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Diffusion of small particles in a solid polymeric medium
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We analyze diffusion of small particles in a solid polymeric medium taking into account a short-range
particle-polymer interaction. The system is modeled by a particle diffusion on a ternary lattice where the sites
occupied by polymer segments are blocked, the ones forming the hull of the chains correspond to the places at
which the interaction takes place, and the rest are voids, in which the diffusion is free. In the absence of interaction
the diffusion coefficient shows only a weak dependence on the polymer chain length and its behavior strongly
resembles the usual site percolation. In the presence of interactions the diffusion coefficient (and especially
its temperature dependence) shows a nontrivial behavior depending on the sign of interaction and on whether
the voids and the hulls of the chains percolate or not. The temperature dependence may be Arrhenius-like or
strongly non-Arrhenius, depending on parameters. The analytical results obtained within the effective medium
approximation are in qualitative agreement with those of Monte Carlo simulations.
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I. INTRODUCTION

The literature treating the problem of diffusion of small
molecules in solid polymeric media is surprisingly limited
when compared with the huge amount of results obtained for
diffusion in solids in general. This is even more surprising if
one takes into account the enormous role polymeric materials
play as encapsulants and isolating materials in technical
devices. Diffusion of small molecules (mostly water, but also
ammonia) through encapsulant layers of photovoltaic modules
leads to the corrosion of the encapsulated elements and is one
of the processes limiting the endurance of such appliances. The
accelerated endurance tests often run at elevated temperatures
and use Arrhenius law for extrapolating the results. Thus the
temperature dependence of diffusion coefficient is of primary
interest. This can only be understood after a general picture of
small molecules’ diffusion in solid polymer matrices becomes
clear.

The thermodynamics of polymeric solutions and the
dynamics of polymers in solutions are well understood since
the seminal works by Flory [1] and Huggins [2]. The situation
usually considered is the one in which polymer molecules
constitute the solute of the solution. Only a few times have the
roles been inverted and polymers have been taken as solvent
molecules forming a matrix in which small solute particles are
allowed to diffuse. Early works done in this direction observe
the concentration dependence of the small solute diffusivity
through experimental adsorption and desorption curves [3,4],
analyze the diffusivity in the frequency domain [5], or consider
both particle and polymer matrix dynamics where the latter
is not assumed to be solid [6]. In particular, in [4], Fujita
concludes with the necessity of theoretical and experimental
investigations of the “characteristic differences”between the
cases of a good or bad solubility. Up to the authors’ knowledge,
this request has not been satisfied yet. The aim of the present
work is to give a partial answer by providing a qualitative
analysis of the way the particle-phobic or particle-philic nature
of the polymer chains affects the diffusion process.

In what follows we concentrate on a simple but still
nontrivial conceptual model. More specifically, we consider
a set of particles diffusing in an amorphous solid polymeric

medium, in a model being a close relative of a classical
Flory-Huggins model of polymer solutions. The dynamics of
polymer chains is neglected on the time scales of interest,
and the whole host system is considered as one with quenched
disorder. The polymer molecules act as impenetrable obstacles
for the small molecules, and the local interactions between
the molecules and the polymers lead either to attraction or
to repulsion between them. In the present work we adopt
the ternary lattice representation corresponding to a polymer-
solvent-void system close to the one proposed in Ref. [7]: in
the two variants of the model considered we take a site of a
lattice to represent a polymer segment, an interaction site in
the vicinity of a segment, or to be empty. The concentration of
solute molecules is considered low, and their interaction with
each other is neglected. Finite concentrations, giving rise to
nonlinear effects, could be easily included in the system, but
here we want to concentrate on the simpler situation in which
particles interact only with the host medium.

In the first variant of the model, polymers are represented
by chains of occupied sites and their nearest neighbors are
considered as interaction sites. Sites not belonging to either
of these two categories are considered as voids. This lattice
model is exactly the one we use in simulations. Although the
model situation discussed above can be readily simulated, its
analytical treatment (which may then be used for producing
estimates for situations different from the ones simulated) is
far from trivial even within the well-established mean-field
approximation. Here, several approximations have to be done.
Thus our analytical calculations refer to a simpler mean-
field Flory-Huggins-like model, built by disassembling the
chains and letting polymer segments, interaction, and empty
sites fill the space in a completely random fashion at given
concentrations. The situations are discussed in depth in Sec. II.
Details of analytical calculations are given in Sec. III with a
particular attention to the variations to be made with respect
to the conventional effective-medium technique. In Sec. IV
the interaction between the polymers and the small solute
molecules is temporarily switched off and the model is reduced
to a pure percolation problem in the presence of polymer
chains. This is done in order to estimate the error introduced by
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FIG. 1. (Color online) Ternary lattice of the initial model and
different kinds of cells with corresponding number concentrations
and energy values.

the mean-field approach and the dependence of the diffusion
coefficient on the chain length. Section V is devoted to the role
of interaction sites, and Sec. IV contains our conclusions.

II. MODEL

We model our solid polymeric matrix by a three-
dimensional cubic lattice on which the chains are modeled
as phantom random-walk chains of length l. This chain
conformation corresponds to the Gaussian nature of chains in
melts from which our solid matrix is obtained by quenching.
The whole matrix is considered as static: no chain motion is
taken into account. The whole system is then modeled by a
ternary random potential landscape. The corresponding lattice
is outlined in Fig. 1.

The sites occupied by polymer segments are impenetrable
for solute molecules (hard-core interaction, interaction energy
U = ∞) and represented as black sites in Fig. 1. The number
concentration of these sites is φ3 = M3/M , where M3 is their
total number and M is the volume (total number of sites) of
the lattice.

The particle-polymer interaction is considered to take place
only if the molecule occupies a site which is a nearest
neighbor of the one occupied by a polymer segment. The
particle-polymer interaction at these sites corresponds to the
interaction energy U = ε whose sign fixes the nature of
the force experienced by the particles: if ε is negative, this
interaction is attractive; if ε is positive, the interaction is
repulsive. These interaction sites are represented in red in Fig. 1
and their number concentration is φ2.

Remaining sites are considered as simple voids with energy
U = 0 where particles perform a free motion not being
subjected to any force. The number concentration of these
sites is φ1 = 1 − φ2 − φ3 and they are represented in white.

Our system is thus represented by a random (but correlated)
ternary lattice with the sites assigned energies Ui which take
the values 0,ε, or ∞ for the white, red, and black sites,
respectively. In this medium the small molecule diffusion is
numerically simulated as a nearest-neighbor random walk with
transition rates between the sites given by the corresponding
energy differences:

wij = w0e
− β

2 (Ui−Uj ). (1)

The constant rate w0 defining the time unit of the process is
set to unity in all simulations, β is the usual 1/KBT term, and
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FIG. 2. (Color online) Mean-field ternary lattice and different
kinds of cells with corresponding probabilities and energy values.

KB is the Boltzmann constant. Assuming the same Arrhenius
prefactors w0 for all transitions (those within white-white,
white-red, and red-red pairs) is of course a simplification
which is done in order to keep the total number of parameters
small. Assuming the bare rates different, i.e., introducing four
different transition rates for white-white, white-red, red-white,
and red-red transitions fulfilling the detailed balance condition,
would of course change exact expressions for g2 and g3 in
Eq. (7), but not the general picture of the process.

The analytical calculations are performed within a sim-
plified model which strongly resembles the classical Flory-
Huggins model ([1,2,7,8]) used for description of thermo-
dynamical properties of polymeric solutions, in which the
number concentrations of the sites occupied by polymer
segments is kept, but the correlations between their positions
(necessarily introduced by the existence of chains) are fully
neglected. This model corresponds to filling the lattice at
random with black, red, and white sites at given number
concentrations. In this way each lattice site is assigned an
energy value Ui which can take one of the three values 0,ε,
or ∞ at random, with probabilities φk . The existence of an
infinite cluster of black sites, which we need to preserve
the solidness of the system, is guaranteed by taking the
concentration φ3 above the percolation threshold, which is
known to be approximately 0.32 for the three-dimensional
simple cubic lattice. We denote this construction as mean-field
lattice and represent it in Fig. 2. The diffusion on this
mean-field lattice is then treated using the effective-medium
approximation for a diffusion in a random potential landscape,
as discussed in Sec. III. The mean-field–effective-medium
results are compared with the results of direct numerical
simulations discussed above, and show qualitatively similar
behavior.

III. EFFECTIVE-MEDIUM APPROXIMATION
FOR DIFFUSIVITY

The particles’ motion in a random potential landscape is
described via the usual master equation

q̇i =
∑

j

(wijqj − wjiqi), (2)

where qi is the probability for a particle to be at a site i

at time t and wij is the transition rate from site j to site i

given by Eq. (1) for j and i nearest neighbors and equal to
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zero otherwise. For the sake of generality calculations will be
referring to the d-dimensional case.

We multiply both sides of Eq. (2) by the number of particles
N and obtain the master equation for the site mean number or
“concentration” function ni = Nqi :

ṅi =
∑

j

(wijnj − wjini). (3)

Assuming the existence of an equilibrium state, the transition
rates are naturally linked through the detailed balance con-
dition at equilibrium wijn

0
j = wjin

0
i , where n0

i = Nq0
i and

q0
i ∝ exp (−βUi) is the equilibrium probability to find the

particle at site i. Thus one can introduce the symmetrized
rates gij being the properties of a bond of a lattice,

gij = wijn
0
j = wjin

0
i = gji = g0e

− β

2 (Ui+Uj ), (4)

with

g0 = Nw0

Z( �φ,ε)
, (5)

where Z( �φ,ε) is the normalization factor of q0
i (the partition

function for the small particles equilibrium distribution) and
�φ is the triplet (φ1,φ2,φ3). Then, the analogy between the
diffusion and the electric conduction in a random medium
can be used [9–11]: the corresponding diffusion coefficient
is connected with the macroscopic conductivity 〈g〉em of a
disordered lattice with bond conductivities gij via [11–14]

Dem = a2 〈g〉em〈
n0

i

〉 = a2 〈wji exp(−βUi)〉em
〈exp(−βUi)〉 , (6)

with a the lattice spacing set to unity in all simulations.
Our system exhibits four different bond conductivity values
depending on the color of the sites involved. These are

g1 = g0, g2 = g0e
−βε, g3 = g0e

−βε/2, g4 = 0. (7)

Figure 3 gives an overall view of this situation.
The effective conductivity 〈g〉em can then be calculated

within the effective-medium approximation (EMA). There is
however a subtlety in application of the effective-medium
approximation to site models like ours. The genuine continu-
ous EMA of Ref. [15] and its lattice variants Refs. [16,17]
describe well the behavior of the bond percolation model
but fail to reproduce the behavior for site percolation to
which our ternary model reduces when ε = 0. For the site
model, EMA procedures to obtain 〈g〉em were proposed by
Bernasconi and Wiesman in [18] and Yuge in [19]: in both

g1 = g0

g2 = g0e
−βε

g3 = g0e
−βε/2

} g4 = 0

FIG. 3. (Color online) Bond conductivities for the corresponding
site couples.

the usual effective-medium procedure is varied in order to
take into account the correlations between consecutive bonds
naturally arising in this kind of system. The fact that such
correlations arise is easily understandable when considering a
simple example: let us take three neighboring sites i, j , and
k, where i and k are two different nearest neighbors of j , and
consider the bonds ij and jk. If j is, say, white none of these
bonds can have conductivity g2 because both of them involve
the white site j , and their conductivities are not independent
as assumed in the bond-based approach, and the usual EMA
technique has to be appropriately changed. Our approach here
follows the lines of Ref. [19].

Calculations start by considering for any site of the lattice
possessing a color index α = 1,2,3 (corresponding to white,
red, and black, respectively) the mathematical expectation of
the conductivity ḡα of a bond starting from it:

ḡ1 = φ1g1 + φ2g3, ḡ2 = φ1g3 + φ2g2, ḡ3 = 0. (8)

These values appear in the system according to the probabili-
ties of their respective sites:

P (ḡ) =
3∑

α=1

φαδ(ḡ − ḡα). (9)

The effective conductivity is then obtained through the usual
self-consistency condition [16],〈

gem − ḡ

(d − 1)gem + ḡ

〉
P

= 0, (10)

where d is the dimension and 〈·〉P is the average with respect to
the distribution P above. If we now define a rescaled effective
conductivity,

fem = (d − 1)

g0
〈g〉em, (11)

and introduce the arithmetic mean and the φα-weighted
average of the quantity Ei = e−βUi/2,

E = 1
3 (1 + e−βε/2) and 〈E〉 = φ1 + φ2e

−βε/2, (12)

Eq. (10) reduces to a quadratic equation for fem,

f 2
em + b( �φ,ε)fem + c( �φ,ε) = 0, (13)

with

b( �φ,ε) = 〈E〉(3E − d〈E〉),
c( �φ,ε) = 〈E〉2(1 − d(1 − φ3))e−βε/2.

The value of Dem follows from the solution of this equation
via

Dem = a2〈g〉em
〈n0

i 〉
= a2w0

fem

(d − 1)(φ1 + φ2e−βε)

= D0D̃d ( �φ,ε), (14)

where D0 = a2w0 is the diffusivity of a lattice where all sites
are white and

D̃d ( �φ,ε) = fem

(d − 1)(φ1 + φ2e−βε)
= Dem

D0
(15)

is a normalized effective diffusivity which is due to the
presence of the energy landscape.
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The critical threshold at which Dem vanishes can be
obtained by setting c( �φ,ε) = 0,

φc
3 = 1 − 1/d. (16)

At variance with a classical binary Flory-Huggins situation,
where the connectedness of the molecules could be disregarded
to a large extent, the presence of the molecules does matter
here, since it leads to a redistribution of empty sites between the
red and white classes. The problem of distribution of the sites
between these two classes (i.e., the one of finding φ1 and φ2 as
functions of a given parameter φ3, the polymer density) in sys-
tems with chains is a complex problem of statistical geometry,
which, up to our knowledge, was never approached. We can
however separate this geometrical problem (which we leave for
further investigation) from the problem of the diffusion. Thus
we first simulate our polymer model and extract the numerical
values of φ1 and φ2 from these simulations. These numerical
values are then used in the corresponding EMA calculations,
whose predictions (for example, with respect to temperature
dependence of the diffusion coefficient), in their turn, are
(favorably) compared with the results of simulations of
diffusion.

To get a flavor of the problem, let us first consider the
situation in which the black sites are not connected into chains,
but randomly distributed in the system (simple Bernoulli
percolation, but now with interactions between the solute and
the black matrix) on a cubic lattice with connectivity C = 6.
This case leads to a relatively simple behavior. Black sites are
randomly distributed on the lattice, and the probability that a
given site is black is exactly φ3; this φ3 is the control parameter
of the model. The site is white if it itself and none of its nearest
neighbors is black, so that the concentration of the white sites is

φ1 = (1 − φ3)C+1. (17)

The sites which are not black or white are red, so that the
concentration of red sites is

φ2 = (1 − φ3) − (1 − φ3)C+1. (18)

Thus φ1 is a monotonously decaying function of φ3, and φ2

shows a pronounced maximum at

φ3 = 1 − 1

(C + 1)1/C
. (19)

The parameter γ = φ1/(1 − φ3), which will be repeatedly
used in what follows [see Eqs. (23) and (24)], is thus given by
γ = (1 − φ3)C and is a monotonously decaying function of φ3.

The presence of the chains reduces the total number of
available sites being neighbors of the black ones. If the
molecules would follow parallel straight lines, the effective
number of potentially available neighbors of black sites will
be reduced to 4, so that C = 4 would have to be taken in the
previous equation.

The numerical simulations show that the existence of the
chains does matter even more. The fact that the molecules
are wiggled, and the possibility of their intersection, reduces
the effective values of C almost down to 2. This is made evident
in Fig. 4 where the results from Eqs. (17) and (18) are plotted
versus the black concentration φ3 together with the values of
φ1 and φ2 measured in simulations.
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FIG. 4. (Color online) Red and white sites’ concentrations in the
system of chains and in the uncorrelated model. For φ1 (black dashed
line) and for φ2 (black solid line), as well as results for uncorrelated
site model: φ1 as given by Eq. (17) (blue dotted line) and φ2 from
Eq. (18) (red dash-dotted line).

It is furthermore possible to estimate an approximate value
for the effective exponent C as following from simulations.
The theoretical value of the black concentration φ̄3 at which
white and red sites are equally distributed can be easily found
by equating (17) and (18). This gives

φ̄3 = 1 − 1

21/C
(� 0.11 for a cubic lattice). (20)

The simulation results in Fig. 4 lead to a larger value of
φ̄3 � 0.25. Therefore, the value of C as obtained by inverting
Eq. (20) is as low as

C = − ln 2

ln(1 − φ̄3)
� 2.41. (21)

IV. PURE PERCOLATION (BINARY) MODEL

It would be nice to know how large is the typical error
arising from disregarding the chain structure of black sites,
and what is the role the chain length plays in the simplest case,
namely in a percolation model with correlated black sites given
by the chains. In this model the red and the white sites are
indistinguishable; they have the total number concentration
φ1 = 1 − φ3, and the result of our previous consideration
reduces to the original Yuge’s result for site percolation. This
is exactly the situation discussed in the present section.

Thus we consider a pure percolation situation in which the
only interactions are the excluded volume ones and our lattice
consists of only black and white sites; red ones are absent.
The results of simulations for the systems of chains of different
lengths are shown in Fig. 5(a). The figure representing the
dependence of the diffusion coefficient on the concentration
of sites occupied by segments of the chain shows this for
the chain lengths from l = 1 (usual Bernoulli site percolation
problem) to l = 10. The simulations were performed also
for longer chains, but for l larger than 10 the corresponding
graphs are indistinguishable from that for l = 10 within the
statistical accuracy. Thus a result for l = 100 (not shown) is
indistinguishable from the one for l = 10 on the scales of
Fig. 5(a).
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FIG. 5. (Color online) (a) Normalized diffusivities D̃3 in the purely percolation case vs the concentration φ1 of white sites; (b) rescaled
normalized diffusivities D̃′

3 vs rescaled white concentration φ′
1. The dotted line represents in both figures the effective medium approximation.

Details about simulations are readily given: simple random
walks of l steps are let run independently in a lattice of 4003

sites with periodic boundary conditions. This operation is
stopped when the total concentration of segments (sites visited
at least once) is within 0.01 from the desired value of φ3.
Once the environment is created, 106 random walks of 103

to 104 steps, depending on the speed of homogenization of
the system, are launched from a free site chosen at random
in a cube of 503 sites placed in the center of the medium.
With this choice, the probability for a diffusing particle to
reach the borders of the lattice is extremely low and doesn’t
spoil the statistics. The algorithm used is the Monte Carlo
Blind Ant one. The whole procedure is then repeated for 10
different lattice realizations and averages are taken. We have
observed a normal diffusion process 〈r2(t)〉 ∝ t from which the
proportionality constant D̃3 has been extracted and reported
in Fig. 5(a). The homogenization of 〈r2(t)〉 slows down in
the proximity of the critical point. For this reason 104 time
steps become insufficient and the diffusivity is systematically
overestimated. Our attention, however, is focused on a range
of values of φ3 which are above the percolation threshold.

The curves do not differ drastically, but definitely show
different percolation thresholds φc

1(l) depending on l. For the
Bernoulli case the total behavior of diffusivity is reproduced
sufficiently well by EMA for φ3 close to unity but departs
from the EMA line for concentrations close to a critical one.
For longer chains the critical concentration gets lower, and
the diffusion coefficient at given φ1 gets larger than for the
Bernoulli case. Although different, the curves, however, show
a large amount of universality which is unveiled when rescaling
the concentration and diffusivity according to

φ′
1 = φ1

φc
1

− 1 and D̃′
3 = D̃3

(
1 − φc

1

)
φc

1

, (22)

so that the critical concentration is mapped onto the point
φ′

1 = 0; see Fig. 5(b). In this case all the curves fall onto
the same master curve, and the mean-field result, rescaled

accordingly, gives a straight line (of slope 1) which reproduces
the results of simulations astonishingly well up to the critical
domain. This high degree of universality shows that the
correlations introduced by the existence of the chains are not
of high importance and can be fully accounted for by rescaling
the results of EMA according to the equations above. The cor-
responding critical concentration has, however, to be obtained
numerically. Alternatively, it can be extrapolated from the
slope of diffusion coefficient for concentrations close to unity.

V. RESULTS FOR TERNARY MODEL

In this section we discuss results for the normalized
effective diffusivity D̃3( �φ,ε) and concentrate on the role of
interaction energy ε between the diffusing particles and the
polymer matrix. All the figures refer to the three-dimensional
case. The reduced interaction energy βε = ε̄ is chosen to span
in the interval [−5,5] according to the following reasoning:
typical absolute values of εXX/KB , the coupling strength of
a Lennard-Jones potential describing the interaction between
two atoms of the same kind X, can be roughly enclosed in the
interval corresponding to temperatures [0,500 K] [20–22]. In
order to consider the interaction between two different atoms
X and Y , the Lorentz-Berthelot mixing rule is used to obtain
εXY = √

εXXεYY which, being an average, belongs to the same
interval. Using ε in place of εXY , considering both positive
and negative values and taking the temperature not too far
from the ambient one, it is straightforward to see that the
choice ε̄ ∈ [−5,5] is a reasonable one. For the discussion of
the Arrhenius or non-Arrhenius temperature dependencies in
Sec. V B broader bounds are used: ε̄ ∈ [−10,10].

A. Effective diffusivity vs interaction energy

Let us first discuss general features of the dependence
of the diffusion coefficient on number concentrations and
on interaction energy ε. The EMA results for D̃3( �φ,ε) in
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FIG. 6. (Color online) EMA normalized effective diffusivity D̃3 vs ε̄ in the cases φ3 = 0, 0.2, and 0.4 and (a) γ = 1/2, (b) γ = 1/4, and
(c) γ = 3/4.

the three different cases corresponding to different relations
between φ1 and φ2 at φ3 fixed are shown in Fig. 6. These plots
show the behavior for the attractive and repulsive interaction
and the way the diffusivity approaches zero when the black
sites concentration approaches its critical value φc

3 = 2/3 [see
Eq. (16)]. At this value, in fact, particles remain confined
in finite subregions of the system, due to the overwhelming
predominance of polymer segments.

Plots are given for three different sets of the φk values
in order to consider symmetrically the situations in which
red sites are in minority, equally probable, or predominant
with respect to the white ones, at given φ3. For this purpose
we introduce the real parameter γ ∈ [0,1] we previously
mentioned, and define the number concentrations of white
and red sites as

φ1 = γ (1 − φ3), (23)

φ2 = (1 − γ )(1 − φ3). (24)

Graphs are then taken for three different values of γ (color
online): γ = 1/4 (red dashed lines, φ2 > φ1), γ = 1/2 (green
dotted lines, φ2 = φ1), and γ = 3/4 (blue dash-dotted lines,
φ2 < φ1).

This imbalance will deeply influence the behavior of the
effective diffusivity when ε crosses the zero value. In the
symmetric case φ2 = φ1, D̃3 is invariant under the change
of the sign of interaction energy ε̄ → −ε̄. On the contrary,
when the white-red balance is broken, the effective diffusivity

decreases or increases depending on the sign of the energy
parameter and on the value of γ .

To better explain, let us consider the situation in which
φ2 > φ1 [e.g., γ = 1/4, Fig. 6(b), red solid lines] and restrict
our attention to the attractive ε̄ < 0 region; with this choice of
the parameters, we have increased the number of the red-red g2

bonds (showing larger conductivity) with respect to the number
of the white-white g0 ones which have the lowest conductivity.
This results in a global increasing of the effective diffusion
constant. If we now invert the sign of ε, i.e., consider the
repulsive interaction, the g2 bonds are still the most numerous,
but now they bring the lowest conductivity value, decreasing
in this way the whole diffusivity of the system. The opposite
happens if we consider φ2 < φ1 and the corresponding graph
in Fig. 6(c) results in a mirror image of the one in Fig. 6(b).

The comparison between the mean-field calculations and
the Monte Carlo simulations performed in the original ternary
lattice with the chain length l = 100 is quite satisfactory
(Fig. 7). Once the desired polymer concentration was reached
and the polymer matrix is set up, the energy value ε is
assigned to all the nearest neighbors of the segments and their
concentration φ2 is measured. All results are averaged over
10 realizations of the polymeric matrix. In each of them 106

random walks of 104 steps are performed as described above.
Representative samples corresponding to the cases φ2 > φ1,

φ2 � φ1, and φ2 < φ1, namely, the red, green, and blue ones,
were found according to the suggestions of Fig. 4, giving
the concentration values reported in Fig. 7. The numerical
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FIG. 7. (Color online) Comparison between theory and simulations (black solid line) in the following cases: (a) φ1 = 0.39, φ2 = 0.37,
φ3 = 0.24 (γ = 0.513 158); (b) φ1 = 0.18, φ2 = 0.43, φ3 = 0.39 (γ = 0.295 082); (c) φ1 = 0.59, φ2 = 0.27, φ3 = 0.14 (γ = 0.686 047).
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FIG. 8. (Color online) Arrhenius plots of the different EMA
normalized effective diffusivities vs ε̄ at φ3 = 0.4 and γ = 1/4
(red dashed line), γ = 1/2 (green dotted line), and γ = 3/4 (blue
dash-dotted line).

result is plotted together with the mean-field calculations in
which the same values are used. We note that the value of
the polymer concentration is close to the critical domain in
Fig. 7(b) corresponding to ε = 0, so that the total accuracy
of EMA is not too high in this domain. However, the EMA
results reproduce the dependence qualitatively well and, more-
over, the accuracy of EMA improves for higher interaction
strengths.

B. Arrhenius vs non-Arrhenius behavior

A nontrivial aspect of the dependence of diffusivity on the
interaction strength is revealed by the Arrhenius plots shown
in Fig. 8 where the logarithm of D̃3 is plotted as a function
of ε̄ = ε/KBT in the wider interval [−10,10] to investigate
the role played by activation in the diffusion process; the
segment concentration is set here to φ3 = 0.4. The three curves
correspond to the values of γ = 1/4 (red dashed line), γ = 1/2
(green dotted line), and γ = 3/4 (blue dash-dotted line). As
in the previous figures, the curve for γ = 1/2 represents an
even function of ε̄, and the curves for γ = 1/4 and γ = 3/4
are mirror images of each other. For ε̄ close to zero, the
activation process is not relevant, the curves fall together
and reproduce the diffusion constant in the black-and-white
lattice of Sec. IV. When moving away from the ε̄ = 0 value,

the activation acquires importance. For γ = 1/2 this behavior
becomes Arrhenius-like and the curve shows a linear decay
for both signs of ε̄ provided the interaction is strong enough.
For asymmetric cases γ �= 1/2 the Arrhenius behavior is seen
only for interaction energy of the corresponding sign (attractive
interaction for γ < 1/2 and repulsive interaction for γ > 1/2).
For the opposite sign of interaction, at low temperatures, or
high absolute values of ε, the lines become horizontal, quitting
the Arrhenius regime.

This non-Arrhenius behavior can be explained as follows.
Let us focus our attention again on the red (dashed) line
in the negative ε̄ half-plane. Under segment concentration
φ3 = 0.4 the black infinite cluster exists but is not dense
enough to prevent the existence of infinite white or red ones.
The concentration of red sites is φ2 = 0.45 (γ = 1/4) and
thus lays above the percolation threshold for a cubic lattice.
This means that red sites form an infinite cluster crossing the
whole system, and once a particle finds it, it becomes more
probable to travel along it than escape from it by activation.
As a consequence diffusivity saturates and the system never
freezes. In the repulsive region, the same behavior is shown by
the blue (dash-dotted) line, indicating the existence of a white
infinite cluster.

The green (dotted) line, the one for symmetric situation
φ3 = 0.4, φ2 = φ1 = 0.3, doesn’t show any saturation. This
suggests that in such a case white and red concentrations are
below the percolation threshold, and the activation processes
are necessary to traverse the system.

Figure 9 shows the comparison between theory and simu-
lation Arrhenius plots in the original interval ε̄ ∈ [−5,5] and
for the same concentration values of Fig. 7.

On the total the following regimes of behavior can be
qualitatively distinguished.

(1) If the concentration of black sites is so high that
percolation on red and white sites is not possible, the diffusion
coefficient vanishes.

In the case when percolation over the red-and-white
domains is possible, the diffusion coefficient is nonzero, and
its behavior as a function of temperature depends on the
percolation properties of red and white clusters, and on the
sign of interaction energy.

If the interaction is repulsive, two regimes appear as
follows.
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FIG. 9. (Color online) Comparison between theory and simulation (black solid lines) Arrhenius plots at (a) φ1 = 0.39, φ2 = 0.37, φ3 =
0.24 (γ = 0.513 158, φ2 � φ1), (b) φ1 = 0.18, φ2 = 0.43, φ3 = 0.39 (γ = 0.295 082, φ2 > φ1), and (c) φ1 = 0.59, φ2 = 0.27, φ3 = 0.14 (γ =
0.686 047, φ2 < φ1).
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normalized diffusivity in the attractive case vs ε̄ for different segment
concentrations.

(2) If white sites percolate, the diffusion over the white
cluster is always possible and does not need activation. The
temperature dependence saturates.

(3) If white clusters do not percolate, the diffusion is only
possible over red sites, and involves an activation process; its
temperature dependence shows the Arrhenius behavior.

In the case of attractive interaction the roles of white
and red sites interchange, and percolation over red sites is
what determines the temperature dependence of the diffusion
coefficient as follows.

(4) If red sites do percolate, the diffusion over the red cluster
is possible and does not need activation. The temperature
dependence saturates.

(5) If red clusters do not percolate, the diffusion has to go
via white sites, and therefore involves an activation process;
its temperature dependence shows the Arrhenius behavior.

These features, predicted by EMA, have also been found in
simulations of a genuine ternary lattice in which red clusters
run clung on the black chains by construction. Figure 10 shows

the behavior of Arrhenius plots for low polymer concentrations
in the case of attractive interaction. It shows the logarithm of
the normalized effective diffusivity for different values of φ3.
For φ3 < 0.06, polymers remain sparse and isolated, their red
perimeter sites don’t percolate, no infinite red cluster exists,
and the system is in an Arrhenius regime (5). When the number
of chains is increased, the transition from the Arrhenius to
the saturation behavior (4) is observed at the critical value
φ3 = 0.06, revealing the emergence of an infinite red cluster.
This critical value is far below the usual percolation threshold
of a cubic lattice due to the fact that red sites are arranged
in connected groups on the perimeters of black chains. This
number cannot be predicted by simple EMA and can be
translated into an estimate of the percolation threshold of
perimeter sites of chains.

VI. CONCLUSIONS

We have considered diffusion of small molecules in a solid
polymeric medium taking into account the interaction between
polymers and diffusing particles which can be both attractive
or repulsive. The diffusivity has been analyzed from different
perspectives both analytically, using a modified effective-
medium approximation, and numerically by performing direct
Monte Carlo simulations. While the diffusivity is only slightly
affected by the chain’s length, its temperature dependence
crucially depends on the kind of interaction. This behavior
depends on the sign of the interaction energy and is related
to the existence of a percolating cluster of interaction sites
surrounding polymer segments and/or a percolating cluster of
voids on which particles are free to travel without activation.

ACKNOWLEDGMENT

The work was supported by BMU within the project
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