
In the two-component order parameter DFT of Walden

et al. [10] for investigating the surface properties of a
ferromagnet with cubic anisotropy and vector order parameter
M = (Mx,My), a similar scenario unwinds. The asymmetry
parameter a is again the ratio of two curvatures, that char-
acterize the shape of the potential −F in the vicinity of
the bulk wetting-phase point MA = (

√−t,0) in the plane
of the order parameter components. Here t is the usual
reduced temperature distance to the Curie point, (T − Tc)/Tc.
This ratio a equals the ratio of two lengths, a ≡ ξy/ξx =√

2/(λ − 1), with λ a measure of the magnetic anisotropy
(λ = 1 being the isotropic value). Note that the symmetric
value for a, a = 1, corresponds, however, to λ = 3, which is
already well within the range of values of λ of materials with
“cubic anisotropy”, λ > 1, to which our attention is restricted
from now on. The anisotropy is (strongly) temperature de-
pendent [15]. For a > 1 (1 < λ < 3) the wetting transition
is of first order. For a = 1 (λ = 3) it is of second order
(αs = 0), for 1/2 < a < 1 (3 < λ < 9) it is of higher order
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and nonuniversal (2 − αs = 1/(1 − a)), and for 0 < a < 1/2
(λ > 9) it is universal and of second order (αs = 0). Also for
this model, the revisitation in Ref. [2] concluded that precisely
at a = 1 the regimes of first- and higher-order wetting must
be connected by a segment of infinite-order transitions. We
infer that this segment extends, in the notation of Ref. [10],
from τ = 0 to τ = Hs

y a0y/a0x(>0), where τ ≡ ξ0cMA,x + Hs
x

is the control parameter that allows one to induce wetting
by varying the temperature, through t , and/or by varying the
surface field Hs = (Hs

x ,H s
y ). Here a0y/a0x(>0) is a ratio of

parameters associated with the “free” interface between the
wetting and nonwetting phases in bulk, c(>0) is a surface
enhancement parameter and ξ0 is a (constant) length. In this
model the interface potential features the following leading
two terms, for λ � 3 (critical wetting):

V (	) = −τξ0a0xe
−	/ξx + ξ0H

s
y a0ye

−	/ξy + O(e−2	/ξx ). (7)

This case of the ferromagnet with cubic anisotropy is
particularly interesting, in our opinion, for two reasons: (1) it
illustrates that the possibility of infinite-order wetting need not
be linked to a special symmetry. Indeed, a = 1 corresponds to
a nonspecial value (λ = 3) for the cubic anisotropy strength.
And, (2) it represents a physical system for which there is
some hope that it might lead to an experimental investigation
of interface delocalization (i.e., wetting) transitions guided by
our theoretical results, since the assumption of short-range
forces is justified in this case.

In the Ginzburg-Landau (GL) theory for superconductivity
[11–13,16], after suitable scaling of the two order parameters
so as to arrive at a symmetric gradient-squared part of the
functional, the asymmetry parameter takes the form a = κ

√
2,

with κ = λ/ξ the GL parameter, being the ratio of the
superconducting coherence length to the magnetic penetration
depth. Close to the bulk critical point κ is a material constant,
with 0 < κ < 1/

√
2 applicable to type-I superconductors,

for which wetting by a macroscopic superconducting layer
(Meissner phase), intruding between the normal phase and
the sample surface, can be investigated. For materials with
0 < κ < 0.374 first-order wetting is possible [11,12], while for
0.374 < κ < 1/

√
2 nonuniversal critical wetting is possible

[11–13] with 2 − αs = 1/(1 − κ
√

2). At first sight it would
seem that the global wetting phase diagram for this system
might feature a segment of infinite-order transitions at a = 1
(κ = 1/

√
2), but this is not the case. In the limit κ ↑ 1/

√
2

the surface tension between the superconducting and normal
phases vanishes (bulk multicritical point) and the notion
of wetting phase transition ceases to exist. Nevertheless,
phenomena reminiscent of enhanced adsorption do occur in
this limit [16–18]. This DFT thus provides an interesting
exception to the scenario of infinite-order wetting in DFTs
with two order parameters. For completeness, we also give the
leading structure of the interface potential, for κ < 1/

√
2,

V (	) = −Ae−κ
√

2 	 + Be−	 + O(e−2κ
√

2 	), (8)

with A and B given explicitly in Ref. [13].
The occurrence of infinite-order wetting in DFTs with

continuously varying critical exponents compellingly raises
the question whether infinite-order wetting occurs also in
the famous van der Waals theory of wetting for short-range

forces with a one-component order parameter [19], featuring
a nonuniversal 2 − αs that depends on the ratio of the inverse
bulk correlation length λ to the inverse range β of the
exponentially decaying wall-fluid potential. In this model
the range of the exponentially decaying effective fluid-fluid
potential is set to unity, and the bulk correlation length varies
monotonically from unity at T = 0 to infinity at the bulk
critical point at T = Tc. Consequently, at finite temperatures,
λ < 1. For β = 1, the second-order wetting transition of the
Sullivan model is recovered with 2 − αs = 2 and βs = 0(log).
For β �= 1 there are several possibilities. Consider first the
case β < 2λ. For β < 1 the wetting transition, if it exists,
turns out to be of first order, while for 1 < β < 2λ it is critical
and nonuniversal with 2 − αs = 1/(1 − λ/β). The order of the
transition may thus be high but cannot diverge since β > 1 and
λ � 1. Next, for β � 2λ (for arbitrary β > 0) the transition,
if it is critical, settles on the usual universal second-order
transition. This model therefore constitutes another “coun-
terexample” for which the would-be infinite-order transition
(mathematically conceivable at λ/β = 1) does not take place
since its location would fall outside the domain of validity
of continuous wetting [20]. Note that the border point of this
domain lies at β = 1, for which only second-order wetting is
possible, regardless of the value of λ(�1). We close this case
by recalling that the interface potential for this model takes the
form, for large 	,

V (	) = Kλe
−λ	 + Kβe−β	 + O(e−2λ	), (9)

with analytic expressions for Kλ and Kβ given in Ref. [19].

B. Renormalization group theories and exact results

The first infinite-order wetting transition that enjoyed
some attention was that associated with the strong thermal
fluctuation regime, ω > 2, of the short-range critical wetting
(SRCW) transition in three dimensions [3,5,6]. Here ω is the
“wetting parameter” given by

ω = kT

4πσξ 2
, (10)

with σ the interfacial tension between the wetting phase and
the bulk phase far from the “wall”, and ξ the bulk correlation
length in the wetting phase. In order to provide the reader
with an illustrative order of magnitude of this parameter, we
recall that for the Ising model near Tc, the universal value
ω ≈ 0.8 applies [21]. The pioneering functional RG treatments
or related variational approaches of SRCW in d = 3 [5,6]
already revealed that the transition turns infinite order for ω >

2, and, complemented with subsequent refined calculations
[3], provided the famous nonuniversal critical exponents in
the weak (0 < ω < 1/2) and intermediate (1/2 < ω < 2)
fluctuation regimes relevant to the Ising model universality
class. Note that the results of the mean-field approximation are
formally retrieved in the limit ω ↓ 0. Interestingly, the global
phase diagram of SRCW in d = 3 (see Fig. 2 in Ref. [3])
bears some resemblance to that of the mean-field DFT we
discuss, in that a regime of transitions of continuously varying
order culminates in an infinite-order transition when 2 − αs

diverges, for a ↑ 1 in the mean-field DFT and for ω ↑ 2 in the
functional RG theory. The algebraic divergence of the wetting
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layer thickness at wetting (with βs = −1) is also shared by the
MF model and the RG theory. However, the similarity is not
complete. In the mean-field DFT the segment of infinite-order
transitions is associated with a jump, at a = 1, in the control
parameter, say, temperature and/or surface field, with which
wetting can be induced, while in the RG treatment the control
parameter at wetting, say Tw, varies continuously (linearly) as
a function of ω for ω > 2.

In two dimensions an interesting segment of infinite-
order wetting transitions has been uncovered in the so-called
intermediate fluctuation regime [4], by means of Feynman path
integral and transfer matrix methods, following pioneering
analytical work which already established an infinite-order
transition [7]. In d = 2 the fluctuation-induced repulsion
between an unbinding interface and a wall, is, unlike in d = 3,
not exponentially but algebraically decaying, in the manner
Vfluc(	) ∝ 1/	2. When this entropic repulsion competes with
an attractive direct interaction behaving for large 	 as −w/	2,
with w > 0, which is appropriate for certain systems with long-
range forces, a wetting transition of infinite order is possible,
with 2 − αs = ∞ and βs = −∞ (essential singularities for
the spreading coefficient as well as for the wetting layer
thickness). The global wetting phase diagram (see Fig. 1
in Ref. [4]) displays a segment of infinite-order wetting at
w = 1/4, spanning an (infinite) jump in the amplitude of the
short-range direct interaction between interface and wall.

III. DERIVATION OF AN INTERFACE POTENTIAL
WITHIN MEAN-FIELD THEORY

Let us recall the starting point of the interface potential
approach adopted in Ref. [2]. Expanding the surface free-
energy functional (2) about the bulk β-phase point (0,b) in the
(ρ1,ρ2) plane leads to the approximation

F (ρ1,ρ2; a,b) ≈ F (2)(ρ1,ρ2; a,b)

≡ (1 + b2)2[(ρ1/a)2 + (ρ2 − b)2]. (11)

Solving the Euler-Lagrange equations [2] within this harmonic
approximation leads to, with Z ≡ A1/2z, where A ≡ 2(1 +
b2)2,

ρ1(Z) = a1 exp(Z/a) + b1 exp(−Z/a),
(12)

ρ2(Z) = b + a2 exp(Z) + b2 exp(−Z),

and we define b
(2)
0 ≡ ρ2(0). Clearly, symmetry considerations

invite us to define Z = 0 as the middle plane of the layer of β-
phase material, so ρ1(0) = 0 and ρ̇2(0) = 0, from which follow
b1 = −a1 and b2 = a2. Instead of determining the remaining
two free parameters by the criteria pursued in Ref. [2], we add
a crossing criterion at Z× ≡ L/2, with L ≡ A1/2	,

ρ1(L/2) = ρ1,×, ρ2(L/2) = qb, (13)

assuming that the width of the β layer, L, is sufficiently large
for the second equation to possess a solution (i.e. b

(2)
0 > qb).

Note that ρ1,× ∈ [0,1] and q ∈ [0,1] are, for the time being,
free parameters. This crossing criterion is quite different from
the trajectory-intersection strategy proposed in Ref. [2]. In
particular, the trajectory intersection in the model in Ref. [2]
always occurs near the β-phase point, while the crossing
occurs, as we shall see, roughly half a wetting layer thickness

“away” from that point. Further, the crossing criterion relates
the remaining free parameters a1 and a2 to the parameters ρ1,×
and q, for an arbitrarily chosen value of L, through the simple
relations

a1 = ρ1,×
2 sinh(L/2a)

, a2 = − b

4 cosh(L/2)
. (14)

The constrained order parameter solutions then take the simple
analytic forms

ρ1(Z) = ρ1,×
sinh(Z/a)

sinh(L/2a)
,

(15)

ρ2(Z) = b − (1 − q)b
cosh(Z)

cosh(L/2)
.

In the spirit of a “double parabola approximation” we now
proceed to apply the harmonic approximation also about the
γ -phase point (1,0) in the (ρ1,ρ2) plane. This leads to

F (ρ1,ρ2; a,b) ≈ F (2)(ρ1,ρ2; a,b)

≡ 4

(
1

a2
+ b2

)[
(ρ1 − 1)2 + ρ2

2

]
. (16)

The Euler-Lagrange equations are solved by, with Z′ ≡ C1/2z′,
where C ≡ 8(1/a2 + b2),

ρ1(Z′) = 1 − c1 exp(−Z′),
(17)

ρ2(Z′) = c2 exp(−Z′),

where we already implemented the boundary conditions
appropriate to the γ phase point, which must be reached for
Z′ → ∞. The two approximate pairs of solutions, one valid
near β and the other valid near γ , can be matched at Z′ = 0
in the solutions (17), which corresponds to Z = L/2 in the
solutions (12). This implies

c1 = 1 − ρ1,×, c2 = qb. (18)

In this way a requirement of continuity of the order parameters
at the crossing point fixes the parameters c1 and c2 in terms
of two remaining freedoms. While the order parameters are
continuous, their derivatives need not be, at the matching point
in the (ρ1,ρ2) plane.

Within this double-parabola approximation we now define,
as usual, the interface potential V (L) as the constrained surface
free energy of a layer of β of finite thickness L adsorbed at the
αγ interface, minus the surface free energy of an infinitely
thick layer (the wet profile). The first part of the surface
free energy cost is obtained by evaluating the functional (1)
between the limits z = 0 and z = 	/2 in the solutions (12),
and the second part is obtained by evaluating the functional
(1) between the limits z′ = 0 and z′ = ∞ in the solutions
(17). Note that the second part is independent of L. We write,
suggestively,

V (L)/2 ≡ σ
(2)
β,[0,L/2] + σ

(2)
γ,[0,∞] − (

σ
(2)
β,[0,∞] + σ

(2)
γ,[0,∞]

)
, (19)

where σ denotes the functional σ̂ evaluated in the optimal
profiles. Calculation entails

V (L) =
√

A

[
−(1 − q)2b2 e−L

1 + e−L
+ ρ2

1,×
a

e−L/a

1 − e−L/a

]
,

(20)
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which has a hard-wall divergence for L ↓ 0. On the other
hand, the surface free energy of the wet profile corresponds
to (twice) the interfacial tension of the βγ interface. In this
harmonic approximation this reads

σ
(2)
βγ ≡ σ

(2)
β,[0,∞] + σ

(2)
γ,[0,∞], (21)

and we obtain

σ
(2)
βγ =

√
A

2

[
(1 − q)2b2 + ρ2

1,×
a

]

+
√

C

2
[q2b2 + (1 − ρ1,×)2]. (22)

It is interesting to examine the precise form of the wet
trajectory ρ2(ρ1) in the (ρ1,ρ2) plane. This trajectory consists
of two parts. The first part, from the β phase point till
the crossing point, is most easily obtained by recasting the
solutions (12) in a form which is suitable for starting from the
β phase point for z′ → −∞ and reaching the crossing point
at z′ = 0,

ρ1(Z′) = ρ1,× exp(Z′/a),
(23)

ρ2(Z′) = b[1 − (1 − q) exp(Z′)],

which implies

ρ2 = b − (1 − q)b

(
ρ1

ρ1,×

)a

, for ρ1 � ρ1,×. (24)

The second part of the wet trajectory follows directly from
(17) and takes the form

ρ2 = qb
1 − ρ1

1 − ρ1,×
, for ρ1 � ρ1,×, (25)

which is a straight line. It is interesting to note that the slope at
ρ1 = ρ1,× jumps from −a(1 − q)b/ρ1,× to −qb/(1 − ρ1,×).
Now requiring continuity of the slope of the wet trajectory at
ρ1,×, allows us to eliminate one freedom. We thus obtain

q = a(1 − ρ1,×)

ρ1,× + a(1 − ρ1,×)
. (26)

Note that the nonwet trajectory will, in general, display a
discontinuity in slope at ρ1,×, whose magnitude depends also
on L. A next opportunity to eliminate a free parameter is
provided by asking that the interfacial tension σ

(2)
βγ be minimal

with respect to ρ1,×, after substitution of (26). One readily
checks that the minimum is reached for

ρ1,× =
(

1 + 1 + b2

2
√

1 + a2b2

)−1

, (27)

which takes the value 2/3 at b = 0 (for any a) and 0.623
at an endpoint of the line of infinite order transitions, a = 1
and b = 0.681 . . .. In conclusion, adopting this criterion for
fixing ρ1,× would lead to a value that is rather insensitive to
the parameters a and b in the region of our interest. We shall
see further that the physical results we will derive are largely
independent of the precise value of ρ1,×. Figure 2 illustrates
our harmonic approximations supplemented with the crossing
criterion and provides a comparison with the numerically exact
trajectories, for both nonwet and wet states.

-1  0  1

0.3

FIG. 2. Trajectories connecting the α, β, and γ phases [cor-
responding to the zeros of the free-energy density F given in
Eq. (2)] in the (ρ1,ρ2) plane. Shown are the wet trajectory (thick
solid line) and the nonwet trajectory (thick dashed line for |ρ1| <

ρ1,× and thick solid line for ρ1,× < |ρ1| < 1) within the harmonic
approximation to the model and the corresponding numerically exact
wet and nonwet trajectories (thin solid and dashed lines, respectively).
The crossing points are marked by dots. For this illustrative case
the following parameter values were used: a = 1/2 and b = 0.3.
The value of L that minimizes the surface free energy of the
nonwet trajectory within the harmonic approximation (thick dashed
line) is given by L = 3.4723 . . . . Note that the relation between
b, b

(2)
0 , and L, within the harmonic approximation, is given by

b − b
(2)
0 = (1 − q)b/ cosh(L/2).

From (20) we now derive the asymptotic form, for large
L, of the interface potential V (L), in the domain 0 < a < 1
appropriate to critical wetting,

V (L)/
√

A = −(1 − q)2b2 e−L + ρ2
1,×
a

e−L/a

+ (1 − q)2b2 e−2L + O(e−2L/a,e−3L), (28)

with L the (scaled) thickness of the wetting layer of phase
β intruding between phases α and γ . We recall that L is
measured in units of the scaled distance Z = z

√
2(1 + b2)2

and the factor of 2 absorbed in our definition of L allows for
the fact that the actual thickness of the wetting layer of β

corresponds, by symmetry, to about twice the “wetting layer
thickness” defined in the calculations of Refs. [2,22]. Note
that this interface potential differs qualitatively from the one
engineered in Ref. [2], which we recall in a footnote [23]. Our
present derivation is simpler and more transparent, because the
crossing of the trajectories now more naturally occurs in the
“middle” of the interfaces bounding the wetting layer rather
than at densities close to the β-phase point. Consequently
our present approach allows the approximate “nonwet” and
“wet” trajectories to differ from one another over a large
range of densities, which is a physically sound property
that they share with the exact trajectories of the model (see
Fig. 2). While the difference between the present and previous
interface potentials is irrelevant at the level of the mean-field
results [i.e., the mean-field critical exponents are not modified,
due to the particular dependence on b of the coefficient of the
third term in V (L) in Eq. (28)], the difference can become
important at the level of the RG calculations. Indeed, our
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(unpublished) calculations show that the interface potential
proposed in Ref. [2] leads to (slightly) modified predictions
for the critical exponents in some (sub-)regimes of thermal
fluctuations. We believe these modifications are an artifact of
the approximations used in the construction of the V (L) in
Ref. [2].

Let us briefly derive the mean-field critical exponents
from (28). Clearly, for a > 1 we retrieve consistency with
a first-order wetting transition, because the leading term then
becomes positive. For a � 1 critical wetting is possible. For
a = 1 a universal second-order wetting transition is retrieved
from the interface potential

V (L)√
A

= [−(1 − q)2b2 + ρ2
1,×

]
e−L

+ [
(1 − q)2b2 + ρ2

1,×
]

e−2L + O(e−3L), (29)

which predicts that, in this harmonic approximation scheme,
complete wetting takes places for b less than the threshold

b(2)
w (1) = ρ1,×/(1 − q) = 1, (30)

using (26) at a = 1, while the exact value is bw(1) = 0.681 . . .

[14]. Here we see explicitly that the value of the free parameter
ρ1,× in the crossing criterion affects the theory at the level of
nonuniversal properties such as the wetting transition phase
boundary.

For a < 1, (28) predicts that a critical wetting transition is
possible when the leading coefficient, b2, which denotes the
“distance” to the critical wetting phase boundary, tends to zero,
so bw(a < 1) = 0. The structure of the full interface potential
(20) implies that critical wetting does indeed take place
within the double-parabola approximation to the model. The
equilibrium wetting layer thickness L̂ diverges logarithmically
in the manner

L̂ ∼ 2a

1 − a

[
ln

1

b
+ ln

1

a
+ const

]
, (31)

for b ↓ 0. The spreading coefficient is predicted to vary as

−S ∝ b2/(1−a), (32)

implying

2 − αs = 1

1 − a
, (33)

in full agreement with what was already analytically conjec-
tured and numerically verified in Ref. [2]. Interestingly, as was
also anticipated in Ref. [2], there is no crossover to a universal
second-order wetting transition at a = 1/2. Indeed, this is
conspicuous and emerges naturally in our new derivation,
because the coefficient of e−2L varies as b2, so that the third
term of V (L̂) near wetting behaves as b2(1+a)/(1−a), which
is always subdominant with respect to the second term, no
matter how small a(>0) is taken. Recall that the second as
well as the first term near wetting behave as b2/(1−a). This
persistent nonuniversality is confirmed by considering the full
V (L) given in Eq. (20) and is in excellent agreement with
the prediction of high-precision computations in Ref. [2] that
critical wetting remains nonuniversal from a � 1 down to
a = 1/5 at least. Intriguingly, one of the implications of this
theory is that critical wetting is of order less than 2 for a < 1/2

and asymptotically becomes first order in the limit a ↓ 0, an
exotic scenario already sketched in Ref. [2].

For the infinite-order wetting transition, emerging in the
limit a ↑ 1, we retrieve precisely the predictions of Ref. [2],

L̂ ∝ 1

1 − a
, (34)

implying βs = −1, and

−S ∝
[

b

b
(2)
w (1)

]2a/(1−a)

∝ e−C/(1−a), with C > 0, (35)

confirming the infinite-order character of the transition. All
these results are essentially independent of the numerical
value given to ρ1,× ∈ (0,1), corroborating the robustness of the
crossing criterion we adopted to derive an interface potential.

IV. THERMAL FLUCTUATION EFFECTS ON
INFINITE-ORDER WETTING: LINEAR FUNCTIONAL

RG APPROACH

Within local Hamiltonian theory the RG approach starts by
considering an effective interface Hamiltonian of the form

H[	]

kT
=

∫
dx

∫
dy

{
Ke

2
[∇	(x,y)]2 + V [	(x,y)]

}
, (36)

where, since the wetting layer is bounded by two similar
interfaces whose thermal fluctuations are independent and
additive, the (dimensionless) effective surface tension Ke

satisfies the following combining rule [24,25]

1

Ke

= kT

ξ 2

(
1

σαβ

+ 1

σβγ

)
≡ kT

ξ 2

2

σ
, (37)

with ξ the bulk correlation length in the β phase, and σ =
σαβ = σβγ (owing to the symmetry of the model). Note that
our definitions of H and V (	) entail the following definition
for the wetting parameter ω [3]

ω = 1

4πKe

= kT

2πσξ 2
, (38)

which is twice the value (10) for a single interface unbinding
from a flat wall. Therefore, we are dealing with significantly
enhanced thermal fluctuations as compared to the usual
SRCW problem in three dimensions! Physically speaking, the
renormalization group treatment is sensitive to relative height
fluctuations. Relative height fluctuations for two interfaces
are increased with respect to those of each interface alone,
the increase being given precisely by the reduced effective
surface tension. Presumably the extent of such fluctuations
can be observed in interface simulations.

We proceed in two stages. In the first stage, we keep
only the leading terms in the large-L expansion of V (L),
with L ≡ A1/2	, and discuss the resulting singular behavior
at critical wetting. In the second stage, we include, as is
physically required [3], a term which mimics a soft repulsion
penalizing the two interfaces when attempting to cross each
other (penalizing negative values of L). It would be reasonable
physically to consider a hard repulsion, but the linear RG
approach cannot properly handle an infinite potential. In the
linear functional RG approach the renormalized interface
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potential VR(L) is obtained by integrating out capillary wave
fluctuations. This amounts to a convolution of the bare
potential with a Gaussian of width δ, where δ is the roughness
of the fluctuating interface [3,5],

VR(L) = 〈V (L)〉
≡ 1√

2π δ

∫ ∞

−∞
dL′ V (L′) exp[−(L − L′)2/2δ2]. (39)

The width δ, often referred to as the perpendicular cor-
relation length of the interface, ξ⊥, can be calculated using
capillary wave theory [26,27]. It is related to the parallel
correlation length of the interface through

ξ⊥ = √
2ω ln ξ‖, (40)

where all lengths are scaled with the bulk correlation length
ξ . After these general considerations we now focus first on
the regime of infinite-order transitions and therefore assume
0 < b < b(2)

w (1) and a � 1.
Stage 1. To alleviate the notation we model the bare

potential as

V (L) =
{

−De−L + Be−L/a, for L > 0

0, for L < 0,
(41)

with D and B positive constants near infinite-order wetting,
which satisfy B/D ≈ [ρ1,×/((1 − q)b)]2 = [b(2)

w (1)/b]2 > 1.
At this stage no care is taken to exclude those (rare) capillary

wave fluctuations that would lead to crossings of the two
wandering interfaces. The calculations closely follow those
outlined in Ref. [3]. The renormalized potential reads

VR(L) = −Dξω
‖ e−L + Bξa−2ω

‖ e−L/a, for large L, (42)

which has the same form as V but with multiplicatively
renormalized coefficients. We recall that all lengths are im-
plicitly scaled with the bulk correlation length ξ . This form of
renormalized potential is valid under the following conditions:
L > 2ω ln ξ‖ for the first term and L > (2/a)ω ln ξ‖ for
the second term. Since a < 1 the latter condition implies
the former, but note that for a ↑ 1 the conditions become
coincident. This condition expresses that the two interfaces
fluctuate far enough from each other to avoid mutual collisions
and defines the so-called weak fluctuation regime. We will see
shortly that this corresponds to a definite range of ω.

Minimization of VR(L) leads to the renormalized equilib-
rium wetting layer thickness, which we denote by L̂R , and
the second derivative of VR(L) evaluated in L̂R provides
the parallel correlation length ξ‖ through V̈R(L̂R) ∝ ξ−2

‖ , as
outlined in Ref. [3]. Combining the resulting relations and
eliminating the dependence on the ratio B/D, which is merely
a constant (> 1) upon approach of the infinite-order wetting
transition, leads to the following relation between L̂R and ln ξ‖:

L̂R = ln

(
1

a
− 1

)
+ (2 + ω) ln ξ‖ + const, (43)

where we show only the terms that matter in the limits a ↑ 1
and ξ‖ → ∞. A similar calculation leads to the following
relation between L̂R and 1 − a, which we present in the form,

valid for a � 1:

e−L̂R ≈ (B/D)−(2+ω)/[(2−ω)( 1
a
−1)]

[
const

(
1

a
− 1

)]2ω/(2−ω)

,

(44)

which implies, asymptotically for a ↑ 1,

L̂R ∼ 2 + ω

(2 − ω)
(

1
a

− 1
) ln

B

D
− 2ω

2 − ω
ln

(
1

a
− 1

)
. (45)

Note that the first term determines the leading algebraic
divergence of L̂R , with a critical exponent βs = −1 that is
unchanged with respect to the mean-field result. Also note that
the amplitudes of both leading and subleading terms diverge
for ω ↑ 2 (strong thermal fluctuations).

We also derive the following relation between ξ‖ and 1 − a,
likewise valid for a � 1:

ξ‖ ≈
(

B

D

)1/[(2−ω)( 1
a
−1)][

const

(
1

a
− 1

)]−1/(2−ω)

,

with B/D > 1. (46)

Note that the first factor captures the leading exponential
divergence, for a ↑ 1, and the second factor embodies an
algebraic divergence of the amplitude of this singularity, for
fixed ω < 2.

The relation between ξ⊥, defined through (40), and 1 −
a merits our special attention. Indeed, at the infinite-order
wetting transition ξ⊥ displays a universal algebraic divergence
of the form

ξ⊥ ∝
√

2ω

2 − ω
(1 − a)−1/2, (47)

implying the following result for the critical exponent of the
thermally fluctuating interface width:

ν⊥ = 1/2. (48)

This is interesting because, to our knowledge, for other SRCW
transitions in d = 3, we invariably have ν⊥ = 0(log). The
algebraic divergence we predict here should be testable in
simulations. Note, once again, that the amplitude diverges for
sufficiently strong fluctuations, i.e., for ω ↑ 2.

Note that ξ‖ displays an exponential singularity, while L̂R

and ln ξ‖ show an algebraic divergence, in the limit a ↑ 1.
Therefore, taking twice the logarithm of (46) we can rewrite
(43) in the more systematic form of an expansion in large ξ‖,

L̂R = (2 + ω) ln ξ‖ − ln ln ξ‖ + · · · (49)

This allows us to check the self-consistency requirement,
L̂R > (2/a)ω ln ξ‖, for L̂R, ln ξ‖ → ∞,

L̂R/ ln ξ‖ ≈ 2 + ω > (2/a)ω, (50)

which leads to the following condition on ω:

ω <
2

(2/a) − 1
≈ 2. (51)

We conclude that there is only one “weak” (and no “inter-
mediate”) fluctuation regime for infinite-order wetting, defined
by 0 < ω < 2. Note that for ω ↑ 2 an additional exponential
singularity develops in ξ‖, implying a wetting transition of
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doubly-infinite order. The “strong” fluctuation regime, ω > 2,
that lies beyond this threshold appears interesting, too, but falls
outside the scope of our paper.

We proceed to examine the leading singularity of the
spreading coefficient at infinite-order wetting in the presence
of thermal fluctuations and to check hyperscaling. Evaluating
the interface potential at the equilibrium wetting layer thick-
ness leads to

−S ≈
(

B

D

)−2/[(2−ω)( 1
a
−1)][

const

(
1

a
− 1

)]2/(2−ω)

,

with B/D ≈ [
b(2)

w (1)/b
]2

> 1. (52)

We observe that −S ∝ ξ−2
‖ , which implies that hyperscaling

holds. (We recall that hyperscaling amounts to the exponent
equality 2 − αs = (d − 1)ν‖.) It can readily be seen that
hyperscaling holds quite generally for the interface potentials
of the type that we study, since the second derivative of VR is
proportional to VR itself, when both are evaluated at L̂R .

We conclude that the main characteristics (the critical
exponents) of the mean-field infinite-order wetting transition
(2 − αs = ∞ and βs = −1) are robust to thermal fluctuations,
i.e., independent of the value of ω, provided 0 < ω < 2.
In addition, we remark that the power of 1 − a in the
argument of the exponential singularity [i.e., in the exponent
of B/D in Eq. (52)] is also robust to thermal fluctuations and
preserves its mean-field value −1, as in Eq. (35), whereas the
amplitude of 1/(1 − a) in this argument does depend on ω. The
robustness of the infinite-order wetting transition is physically
not surprising, given that thermal fluctuation effects typically
tend to increase the order of critical wetting transitions [3–8].
This effect will be recalled explicitly when we discuss the
nonuniversal wetting transitions of finite order in Sec. V.

Stage 2. We now progress towards a physically better
founded model and add a nonzero soft repulsion between the
two fluctuating interfaces by augmenting the bare interface
potential with a positive constant E at L � 0:

V (L) =
{

−De−L + Be−L/a, for L > 0

E, for L < 0.
(53)

Since the constant E renormalizes (approximately) to a
Gaussian, the renormalized potential now reads, for ω < 2,

VR(L) = −Dξω
‖ e−L + Bξa−2ω

‖ e−L/a

+ E

L

√
ω ln ξ‖

π
e−L2/(4ω ln ξ‖), for large L. (54)

We must now check whether the solution for L̂R obtained at
stage 1 is still valid. This is the case provided the Gaussian
remains small compared to the other two terms, when the
solution found at stage 1, being (49), is inserted in VR(L).
One verifies that the first term scales as ln ξ‖/ξ 2

‖ , the second
as (ln ξ‖)1/a/ξ 2

‖ , with a ≈ 1 close to the wetting transition,

and the third term scales as (ln ξ‖)(2+ω)/2ω/ξ
(2+ω)2/4ω

‖ . Since
(2 + ω)2 � 8ω for all ω (equality for ω = 2), the third term
is negligible compared to the other two for 0 < ω < 2. In
conclusion, the properties of the (renormalized) infinite-order
wetting transition are not sensitive to whether or not a soft
repulsion is added to the interface potential. Calculational

stages 1 and 2 are equivalent for this particular wetting
transition.

V. THERMAL FLUCTUATION EFFECTS ON
NONUNIVERSAL WETTING (a < 1): LINEAR

FUNCTIONAL RG APPROACH

In this section we renormalize the wetting transition of
continuously varying finite order. We thus concentrate on
the parameter ranges 0 < a < 1 and b � 1. Recall that now
bw = 0. In doing so we will reproduce the results of Hauge
and Olaussen (HO), who pioneered RG corrections to a
wetting transition that has nonuniversal character at mean-field
level [28]. They studied the weak fluctuation regime. Parry
et al. [29] also examined the intermediate fluctuation regime
for that transition and found that the universality with respect
to asymmetry is restored, while the nonuniversality with
respect to the wetting parameter ω persists. Why do we revisit
these nonuniversalities, given that they have been explored
before? The interface potential we encounter in our theory is
qualitatively different from those of previous works, in that
the coefficients of powers of exp(−L) all vanish at wetting,
while the coefficients of powers of exp(−L/a) do not. This
has important consequences for the size of the nonuniversal
regime in the wetting phase diagram. Further, we pay special
attention to the fact that in our case of two fluctuating interfaces
thermal fluctuation effects are significantly enhanced, since,
as we outlined in the previous section, the value of ω is
roughly doubled relative to that for wetting at a planar
undeformable wall. As in the previous section, we proceed in
two calculational stages or “models.” At stage 1 we consider
only the leading terms, for large L, in the interface potential,
and at stage 2 we add a soft repulsion to discourage interface
wandering from visiting the unphysical domain L < 0.

Stage 1. We start from the bare interface potential based on
(28):

V (L) =
{

−De−L + Be−L/a + De−2L, for L > 0

0, for L < 0,
(55)

with D ∝ b2 the “distance” to the critical wetting transition at
bw = 0, and B ∝ ρ2

1,×/a a positive constant.
Its renormalized counterpart is given by

VR(L) = −Dξω
‖ e−L + Bξa−2ω

‖ e−L/a + Dξ 4ω
‖ e−2L,

for large L (56)

and is valid in the weak fluctuation regime 0 < ω < ω1, where
ω1 is to be calculated. This form of renormalized potential is
valid under the following conditions: L > 2ω ln ξ‖ for the first
term, L > (2/a)ω ln ξ‖ for the second term, and L > 4ω ln ξ‖
for the third term. Note that, for a below some value, the
next-to-leading term in V (L) may “cross” some higher-order
term and the transition may lock in to one of the universal
critical wetting kind. At mean-field level, however, this does
not happen for our model (see Sec. III). In order to exclude
any possible complications of this sort, we limit ourselves for
the time being to the range ac < a < 1, where ac is to be
calculated. It then suffices to work with the first two terms in
Eq. (56) to derive the singularities at wetting.
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Minimization of the first two terms of VR(L) leads to the
following relation between the (diverging) equilibrium wetting
layer thickness and the (diverging) quantities B/D and ln ξ‖:

L̂R = a

1 − a

[
ln

B

aD
+

(
1

a2
− 1

)
ω ln ξ‖

]
, (57)

and, combined with the evaluation of the second derivative,
or “curvature,” in the minimum of VR , this provides an
independent relation between the parallel correlation length
and, essentially, the “field” 1/D by which wetting can be
induced in the limit 1/D → ∞,

ln ξ‖ = 1

2 − ω/a
ln

(B/aD)a/(1−a)

(1 − a)D/a
+ const, (58)

These two auxiliary equations, (57) and (58), now provide
the asymptotic relation between L̂R and ln ξ‖ close to wetting,

L̂R

ln ξ‖
≈ 2a + ω/a. (59)

The sufficient condition for the validity of the first two terms
in Eq. (56), being L > (2/a)ω ln ξ‖, requires this ratio (59)
to exceed 2ω/a, and signifies that the interfaces fluctuate
sufficiently far from one another to avoid collisions. It defines
the weak fluctuation regime,

ω < 2a2 ≡ ω1. (60)

As expected, we retrieve the same ω1 as in the model studied
by HO, which further reduces, for a = 1/2, to the famous
value 1/2 found in Ref. [3].

We proceed to study the critical exponent ν‖ of the
correlation length ξ‖ parallel to the unbinding interfaces.
Defining, as is standardly done,

ξ‖ ∝ D−ν‖ , (61)

and using (58) we find

ν‖ = 1

2(1 − a)

1

1 − ω/(2a)
, (62)

as in the model of HO [28], and consequently we obtain ν⊥ =
0(log), in view of (40). The first factor in the right-hand side of
(62) defines the mean-field contribution (the limit ω = 0) and
the last factor contains the thermal fluctuation correction. Note
that the order of the transition increases from its mean-field
value when ω is increased, i.e., when thermal fluctuations
gain importance. One easily verifies, along the lines of the
derivation given in Ref. [3], that hyperscaling holds so that
2 − αs = 2ν‖.

We now show that in the regime of validity of the first three
terms in Eq. (56), defined by the sufficient condition L >

(2/a)ω ln ξ‖ and L > 4ω ln ξ‖, i.e., ω < 2a2 and (4a − 1)ω <

2a2, the third term evaluated in L̂R is negligible compared to
the first two, not only for 1/2 < a < 1 but also for all 0 <

a < 1, so ac = 0. Indeed, using (59) and (61) to examine how
the various terms in VR(L̂R) scale near wetting, we obtain that
the first two terms scale as ξ−2

‖ while the third term scales as

ξ
−2−2a+(3−1/a)ω
‖ , which is subdominant provided (3a − 1)ω <

2a2. This is indeed fulfilled, since the former condition (4a −
1)ω < 2a2 implies this one for all a > 0.

The question now remains whether ac = 0 also holds for
L > (2/a)ω ln ξ‖ but L < 4ω ln ξ‖, so that the third term in
Eq. (56) must be replaced by a suitably renormalized version
of the bare term De−2L. This question is obviously only
meaningful for a > 1/2, since for a < 1/2 the validity of
the second term implies that of the third, and we are back
to the previous conclusion reached in case all three terms
in Eq. (56) are valid. The suitably renormalized interface
potential now reads, the third term being a Gaussian (with
a positive amplitude) [3],

VR(L) = −Dξω
‖ e−L + Bξa−2ω

‖ e−L/a

+ D√
4πω ln ξ‖

1

2 − L/(2ω ln ξ‖)
e−L2/(4ω ln ξ‖) + · · · ,

(63)

with, as before, D ∝ b2. We now obtain that the first
two terms scale as ξ−2

‖ while the third term scales as

ξ
−(2+[(2a−1)ω/(2a)−a]2/ω)
‖ , which is subdominant because the

exponent is less than −2. We conclude ac = 0. In the model of
Stage 1, therefore, the critical wetting transition for a < 1 is
(doubly) nonuniversal down to a = 0 in the weak-fluctuation
regime.

We now turn to the intermediate fluctuation regime, ω1 <

ω < ω2, where ω2 is still to be determined and ω1 is to be
checked on its self-consistency. In this regime L > 2ω ln ξ‖
and L < (2/a)ω ln ξ‖. With these conditions the repulsive
next-to-leading term of the interface potential is renormalized
to a Gaussian (with a positive amplitude), and the renormalized
V (L) reads

VR(L) = −Dξω
‖ e−L

+ B√
4πω ln ξ‖

1

(1/a) − L/(2ω ln ξ‖)
e−L2/(4ω ln ξ‖)

+ · · · , (64)

with, as before, D ∝ b2 and B a positive constant.
Minimization of the interface potential and determination

of the curvature (second derivative) is now straightforward.
The calculations are simplified by legitimately ignoring the L

dependence of the amplitude (prefactor) of the second term,
which amounts to dropping higher-order terms in 1/L, as noted
in Ref. [3]. After some algebra we obtain

L̂2
R = 8ω(ln ξ‖)2 − 2ω ln ξ‖ ln ln ξ‖ + · · · (65)

and

L̂R = (2 + ω) ln ξ‖ + ln D + · · · , (66)

where the dots stand for constants or terms that diverge more
weakly than the ones that are shown. In line with the results
of Ref. [3], we assume the following formal relation between
ln ξ‖ and D, in the limit D ↓ 0,

ln ξ‖ = f1 ln 1/D + f2 ln ln 1/D + · · · (67)

Applying this to leading order to (65) and (66) we get

1/ν‖ ≡ 1/f1 = 2 + ω −
√

8ω = (
√

2 − √
ω)2 (68)

which reproduces the result of Ref. [3]. Note that, in contrast
with (62), in this intermediate fluctuation regime ν‖ is
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independent of the asymmetry variable a. We now check
the self-consistency condition on the range of the interface
fluctuations, L > 2ω ln ξ‖ and L < (2/a)ω ln ξ‖, and obtain

2a2 < ω < 2, (69)

confirming the previously found expression (60) for ω1 and
the expected upper limit ω2 = 2 beyond which the strong
fluctuation regime sets in, characterized by an essential
singularity (the infinite-order transition induced by thermal
fluctuations).

It is easy to see that these results are not affected by the
presence of a third term in Eq. (64). Assume first L > 2ω ln ξ‖
and L < (2/a)ω ln ξ‖, but L < 4ω ln ξ‖, in which case the
third term is a Gaussian of the same form as the (Gaussian)
second term, but with an amplitude D that vanishes at wetting.
The third term is then negligible compared to the second.
In the opposite case, L > 2ω ln ξ‖ and L < (2/a)ω ln ξ‖, but
L > 4ω ln ξ‖, possible for a < 1/2, and 2a2 < ω < 1/2, the
third term is exponentially decaying and takes the same
form as the third term in Eq. (56). We now obtain that
the first two terms in the renormalized potential scale as

ξ−2
‖ while the third term scales as ξ

−(2+√
8ω−3ω)

‖ , which is
subdominant because the exponent is less than −2 provided
ω < 8/9, which is guaranteed by ω < 1/2.

We conclude that in the intermediate fluctuation regime
the mean-field nonuniversality is washed out or overruled by
thermal fluctuation effects, so that only the nonuniversality
induced by thermal fluctuations remains. Note that the upper
limit of the intermediate fluctuation regime is ω = 2, for which
ν‖ diverges.

In closing this stage of the calculations we comment on
the behavior of the wetting layer thickness at wetting. At
nonuniversal critical wetting L̂R diverges logarithmically for
1/D → ∞. In particular, in the weak fluctuation regime we
obtain, combining (58) and (59),

L̂R = 2 + ω/a2

(1/a − 1)(2 − ω/a)
ln

1

D
+ · · · (70)

which for a = 1/2 reduces to the result of Ref. [3].
Likewise, in the intermediate fluctuation regime we com-

bine (65) and (66) and obtain, first, the dependence of L̂R on
ln ξ‖, from which the parameter a has disappeared as expected
(partial restoration of universality),

L̂R =
√

8ω ln ξ‖ − ω ln ln ξ‖√
8ω

+ · · · . (71)

Working out (67) this leads to

L̂R =
√

8ω

2 + ω − √
8ω

ln
1

D

− (2 + ω)ω√
8ω(2 + ω − √

8ω)
ln ln

1

D
+ · · · . (72)

These relations reproduce the results of Ref. [3].
Stage 2. We now start from the bare interface potential

augmented with the soft repulsion, (53), and consider its
renormalized counterpart (54) valid in the weak fluctuation
regime 0 < ω < ω1, where ω1 is, again, to be calculated. As
in stage 1 we focus on the asymmetry range susceptible of
critical wetting, 0 < a < 1. As noted before, this form of

the renormalized interface potential (54) is valid, provided
L > (2/a) ln ξ‖, which is a necessary condition. However,
it is possible that the solution obtained at stage 1 is only
valid in a part of the range of ω defined by this condition,
because the third term in Eq. (54) may become more important
than the second. To examine this, we recall the solution
obtained at stage 1, as given in Eq. (59). When we insert
this solution into the various terms of (54), taking into account
the explicit form of the critical exponent (62) of the parallel
correlation length, we find that the first two terms scale as ξ−2

‖ ,
while the third term is negligible compared to the first two,
provided

(L̂R/ ln ξ‖)2 > 8ω. (73)

Calling ωc1 the value of ω that solves this inequality as an
equality, we obtain

ωc1 = 2a2, (74)

identical to the ω1 found in stage 1. We conclude that the weak
fluctuation regime is, again, defined by 0 < ω < 2a2.

For ω > 2a2 the Gaussian repulsion dominates the expo-
nential one [second term in Eq. (54)] and the correct solution
can be obtained by retaining only the first, attractive, term and
the third. This renormalized interface potential, valid in the
intermediate fluctuation regime reads

VR(L) = −Dξω
‖ e−L + E

L

√
ω ln ξ‖

π
e−L2/(4ω ln ξ‖) (75)

and is independent of the parameter a and therefore in-
dependent of the asymmetry variable in our model. The
validity of this description is limited to L/ ln ξ‖ > 2ω, as noted
previously. In this intermediate fluctuation regime the solution
is found to be akin to that obtained in Ref. [3] and is given by

L̂R =
√

8ω
(

ln ξ‖ − 1
8 ln ln ξ‖ + · · · ) (76)

and

1/ν‖ = 2 + ω −
√

8ω. (77)

It is straightforward to check that this expression is continuous
across ωc1. At ωc1 it coincides with that found in the weak
fluctuation regime.

In the intermediate fluctuation regime we thus retrieve
the “old” results, which are universal with respect to the
asymmetry, and nonuniversal in the sense that they depend
on the thermal fluctuation strength as measured by ω. This
intermediate fluctuation regime is applicable in the range
ωc1 < ω < ωc2 = 2. For ω > 2 the first term in Eq. (54) also
becomes a Gaussian and we enter the strong fluctuation regime
already discussed in Ref. [3].

As far as the wetting layer thicknesses are concerned, we
observe that the stage-2 calculations reproduce the results (59)
and (70) obtained at stage 1 in the weak fluctuation regime, as
well as (76) and the ensuing dependence of L̂R on D obtained
in Ref. [3] in the intermediate fluctuation regime.

VI. CONCLUSIONS

We have studied, within a local interface Hamiltonian
theory, the effect of thermal fluctuations on wetting phase
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transitions of infinite order and of finite, continuously varying,
order. At mean-field level, these transitions were uncovered in
a density-functional model for a system with short-range forces
and a two-component order parameter. The main new results
are the following. Using linear functional renormalization
group (RG) calculations we have shown that the infinite-order
transitions are robust with respect to the inclusion of thermal
fluctuation effects. The exponential singularity of the surface
free energy at wetting, characterized by the critical exponent
2 − αs = ∞ and the algebraic divergence of the wetting layer
thickness, characterized by the critical exponent βs = −1,
are not modified provided ω < 2, with ω the dimensionless
wetting parameter that measures the strength of thermal
fluctuations. The interface width, or perpendicular correlation
length, ξ⊥ diverges algebraically and universally, characterized
by the critical exponent ν⊥ = 1/2. Under strong fluctuations,
for ω ↑ 2, the order of the wetting transition becomes doubly
infinite and a new regime is entered, which has not been studied
here.

As regards the nonuniversal critical wetting transitions
of finite but continuously varying order, we recall that at
mean-field level the critical exponent of the surface free
energy singularity at wetting depends on the asymmetry
parameter a of the model. We also recall that this dependence
persists through the entire range 0 < a < 1 available to this
parameter. Unlike in other, but similar, mean-field models,
the transition does not lock in to a universal second-order
wetting transition at some value of a. We have found, using
linear functional renormalization group calculations, that the

mean-field nonuniversality persists in the weak fluctuation
regime 0 < ω < 2a2 and that a second nonuniversality with
respect to thermal fluctuations adds on to this. In contrast, in
the intermediate fluctuation regime 2a2 < ω < 2, universality
with respect to the asymmetry parameter a is restored and αs

depends on ω alone. For ω ↑ 2 we enter the strong fluctuation
regime where the wetting transition is predicted to be of infinite
order. For the wetting transitions of finite and continuously
varying order, our calculations have reproduced various known
results [3,28,29].

In a follow-up work we envisage to meet the challenge
of deriving the interface potential and studying fluctuation
effects on the singularities at wetting in this model, from a
fully nonlocal interface Hamiltonian theory. This will allow
us to capture better the effects of two thermally wandering
interfaces, in systems with short-range forces. Note that in
systems with long-range forces not considered here, e.g., fluids
with van der Waals forces, interface fluctuations can be ignored
at critical wetting transitions [30].
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