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Nonequilibrium density matrix for quantum transport: Hershfield approach
as a McLennan-Zubarev form of the statistical operator
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In this paper, we formally demonstrate that the nonequilibrium density matrix developed by Hershfield for
the steady state has the form of a McLennan-Zubarev nonequilibrium ensemble. The correction term in this
pseudoequilibrium Gibbs-like ensemble is directly related to the entropy production in the quantum open system.
The fact that both methods state that a nonequilibrium steady state can be mapped onto a pseudoequilibrium,
permits us to develop nonequilibrium quantities from formal expressions equivalent to the equilibrium case. We
provide an example: the derivation of a nonequilibrium distribution function for the electron population in a
scattering region in the context of quantum transport.
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I. INTRODUCTION

The understanding of irreversible phenomena including
nonequilibrium (NE) steady state is a long-standing problem
of statistical mechanics. The task of NE statistical mechanics
is to understand and describe how a system, initially at
thermodynamical equilibrium, will try to respond and adjust to
an external stimulus by evolving towards a new macroscopic
state that is compatible with this external constraint. This
involves the understanding of the transient and steady-state
regimes, as well as the derivation of the corresponding kinetic
and balance equations of NE thermodynamics.

Since Gibbs formulation of the method of statistical
ensembles for equilibrium many-body systems, it has been
expected that some formal advantages may be given by an
approach to NE processes in which the Gibbs ensembles play
a prominent role [1]. The construction of such Gibbs-like
ensembles for the NE steady state has been explored by many
authors.

On one hand, early attempts have been performed by
McLennan [1] for classical systems and by Zubarev [2–6]
for both classic and quantum systems. In simple terms, it
is found that the steady-state ensembles can be expressed in
terms of the external forces which maintain the deviation from
equilibrium. In Zubarev’s formulation of NE steady state, the
Gibbsian statistical mechanics method is extended to include
steady-state boundary conditions in the density matrix leading
to his so-called NE statistical operator (SO) method (NESOM).
Such method consists in constructing a time-independent
density matrix (statistical operator) by solving an equation
of motion with the proper NE boundary conditions.

A rigorous analysis of the existence and stability of such
NE steady state, i.e., its independence of the way the division
into subsystems and reservoirs is performed and its stability
against local perturbations, have been performed using C∗
algebraic methods in Refs. [7–10]. Furthermore, rigorous def-
inition of MacLennan-Zubarev ensembles have been given in
Refs. [8,11].
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There is also extensive literature which shows that the
NESOM turns out to be very convenient for concrete
application (for example, see the review, Ref. [6], and
the references therein). More recently, applications of the
McLennan-Zubarev form of the NE density matrix have
been done in the context of quantum electron transport. For
example, the problem of quantum transport for noninteracting
electrons in effective one-dimensional systems can be found in
Refs. [12,13], where the authors rederive Zubarev’s NESOM
from a maximum entropy principle, since in essence a Gibbs
state is characterized by the principle of maximum entropy at
fixed energy (see also Ref. [3]). Applications for interacting
electron-nuclei systems is provided in Ref. [14], in which the
authors derive the kinetic equations governing time evolution
of positions and momenta of atoms (in the classic limit)
interacting with a quantum electron gas using the NESOM.

On the other hand, in the early 1990s, Hershfield refor-
mulated the problem of NE steady-state quantum statistical
mechanics (QSM) in Ref. [15]. This was done by rewriting
the conventional perturbation theory of NE QSM for the
steady-state regime in a form similar to that of an equilibrium
QSM (called below a pseudoequilibrium). In this reformula-
tion, an explicit expression for the NE density matrix was
provided as well as a scheme upon which one can build
nonperturbative calculations in NE quantum systems. This
approach has permitted us to understand more clearly the
nonequilibrium ensembles, and how NE boundary conditions
can be imposed as a statistical operator. It has also been
successfully applied in numerical applications for the problem
of quantum transport, in the presence or absence of interaction
between electrons [16,17]. Other applications have been
performed by Han and co-workers in the context of quantum
transport for electron-phonon interaction in quantum dots
[18], for strongly correlated electron systems within a slave
boson approach [19]. Han and co-workers also developed an
equivalent formulation within the framework of the imaginary
time formalism [20–24].

In this paper, we show and prove that the Hershfield
approach for the NE density matrix is actually a specific form
of the McLennan-Zubarev NESOM. By specific, we mean
that the Hershfield approach can be seen as a particular case
of the NESOM applied to the problem of quantum transport,
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where a central scattering region (with interaction or not) is
connected to two (or more) leads and the whole system is at
the same temperature T . Our work provides a clear and formal
connection between these two approaches which are widely
used for applications in quantum transport.

Both McLennan-Zubarev and Hershfield show that the
properties of a NE steady state can be obtained in a formally
equivalent manner as in an equilibrium state but using a NE
density matrix in a Gibbs form instead of the equilibrium
Gibbs statistical ensembles. Hence it is also possible to derive
NE quantities, such as distribution functions, from formal
expressions used in the equilibrium case. We consider the
development of such distribution functions for the population
of electrons in the context of quantum transport in the last part
of the paper.

The paper is organized as follows. In Secs. II and III,
we briefly recall the main ingredients of the McLennan-
Zubarev NESOM and of the Hershfield approach, respectively.
Section IV is the main part of the paper where we formally
establish the connection between the two methods. In Sec. V
we derived the expression for the NE steady-state distribution
of the electron population of a central region (in the presence
of interaction) connected to two (noninteracting) electron
reservoirs. Finally, we discuss further developments and
present our conclusion in Sec. VI.

II. MCLENNAN-ZUBAREV NONEQUILIBRIUM
STATISTICAL OPERATOR METHOD

Classic and quantum statistical mechanics should provide
microscopic foundations for the thermodynamics description
of many-body systems. For the equilibrium case, the method
of statistical ensembles developed by Gibbs gives a rigorous
formulation of the thermodynamic quantities and relations.
Within the same line of reasoning, an extension of Gibbs
method to the nonquilibrium cases would permit one to
formulate the basic postulates of irreversible thermodynamics.
Such a formulation of nonequilibrium statistical mechanics has
been provided by McLennan [1] and Zubarev [2–6].

For a system composed of N independent parts (with j =
1, . . . ,N Hamiltonian Hj , at temperature βj , and with λ =
1, . . . ,L species of particle λ with number N

(λ)
j and chemical

potential μ
(λ)
j ) which are interacting by an interaction W ,

the McLennan-Zubarev form of the NE statistical operator is
given by

ρ = 1

Z
exp

⎧⎨
⎩−

N∑
j=1

βj

[
Hj −

L∑
λ=1

μ
(λ)
j N

(λ)
j

]

−
∫ 0

−∞
ds eηsJS(s)

⎫⎬
⎭ , (1)

where Z is the normalization factor Z = Tr[ρ] and the quantity
JS(s) is obtained from JS(s) = ∑

j βjJ
q

j (s) with J
q

j (s) being
the so-called nonsystematic energy flow [9], or heat flow, to
the j th subsystem defined as

J
q

j (s) = d

ds

(
Hj (s) −

∑
λ

μ
(λ)
j N

(λ)
j (s)

)
. (2)

The operators are given in the Heisenberg representation,
with the total Hamiltonian H = ∑

j Hj + W and Hj (s) =
eiHsHje

−iHs , Nj (s) = eiHsNje
−iHs . A convergence factor eηs

(η > 0) is introduced in the time integral, where the limit
η → 0 is taken in the end, after all the calculations are done.

The quantity JS(s) being the sum of heat flows divided by
subsystem temperatures, is therefore the entropy production
rate of the whole system [3,9].

III. HERSHFIELD APPROACH FOR
NONEQUILIBRIUM DENSITY MATRIX

Hershfield reformulated the problem of NE steady state in
quantum statistical mechanics [15] by developing an iterative
scheme for the NE density matrix expressed in terms of a
series of power of (W )n where W is the perturbative part of
the total Hamiltonian H = H0 + Weηt that drives the system
out of equilibrium (and eventually also contains the interaction
between the particles).

The expectation value of any operator A in a NE steady
state is then obtained from a pseudoequilibrium as follows:

〈A〉 = 1

ZNE
Tr[ρNEA], (3)

with the NE density matrix

ρNE = e−β(H−Y ), (4)

and the partition function ZNE = Tr[ρNE].
In the interaction representation (where the operators X are

given by XI (t) = eiH0tXe−iH0t ), the density matrix follows the
usual equation of motion

∂ρI (t)

∂t
= i[ρI (t),WI (t)]. (5)

Hershfield introduced a new set of operators Yn which are of
the order O(Wn) and from which the density matrix can be
constructed by an iterative scheme.

The individual operators Yn follow the same differential
equation as the density matrix but in a recursive way:

∂Yn+1,I (t)

∂t
= i[Yn,I (t),WI (t)]. (6)

The index of the operators Yn differs in each side of Eq. (6) in
order to have the same power of the perturbation W on both
sides.

The differential equation (6) can also be rewritten in terms
of commutators as

[H0,Yn] − iηYn = [Yn−1,W ], (7)

where the positive infinitesimal η is included to make the
equation well defined [15].

The operator Y is then obtained from the sum Y =∑∞
n=0 Yn. The initial expression of the Yn operators is given

by Y0 = ∑
i μiNi . The important difference between the

equilibrium and NE cases is that the operator Y0 does not
commute with the perturbation W . Furthermore, Hershfield
showed that the full operator Y and the total Hamiltonian H

commute in the limit of adiabatic switching of the perturbation
(η → 0+). Because Y and H commute, Hershfield interpreted
the Y operator as the operator into which Y0 “evolves” under
the action of the perturbation W .
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We show in the next section that the NE density matrix ρNE

with the presence of the Y operator is actually a McLennan-
Zubarev form of a NE statistical operator (for a system at the
same temperature kT = 1/β).

IV. HERSHFIELD DENSITY MATRIX
AS A MCLENNAN-ZUBAREV FORM OF

THE STATISTICAL OPERATOR

We now rewrite the McLennan-Zubarev NE statistical
operator for the conditions considered by Hershfield, i.e., one
specie of particle (electrons) L = 1 and a unique temperature
βj = β. Hence Eq. (1) becomes

ρ = 1

Z
exp

⎧⎨
⎩−β

N∑
j=1

(
Hj − μjNj −

∫ 0

−∞
ds eηsJ

q

j (s)

)⎫⎬
⎭

= 1

Z
e−β(H−ϒ). (8)

In the second equality of Eq. (8), we have rewritten the NE
statistical operator in the form of a NE density matrix with

ϒ = Y0 + W +
∫ 0

−∞
dx eηxeiHxi[W,H0 − Y0]e−iHx, (9)

with the total Hamiltonian H = ∑
j Hj + W = H0 + W ,

Y0 = ∑
j μjNj , and

∑
j

1

β
J

q

j (x) =
∑

j

d

dx

(
Hj − μjNj

)
(x)

= d

dx
[H0(x) − Y0(x)]

= i[H,H0(x) − Y0(x)]

= eiHxi[W,H0 − Y0]e−iHx

= i[W (x),H0(x) − Y0(x)] . (10)

We use the fact that the operator Y0 commutes with the
unperturbed noninteracting Hamiltonian H0.

To prove that the Hershfield approach is actually a
McLennan-Zubarev form of the NE statistical operator, we
have to prove that the operator ϒ is just the operator Y in the
Hershfield method.

For that, we expand the time dependence of the commutator
A = i[W,H0 − Y0] in a series expansion

A(x) = eiHxAe−iHx

= A + [iHx,A] + 1
2 [iHx,[iHx,A]]

+ 1
3 [iHx,[iHx,[iHx,A]]] + · · · (11)

of powers of (W )n, knowing that H = H0 + W = O(W 1) and
A = O(W 1).

It is then natural to expand, as in the Hershfield approach,
the operator ϒ in a series ϒ = ∑

n ϒn where each term ϒn

corresponds to a power Wn. The aim of the derivation is to
identify the terms of each order of the perturbation W in the
interaction representation scheme of Hershfield for Yn,I (t) and
in the Heisenberg representation used for the expression of ϒ

in the NESOM. This is easily done for the lowest order terms.
At the zeroth order of the perturbation, it is clear from

Eq. (9) that ϒ0 = Y0. For the higher order, it is convenient to

generalize Eq. (9) as

ϒ(τ ) = Y0 + W +
∫ τ

−∞
dx eηseiHxi[W,H0 − Y0]e−iHx,

(12)
and take the limit τ = 0 in the end to make the connection
between the NESOM and Hershfield approach. Hence we have

∂ϒ(τ )

∂τ
= eiHτ i[Weητ ,H0 − Y0]e−iHτ + ∂Y0

∂τ
+ ∂W

∂τ
, (13)

with ∂τY0 = i[H,Y0(τ )] and ∂τW = i[H,W (τ )].
To get the term linear in W , we have to consider the

lowest order expansion in Eq. (11) for the time evolution
operator in terms of the noninteracting Hamiltonian H0 only,
i.e., H → H0 and X(τ ) → XI (τ ). Hence the right-hand side
of Eq. (12) becomes i[WI (τ ),H0 − Y0,I (τ )] + i[H0,WI (τ )],
where the term eητ is included in WI (τ ). For the left-hand side
of Eq. (12), we assume that the Heisenberg representation of
ϒ can rearrange as eiH0τ [sum of terms in O(Wn)]e−iH0τ , i.e.,
eiH0τ [

∑
n ϒn]e−iH0τ . Hence at the lowest order in W , we get

the interaction representation of ϒn=1, and therefore we find
the lowest order version of Eq. (6) for ϒn:

∂τϒ1,I (t) = −i[WI (t),Y0,I (τ )]. (14)

The same result can also be obtained more directly from
Eq. (9) by considering the lowest order expansion of the time
evolution operator:

ϒ1 = W +
∫ 0

−∞
dx eηseiH0xi[W,H0 − Y0]e−iH0x, (15)

and integrating by part the term in eiH0xi[W,H0]e−iH0x =
−∂xWI (x) to find

ϒ1 = i

∫
dx eiH0x[Y0,W ]e−iH0x, (16)

which is just the integrated version of Eq. (14) or Eq. (6).
The higher order terms ϒn�2 can be found from

ϒn�2 = i

∫ 0

−∞
dx eiHx[Weηs,H0 − Y0]e−iHx, (17)

however, the derivation is much more cumbersome than for
the lowest order terms.

Instead, one can use Eq. (9) and perform an analysis and
decomposition order by order of the powers in O(Wn). For
that we first rewrite Eq. (9) as

ϒ = Y0 + W −
∫ 0

−∞
dx ∂xW (x)

− i

∫ 0

−∞
dx eiHx[Weηx,Y0]e−iHx, (18)

using the fact that eiHxi[W,H0]e−iHx = eiHxi[W,H ]e−iHx =
i[W (x),H ] = −∂xW (x). Note that when not explicitly written,
the term eηx is included in the perturbation W . Finally, using
the fact that, in leading order, the operator Y in the Hershfield
approach is the time evolution of Y0, Y = eiHxY0e

−iHx , we get
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in leading order

ϒ = Y0 − i

∫ 0

−∞
dx[W (x),Y (x)]. (19)

Hence again, in leading order, we find that by expanding
Eq. (19) in powers of O(Wn), we keep only the time
dependence in terms of H0 in the series expansion, and we
find ϒ0 = Y0, ϒ1 = −i

∫ 0
−∞ dx[WI (x),Y0,I (x)], and ϒn+1 =

−i
∫ 0
−∞ dx[WI (x),Yn,I (x)] which is the integrated expression

of the right-hand side of Eq. (6).
Finally to conclude this section, we consider Eq. (13) and

rewrite it in terms of commutators to find that

∂τϒ(τ ) = i[W (τ ),H0(τ ) − Y0(τ )] + i[H,Y0(τ )] + i[H,W (τ )]

= i[W (τ ), − Y0(τ )] + i[H,Y0(τ )]

= i[H0(τ ),Y0(τ )] = eiHτ i[H0,Y0]e−iHτ = 0. (20)

Hence ϒ(τ ) = ϒ is constant of motion, and ∂τϒ(τ ) =
i[H,ϒ(τ )] = 0 implies that the operator ϒ commutes with the
total Hamiltonian H , as the Hershfield operator Y commutes
with H .

Therefore we have shown that the NE density matrix
e−β(H−Y ) of the Hershfield approach is indeed a McLennan-
Zubarev form of the NE statistical operator. Finally, we can
note that the NE density matrix/statistical operator depends,
via the operator Y/ϒ , on the NE conditions as expected, i.e.,
on the different chemical potentials μi in Y0, but also on the
interaction W and on how the initial Y0 evolves under the
perturbation W .

V. AN APPLICATION FOR
NONEQUILIBRIUM DISTRIBUTION

The fact that the NE steady state can be described as a
pseudoequilibrium state, with a modified Gibbs-like statistics,
permit us to determine NE quantities from formal expressions
used in the equilibrium case [compare Eqs. (23) Eq. (24)
below]. In this section, we derive an expression for the NE
distribution function of the electron population in a central
region connected to two reservoirs. The study of other NE ther-
modynamical quantities for noninteracting quantum transport
(current-induced forces and thermodynamical potentials) has
been addressed in [25–28].

As an example, we consider in the following the NE
distribution function of a central region consisting of a
single level (with interaction) connected to two (left and
right) reservoirs at their own equilibrium. The statistics in
each reservoir is given by the Fermi-Dirac distribution with
chemical potentials μL and μR and temperature TL and TR . In
the NE conditions μL �= μR and/or TR �= TR .

The Hamiltonian for the central scattering region C is sim-
ply given by HC = ε0d

†d, where d† (d) creates (annihilates)
an electron in the level ε0. The specific model used for the leads
connected to the central region does not need to be specified, as
long as the leads can be described by an embedding self-energy

α in the electron Green’s function (GF) of the central region
(α = L,R).

At equilibrium, the average of the electron population of
a single level coupled to a thermal bath 〈d†d〉 leads to the
equilibrium Fermi-Dirac distribution f eq. For NE conditions,

the average 〈d†d〉 as given by Eq. (3) is difficult to derive
exactly, especially in the presence of interaction [16–18].
However, because of the pseudoequilibrium nature of the NE
steady-state statistics, we can assume that such an average is
well behaved and leads to a NE distribution f NE.

In order to obtain a compact form for f NE, we have
found that, instead of calculating the series expansion of
the operator Y , a more straightforward approach is obtained
by using NE GFs in the steady-state regime [29]. The GFs
are correlation functions whose thermodynamical averages
are formally identical to those calculated in the Hershfield
approach.

Both perturbation series used in the NE GF approach and
in the derivations of the equations for the Y operator in the
Hershfield approach start from the same nonequilibrium series
expansion. They are just two different ways of summing that
series. For a noninteracting problem for which the series can
be resumed exactly, the NE GF and the Hershfield Y operator
approach provide the same result [16,17]. For an interacting
system, one must resort to approximations to partially resum
the series, and therefore the two approaches are similar only
when the same approximations are used.

The different GF in the central region can be obtained from
two correlation functions (i.e., the so-called lesser and greater
GF):

G<(t,t ′) = −i〈d†(t ′)d(t)〉,
(21)

G>(t,t ′) = i〈d(t)d†(t ′)〉,
where d† (d) creates (annihilates) an electron in the single level
of the central region and 〈· · · 〉 is the average over the proper
equilibrium or NE ensemble, as given in Eq. (3).

The other GFs, the advanced and retarded GFs, are obtained
from the combination of the lesser and greater components as

Gr/a(t,t ′) = ±θ [±(t − t ′)][G>(t,t ′) − G<(t,t ′)]. (22)

The interaction in the central region is obtained from a
perturbation expansion, via partial resummation of Feynmann
diagrams, and enters the definition of the GF via the self-energy

int in the Dyson equations of Gr,a and in the quantum kinetic
equations of G≶.

At equilibrium and in the steady state, all quantities depend
only on the time difference X(t,t ′) = X(t − t ′) and can be
Fourier transformed in a single-energy representation X(ω).

At equilibrium, from the relation G> − G< = Gr − Ga

and the Kubo, Martin, and Schwinger (KMS) condition
[30–34] G>(ω) = −eβ(ω−μeq)G<(ω), one recovers the conven-
tional relation

G< = −f eq(G> − G<) = −f eq(Gr − Ga), (23)

with f eq(ω) = [1 − G>/G<]−1 = [1 + eβ(ω−μeq)]−1 being the
equilibrium Fermi-Dirac distribution. The equilibrium KMS
condition arises from the fact that the statistical operator
e−βH looks formally like the time evolution operator e−iH t

if one works with imaginary time t ≡ −iβ. In general, for
any two operators A and B, the KMS relation is given by
〈A(t − iβ)B(t ′)〉 = 〈B(t ′)A(t)〉 [30–34].

In the NE steady state the situation is different. Even if
the steady state can be seen as a pseudoequilibrium state,
with a statistical operator e−β(H−Y ), the KMS relation is
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modified as follows: 〈A(t − iβ)B(t ′)〉 = 〈e−βY B(t ′)eβY A(t)〉.
Depending on the nature of the operator B, additional contri-
butions arise from the expansion e−βY BeβY = B + [−βY,B]
+ [−βY,[−βY,B]]/2! + · · · .

However, because of the intrinsic pseudoequilibrium nature
of the NE steady state, it is entirely justified to use the Gibbs-
like ensemble, provided by either the Hershfield or McLennan-
Zubarev method, to define the NE distribution f NE for the
relationship between the GFs in a similar way as done for
the equilibrium relation. That is, we can extend the formal
definition of the equilibrium distribution to the NE conditions,
i.e., the distribution f NE of the electron population in the NE
steady state [35–37]:

G<(ω) = −f NE(ω)[Gr (ω) − Ga(ω)], (24)

where we are now considering full NE GFs [38]. This is a
rigorous definition for the NE steady state, and not an ansatz.

With respect to Refs. [25,26,28], the NE distribution f NE

represents the statistics for the electron population of an open
quantum system, i.e., the central region (in the presence of
interaction) connected to the two reservoirs. It is not the “local”
equilibrium statistics of states scattering in and out of the
reservoirs which are themselves at their own equilibrium.

From the definition G< = Gr
<Ga , where the total self-
energy 
(ω) = 
L(ω) + 
R(ω) + 
int(ω) arises from the
contributions of the leads self-energy 
L,R and the self-energy

int of the interaction between particles, we can see that the
total self-energy follows as well the same statistics, i.e., 
< =
−f NE(
r − 
a). However, as we have clearly explained in
Ref. [39], there is no reason for each contribution 
L,R and

int to follow individually the same statistics.

From this point of view, we find a compact and universal
(with respect to the interaction) expression for the NE
distribution function f NE(ω):

f NE(ω) = f NE
0 (ω) − i
<

int(ω)/�L+R(ω)

1 + i
(

>

int − 
<
int

)
/�L+R

, (25)

where �L+R(ω) is the spectral function of the leads �L+R =∑
α=L,R i(
r

α − 
a
α), and 


≶
int are the lesser and greater

components of the interaction self-energy.
The function f NE

0 (ω) is the NE distribution for the non-
interacting case. It can be easily derived [17,35–37,40] as
the weighted average of the usual Fermi-Dirac distribution
functions fL,R(ω) of the left and right leads:

f NE
0 = [�L(ω)fL(ω) + �R(ω)fR(ω)] /�L+R(ω). (26)

The distribution f NE
0 (ω) is a double-step function, with more or

less steep steps (depending on the temperature) located around
ω = μL and ω = μR , and separated by μL − μR = eV (μα

being the chemical potential of the lead α = L,R and V the
applied bias). The use of such a distribution has already been
implemented in realistic calculations based on single-particle
elastic scattering [41].

The full NE distribution f NE can be decomposed into two
terms f NE(ω) = f̃ NE

0 (ω) + δf NE(ω); one corresponds to the
dynamically renormalized distribution f̃ NE

0 = f NE
0 (ω)/N (ω)

and the other is a “correction” term δf NE associated with the
inelastic processes and given by 
<

int renormalized by the same
factor N . The renormalization factor N (ω) is given by the

sum N (ω) = �L+R + i(
>
int − 
<

int) of the spectral functions
of the leads �L+R and of the interaction �int = i(
>

int − 
<
int) =

i(
r
int − 
a

int), and does not contain direct information of the
statistics of the system.

For local electron-phonon interaction in the central re-
gion, the interaction self-energy is given by 


F,≶
int (ω) =

γ 2
0 [NphG

≶(ω ∓ ω0) + (Nph + 1)G≶(ω ± ω0)] [42]. At low
temperature Nph = 0, and we can expand Eq. (25) as a series
expansion in terms of the electron-phonon coupling parameter
γ0. To lowest order, we find the following expression for the
NE distribution function:

f NE(ω)

∼ f NE
0 + 2πγ 2

0

�

{
A(ω + ω0)

[
1 − f NE

0 (ω)
]
f NE

0 (ω + ω0)

−A(ω − ω0)
[
1 − f NE

0 (ω − ω0)
]
f NE

0 (ω)
}
, (27)

where A(ω) is the spectral function of the central region,
i.e., A(ω) = (Ga − Gr )/i2π . The terms in γ 2

0 in Eq. (27)
are correction terms to the noninteracting distribution f NE

0 (ω)
and correspond to the lowest order contributions of the
electron-phonon interaction (i.e., phonon emission by electron
or hole in the presence of a finite bias). When they are
included in the expression of the current [43] they generate
an equivalent formulation of the lowest order treatment of
the perturbation approaches to electron-phonon interaction
provided in Refs. [44–46].

VI. CONCLUSION

We have demonstrated that the NE density matrix de-
veloped by Hershfield for the steady state has the form of
a McLennan-Zubarev nonequilibrium ensemble. According
to the McLennan-Zubarev NESOM and Hershfield methods,
the stationary density of an open system can be written
in the modified Gibbs form ρNE = e−β(H−Y )/Z, with the
nonequilibrium “correction term” Y . The operator Y that was
interpreted as the operator into which Y0 = ∑

i μiNi “evolves”
under the action of the perturbation W , is actually the entropy
production rate of the NE quantum system. It can be calculated
in the absence and in the presence of interaction and gives
information about the dissipation in the driven system.

The fact the both methods clearly show that a NE steady
state can be mapped onto an effective pseudoequilibrium state,
permits us to derive, in a rigorous way, NE quantities from the
formal expressions given at equilibrium [compare Eqs. (23)
and (24)]. We have derived an example of such quantities,
i.e., the NE distribution function for the electron population
in a scattering region connected to two reservoirs. Such a
NE distribution function describes the statistics of an open
quantum system in the NE steady-state regime. It is central
to the understanding of the NE physical properties of open
systems and to the derivation of NE thermodynamical laws,
such as NE fluctuation-dissipation relations [39], NE charge
susceptibility [37], or quantum entropy production.
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[11] C. Maes and K. Netočný, J. Math. Phys. 51, 015219 (2010).
[12] P. Bokes and R. W. Godby, Phys. Rev. B 68, 125414 (2003).
[13] P. Bokes, H. Mera, and R. W. Godby, Phys. Rev. B 72, 165425

(2005).
[14] Y. Wang and L. Kantorovich, Phys. Rev. B 76, 144304 (2007).
[15] S. Hershfield, Phys. Rev. Lett. 70, 2134 (1993).
[16] A. Schiller and S. Hershfield, Phys. Rev. B 51, 12896 (1995).
[17] A. Schiller and S. Hershfield, Phys. Rev. B 58, 14978

(1998).
[18] J. E. Han, Phys. Rev. B 73, 125319 (2006).
[19] J. E. Han, Phys. Rev. B 75, 125122 (2007).
[20] J. E. Han and R. J. Heary, Phys. Rev. Lett. 99, 236808 (2007).
[21] J. E. Han, Phys. Rev. B 81, 113106 (2010).
[22] J. E. Han, Phys. Rev. B 81, 245107 (2010).
[23] P. Dutt, J. Koch, J. Han, and K. L. Hur, Ann. Phys. 326, 2963

(2011).
[24] J. E. Han, A. Dirks, and T. Pruschke, Phys. Rev. B 86, 155130

(2012).
[25] T. N. Todorov, J. Hoekstra, and A. P. Sutton, Philos. Mag. B 80,

421 (2000).
[26] A. P. Sutton and T. N. Todorov, Mol. Phys. 102, 919

(2004).
[27] M. Di Ventra, Y.-C. Chen, and T. N. Todorov, Phys. Rev. Lett.

92, 176803 (2004).
[28] P. Hyldgaard, J. Phys.: Condens. Matter 24, 424219 (2012).

[29] There is a great amount of literature which deals with electron
transport in quantum junctions using NEGF methods; see, for
example, Refs. [47–49], and references therein.

[30] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[31] R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
[32] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods

of Quantum Field Theory in Statistical Physics (Dover, New
York, 1963).

[33] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-
Particle Systems (McGraw-Hill, New York, 1971).

[34] O. Bratteli and D. W. Robinson, Operator Algebras and
Quantum Statistical Mechanics 2: Equilibrium States. Models in
Quantum Statistical Mechanics (Springer-Verlag, Berlin, 1997).

[35] H. Ness, L. K. Dash, and R. W. Godby,
14th ETSF Workshop, Evora, Portugal, 2009
[http://www.tddft.org/ETSF2009/index.html] (unpublished).

[36] H. Ness, L. K. Dash, and R. W. Godby, Phys. Rev. B 82, 085426
(2010).

[37] H. Ness and L. K. Dash, Phys. Rev. Lett. 108, 126401 (2012).
[38] The generalization of the NE distribution to several levels in

the central region is done following the prescriptions given in
Appendix A of Ref. [36], i.e., G<

nm = −∑
l fnl(Gr

lm − Ga
lm). The

definition of f NE would then imply some matrix inversions.
[39] H. Ness and L. K. Dash (unpublished).
[40] S. Hershfield, J. H. Davies, and J. W. Wilkins, Phys. Rev. Lett.

67, 3720 (1991).
[41] E. Louis, J. A. Vergés, J. J. Palacios, A. J. Pérez-Jiménez, and
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