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Stochastic Pooling Networks (SPNs) are a useful model for understanding and explaining how naturally
occurring encoding of stochastic processes can occur in sensor systems ranging from macroscopic social networks
to neuron populations and nanoscale electronics. Due to the interaction of nonlinearity, random noise, and
redundancy, SPNs support various unexpected emergent features, such as suprathreshold stochastic resonance, but
most existing mathematical results are restricted to the simplest case where all sensors in a network are identical.
Nevertheless, numerical results on information transmission have shown that in the presence of independent
noise, the optimal configuration of a SPN is such that there should be partial heterogeneity in sensor parameters,
such that the optimal solution includes clusters of identical sensors, where each cluster has different parameter
values. In this paper, we consider a SPN model of a binary hypothesis detection task and show mathematically that
the optimal solution for a specific bound on detection performance is also given by clustered heterogeneity, such
that measurements made by sensors with identical parameters either should all be excluded from the detection
decision or all included. We also derive an algorithm for numerically finding the optimal solution and illustrate its
utility with several examples, including a model of parallel sensory neurons with Poisson firing characteristics.
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I. INTRODUCTION

Stochastic pooling networks (SPN) [1–3] are systems that
comprise the following aspects: (i) a common input signal to
multiple parallel sensors is independently corrupted by noise,
either before arriving at the sensor or due to the sensor’s
physical limitations; (ii) these noisy measurements are also
nonlinearly compressed by each sensor; (iii) the resulting
measurements are communicated across a common physical
channel that combines them into a single measurement, in
such a way that this “pooling” causes no (or negligible)
further loss of information about the network’s input signal,
in comparison with the optimal performance that could be
achieved by using all individual sensor measurements [2]. The
notion was originally suggested in Ref. [1].

Unlike many other kinds of networks, communication in a
SPN flows from a source common to all nodes in a sensor
network, in a single direction to a receiver (Fig. 1). It is,
therefore, similar to the “refining sensor network” concept
discussed by Ref. [4]. We also restrict attention to cases
where neither the sensors’ attributes, nor the pooling of
measurements, can be controlled or designed, such as when
they are biological sensory neurons. The idea of a stochastic
pooling network originated from models that attempt to
extract principles about processing in biological neuronal
populations [5,6]. There were, therefore, two reasons for
introducing the concept: (i) as a model with utility in explaining
and predicting computational principles in biological brains;
and (ii) as a guide to designing engineered sensor networks.
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The material in Ref. [2] was focused on a number of
surprising emergent properties that arise in SPNs, due to the
interaction between random noise with lossy compression and
redundancy. For instance it has been demonstrated that pooling
in SPNs can lead to optimal (or close to optimal) measurement
fusion [2]. Also, the specific case of a binary-node SPN has
been extensively studied in the context of suprathreshold
stochastic resonance [5–13]. The focus in such work has
been on how the performance of the network changes with
changing noise conditions, since stochastic resonance is said
to occur when performance is maximized by some nonzero
noise level [14–16].

Here, we consider a SPN model that arises, for example,
in communications theory, in the form of a distributed
detection network with a multiaccess channel (MAC) [17–19].
The MAC setup differs from information theoretic ones,
where the sensors can code their measurements into long
blocks of data. For example, see Refs. [4,20] for discussion
about several information theoretic approaches to studying
distributed sensor networks, where the ability to design aspects
of the system is assumed.

Prominent aspects of the MAC model include: (i) multiple
parallel sensors that make independent noisy observations
of the same information source; (ii) local processing—e.g.,
quantization and modulation—within each sensor; (iii) each
sensor communicates its processed data over a common
channel such that the network output is the sum of each
sensor’s messages. The problem of when to select sensors in
networks such as this has recently been studied from several
perspectives [19,21]. A specific case of a SPN investigated
in Ref. [22] is nearly equivalent to the MAC detection
model. Thus, we are partially motivated to investigate puzzling
optimization results in Ref. [22] that imply that superior
detection is achieved when some sensor measurements are
excluded from processing and that those sensors should be
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FIG. 1. Stochastic pooling network consisting of classes of
identical sensors or neurons and pooling by summation of sensor
outputs. Variables are defined in the text.

“switched” off, so as not to contribute to a detection decision.
We note that there might be potential applications of this work
in fluctuation-enhanced sensing [23] or in understanding how
biological sensory systems make efficient use of their inherent
redundancy [24].

This paper is organized as follows. In Sec. II we introduce
notation and an objective function, which we seek to maximize
by optimally selecting sensors for inclusion in a SPN. Several
theorems and corollaries are provided in the Appendix that
enable this section to conclude with a mathematical statement
that sensors with identical attributes should either all be
selected for inclusion or all excluded. Following this, in
Sec. III, we state an algorithm that enables efficient numerical
optimization of an arbitrary SPN of the form described in
Sec. II. Section IV contains some examples that illustrate the
use of the algorithm we derive. Next, Sec. V proposes some
applications of this work and discusses the implications and
assumptions of the derivation and results. Finally, Sec. VI
introduces some possible generalizations of the results pre-
sented in this paper.

II. PROBLEM FORMULATION

A. Modeling binary detection in a stochastic pooling network

We assume a known number of sensors simultaneously
sense an independently noisy sample of a common signal.
We assume this signal consists of iid samples from a random

variable, X. We write particular samples from the random
variable as x and refer to x as the common input signal to all
sensors.

We are interested in the case where there is a finite number
of classes of sensors, such that within each class, each sensor
has identical characteristics (defined mathematically below).
Let S denote the set of all classes. Each class is associated
with an integer index so that S = {1,2, . . . ,|S|}, where |S| is
the cardinality of the set S. Let Ni (i ∈ S) denote the total
number of sensors that belong to the ith class, and let the total
number of sensors be N = ∑|S|

i=1 Ni . We introduce indices
(i,j ) as subscript notation to label sensors by class and within
classes; i ∈ S denotes which class the sensor belongs to and
j ∈ {1,2, . . . ,Ni} is the sensor’s index in its class.

We also assume the signal, x, is corrupted by independent
additive random sensor noise, with values ηi,j , so that
sensor (i,j ) observes yi,j = x + ηi,j . Each sensor produces a
response ui,j = fi,j (x + ηi,j ) and communicates this through
a multiaccess channel that, by definition, pools the responses.
The function fi,j (·) represents each sensor’s local processing
of its inputs; all sensors within a class have the same fi,j (·).
We assume the pooling function is one that simply sums the N

individual sensor communications but that the pooled sum is
subject to independent additive channel noise, ηo, with mean
ξo and variance σ 2

o . We denote the observed SPN output as the
signal w = z + ηo, where z = ∑|S|

i=1

∑Ni

j=1 ui,j .
For a binary hypothesis task, the random variable X is

binary. We therefore label two hypotheses, H0 and H1, such
that the common input to the network, x, equals s1 when H1

is true and equals s0 when H0 is true (we assume s1 > s0 and
s0,s1 ∈ R). We denote the prior probabilities for H1 and H0 by
P1 and P0 = 1 − P1, respectively.

B. Measuring detection performance using
Mahalanobis distance

We assume that the goal is to minimize the Bayesian
probability of error with respect to correctly deciding which
hypothesis is true, based on the network output, w. But,
because explicit expressions for this are difficult to find,
we instead aim to bound this measure. Let the network’s
output have conditional mean μ1, μ0 and variance �1, �0

under H1 and H0, respectively. The Mahalanobis distance is
defined [25] as

� :=
√

(μ1 − μ0)2

P1�1 + P0�0
. (1)

Maximizing � is equivalent to minimizing an upper bound on
the error probability [26]. Note that we have previously studied
a similar problem using a related metric [19]. However, in that
work, there was no such relationship between error probability
and the metric used, nor did we derive an algorithm that enables
efficient numerical solutions.

We can write the conditional mean of the network output w

given each hypothesis (m = 0,1) in terms of z and the channel
noise mean and variance as μm = E[w|Hm] = E[z|Hm] +
ξo, and the conditional variance as �m = var[w|Hm] =
var[z|Hm] + σ 2

o , since ηo is independent of z. Since
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z = ∑|S|
i=1

∑Ni

j=1 ui,j , we have

E[z|Hm] =
|S|∑
i=1

Ni∑
j=1

E[ui,j |Hm]. (2)

We have defined classes such that all sensors within a class
have the same conditional mean and variance. Let us denote
the conditional mean response for a sensor in class i under
hypothesis m as ūm

i , and the conditional variance of its response
as v̄m

i .
Recall we assume that s1 > s0. Similarly, we assume ū1

i >

ū0
i , so that the mean response of each sensor under H1 is greater

than the mean response of each sensor under H0.
Note that due to the independence of the additive noise

signals, the responses of each sensor are independent when
conditioned on a hypothesis. Therefore, we can write

E[z|Hm] =
|S|∑
i=1

Niū
m
i , var[z|Hm] =

|S|∑
i=1

Niv̄
m
i . (3)

We introduce several vectors: N = [N1, . . . ,N|S|]�, μm :=
[ūm

1 , . . . ,ūm
|S|]

�, vm := [v̄m
1 , . . . ,v̄m

|S|]
�), a = μ1 − μ0, and

b = P0v0 + P1v1. The Mahalanobis distance can be expressed
as

� =
√

(a�N)2

b�N + σ 2
o

. (4)

We assume that v̄m
i > 0 for all i, which forces bi > 0 for all i.

Since ū1
i > ū0

i , we have ai > 0 ∀i.

C. Optimizing performance by inclusion or exclusion of sensors

The Mahalanobis distance may be increased or decreased
if the number of sensors in any class are changed. We assume
that a larger control system may adaptively modify the number
of sensors by switching them on or off, depending on whether
they increase the Mahalanbis distance. It is therefore of interest
to determine the optimal selection of sensors, in terms of the
number in each class that should be switched on, given that Ni

are available for each class.
We therefore introduce a vector n = [n1, . . . ,n|S|]�, where

each element denotes the number of sensors in a class that are
switched on in a trial solution. The aim is to maximize � by
choosing the optimal vector n. We denote the optimal solution
as n∗.

The Mahalanobis distance can be expressed for any trial
solution n as

� =
√

(a�n)2

b�n + σ 2
o

. (5)

Since maximization of � is equivalent to maximizing �2, we
seek to solve the following optimization problem:

P1 : max
n

(a�n)2

b�n + σ 2
o

s.t. ni ∈ {0,1, . . . ,Ni} (i = 1, . . . ,|S|). (6)

We assume there exists at least one ai �= 0, so that the
maximum of P1 is greater than 0. We also assume that σo > 0,
which ensures at least one n∗

i > 0. Since the denominator of

the objective function is affine and the numerator is convex, the
objective function of P1 is also convex [27]. However, solving
P1 is not a trivial problem, because we need to maximize the
objective function instead of minimizing it and what makes it
more complicated is that the set of all feasible n is discrete.

However, in the Appendix we prove that the problem can be
manipulated in a way that leads to a polynomial-time solution
algorithm. This relies on the following result, that is proven in
the Appendix and stated as Corollary 2. A key aspect is the
consideration of the ratio bi/ai , i.e., the ratio of the ith element
of b to the ith element of a, where i = 1, . . . ,|S|. We restate
the Corollary here:

Corollary 2: The optimal solution to the original problem,
Problem P1, where sensors are classed into groups where all
ratios bi/ai are identical within that group, is such that all
sensors in a group are either all included or all excluded.

We now use this result to state an algorithm that enables
numerical solution of problem P1.

III. AN ALGORITHM FOR DETERMINING THE
OPTIMAL SOLUTION

Corollaries 1 and 2 proven in the Appendix suggest
the following polynomial time algorithm for finding the
optimal solution to problem P1. The order of complexity
of this algorithm is actually O[N log (N )], which is a direct
consequence of the requirement to use a sorting algorithm on
a vector of length N [28].

Algorithm 1.
(1) Evaluate all ratios bi

ai
for each class, i, and sort these in

ascending order.
(2) Set k = 1 and ni = 0 ∀i

(3) Loop until k = |S|
(a) Set ni = Ni for the k smallest ratios, and ni = 0

otherwise, and evaluate the resulting objective function, zk

from Problem P1.
(b) Set k = k + 1.

(4) Search all zk for the largest value. The index k∗ where
this occurs provides the optimal solution where n∗

i = Ni for
the k∗ smallest ratios and n∗

i = 0 otherwise.

IV. EXAMPLES

A. Example 1: local binary quantizing by each sensor,
Gaussian noise, and equiprobable hypotheses

We assume that each sensor operates on its inputs to produce
an output ui,j , with a binary quantizing function as follows:

ui,j = fi,j (x + ηi,j ) =
{

1, x + ηi,j � θi

0, x + ηi,j < θi,
(7)

where j = 1, . . ,Ni and i = 1, . . ,|S|.
Using this specific function, and a zero-mean Gaussian

noise assumption, we write the probability that the response
of any sensor in group i is ui,j = 1, given hypothesis 1 as

P11,i = 0.5 − 0.5erf

(
θi − s1√

2σi

)
(8)
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and the probability that the response of any sensor in group i

is ui,j = 1, given hypothesis 0 as

P10,i = 0.5 − 0.5erf

(
θi + s0√

2σi

)
, (9)

where erf(·) is the error function [29].
Assuming that the probabilities of each hypothesis are P0 =

P1 = 0.5, we can easily derive

bi

ai

= P10,i(1 − P10,i) + P11,i(1 − P11.i)

2(P11.i − P10.i)
, (10)

where i = 1,..,|S|. This result uses the fact that E[ui,j |x] =
P1m,i and var[ui,j |x] = P1m,i(1 − P1m,i) with m = 0,1.

1. Specific results 1

We consider a scenario with the following parameter
values:

(1) input states: s0 = −1 under hypothesis H0 and s1 = 1
under hypothesis H1;

(2) number of sensor groups: |S| = 3, with Ni identical for
all groups;

(3) Gaussian noise with variance σ 2
i = 1 for all sensors;

(4) output noise variance: σ 2
o = 10−20.

When all sensor groups are the same size, N , the Mahalanobis
distance, is proportional to the Mahalanobis distance obtained
when Ni = 1 ∀i, with σ 2

o being N times larger. We define �N

to represent the former and �1 to represent the latter, and it
is straightforward based on Eq. (4) to show that � = √

N�1.
Therefore, under the conditions of this example where σ 2

0 � 0,
we consider results for the case of Ni = 1 ∀i = 1,2,3.

In order to show how the number of sensors that should be
included varies with parameter values, we consider the case
where group 3 has a fixed threshold value of θ3 = 0.3 and
allow θ1 and θ2 to vary such that θ1 ∈ [−5,5] and θ2 ∈ [−5,5].

Figure 2 shows the optimal solution for this scenario, and
Fig. 3 shows the log of the resultant optimal value of the
Mahalanobis distance, �∗, divided by

√
N .
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FIG. 2. Optimal solution for which classes to include to maximize
the Mahalanobis distance, for the scenario in Sec. IV A1.
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FIG. 3. Maximum value of the objective function, �∗
1, for the

scenario in Sec. IV A1.

2. Specific results 2

We consider the same parameters as for the previous results,
except we now include larger output noise with variance σ 2

o =
0.015. The optimal solution is shown in Fig. 4. The increased
output noise has the effect of increasing the parameter range
over which it is optimal for all classes to be included. Indeed,
we found that for σ 2

o > 0.448, it was optimal to include all
classes for the conditions considered.

Note, however, that this result was for Ni = N = 1 ∀i. If
each of our three classes has larger N , then this is equivalent
to reducing the effective output noise from σ 2

o to σ 2
o /

√
N , and

N need not be very large for the optimal solution to approach
that for the absence of output noise.
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FIG. 4. Optimal solution for which classes to include to maximize
the Mahalanobis distance, for the scenario in Sec. IV A2.
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FIG. 5. Optimal solution for which classes to include to maximize
the Mahalanobis distance, for the linear sensor scenario in Sec. IV B.

B. Example 2: linear sensors with different
sensor noise variances

We consider now the case where ui,j = yi,j but where each
sensor group may have a different variance, σ 2

i , for the additive
input noise, ηi,j , on each of its sensors j = 1,..,Ni . We again
consider a scenario with s0 = −1 under hypothesis H0 and
s1 = 1 under hypothesis H1, |S| = 3, with Ni identical for all
groups, Gaussian input noise, and small output noise variance:
σ 2

o = 0.01.
We now vary the input noise variance for sensor classes

1 and 2 on [0,5] and fix the variance of class 3 to σ 2
3 = 5.

Figure 5 shows the optimal solution for this scenario. It is
optimal for class 3 to be excluded unless the variance for both
classes 1 and 2 are relatively high, and optimal to include only
class 1 or only class 2, where those classes’ variance are much
smaller than that of the other classes.

C. Example 3: A feedforward network of
Poisson neuron models

Suppose each sensor in a SPN is a Poisson neuron [30] with
a rate that depends on the sum of the common input signal
sample, x, and input noise that models synaptic noise. Then,
for binary X where we have the two hypotheses x = s0 and
x = s1, when conditioned on the hypothesis and the synaptic
noise, we may model the output of the j th neuron in the ith
class, ui,j , as distributed according to P[λi(x + ηi,j )], where
x = s0 or s1 according, respectively, to hypothesis 0 or 1, and
P represents the Poisson distribution.

We need to obtain the mean and variance of ui,j condi-
tionally to the hypothesis. When conditioned on the synaptic
noise and the hypothesis, the overall SPN output z is a Poisson
random variable, Z, with rate function given by

λZ =
|S|∑
i=1

Ni∑
j=1

λi(x + ηi,j ). (11)

Since Z is conditionally Poisson, λZ is also both the condi-
tional mean and conditional variance of Z, given x and the
noise. The mean and variance of Z, given the hypothesis, can
be calculated from this as follows:

E[Z|x] = Eη

⎡
⎣ |S|∑

i=1

Ni∑
j=1

λi(x + ηi,j )

⎤
⎦ . (12)

For the variance, we get

var[Z|x] = Eη[var[Z|x,η]] + varη[E[Z|x,η]] (13)

= Eη[λZ] + varη[λZ]. (14)

To go further, we have to choose a specific form for the
rate function, λi(·), for each sensor. We choose here, for
the sake of illustrating using an example with neuroscience
application, the limiting form of a sigmoid, or λi(y) = λ0 +
(λ1 − λ0)I(y − θi), where I is the indicator function, and θi

is a threshold value. Thus, neuron i fires at a rate λ1 if the
threshold θi is exceeded by the input, and at a lower rate λ0 � 0
in its rest state. This ensures ai > 0 ∀i. We set �λ = λ1 − λ0.
Under this model, the calculation of the ingredients entering
the Mahalanobis distance can be written explicitly.

Conditionally to η, the rate function is the sum of binary
independent random variables. We assume Gaussian noise,
and therefore we can use the notation from example 1 as
follows: λi(x + ni,j ) takes the value λ1 if x + ni,j > θi , and
this occurs with probability P1m,i , and the value λ0 with
probability P0m,i = 1 − P1m,i .

We obtain from this that the vector a has components
ai = �λ(P11,i − P10,i), and the vector b has the compo-
nents bi = λ0 + �λ

∑2
m=1 PmP1m,i[1 + �λ(1 − P1m,i)]. We

also find that

E[Z|x] = Nλ0 + �λ

|S|∑
i=1

NiP1m,i, (15)

var[Z|x] = Nλ0 + �λ

|S|∑
i=1

NiP1m,i

+ (�λ)2
|S|∑
i=1

NiP1m,i(1 − P1m,i). (16)

An example for the optimal solution for three classes with
different threshold levels is shown in Fig. 6. The parameter
values used for Fig. 6 are as follows:

(1) input states: s0 = −1 under hypothesis H0 and s1 = 1
under hypothesis H1;

(2) number of sensor groups: |S| = 3, with Ni identical for
all groups;

(3) Gaussian noise with variance σ 2
i = 0.5 for all sensors;

(4) Output noise variance σ 2
o = 10−20;

(5) Poisson rates λ0 = 1, λ1 = 3.
As with Example 1, we consider the case where group 3 has
a fixed threshold value, which in this case is θ3 = 3 and allow
θ1 and θ2 to vary such that θ1 ∈ [−5,5] and θ2 ∈ [−5,5].

V. DISCUSSION

We have demonstrated that although adding sensors will
generally enhance performance in a sensor network that
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FIG. 6. (Color online) Optimal solution for which classes to
include to maximize the Mahalanobis distance, for the Poisson neuron
population scenario in Sec. IV C.

employs parallel sensors whose measurements are pooled,
adding sensors with the wrong parameter values may diminish
performance, and it is superior to use fewer sensors by
excluding these. Our theorems lead to a criteria for deciding
whether to add or exclude sensors such that either all sensors
in a class of identical sensors should be included or all in the
class should be excluded.

Given that the sensor model we use has been applied
in simple neuronal network models, this result suggests
the possibility that the brain may benefit from selectively
inhibiting inputs from some sensory neurons during integration
of information. Alternatively, structural plasticity [31] could
potentially cause exclusion of responses from sensory neurons
through removal of synaptic connections between those
neurons and a pooling neuron. However, drawing conclusions
about real neurobiology will require more biophysically
realistic neuron models than those considered here, and that is
left for future work.

VI. EXTENSIONS

In this final section of this paper we discuss several possible
extensions to the work presented in this paper.

A. Constraining the maximum number of “on” sensors

It is straightforward to extend the optimization problem
considered above to include a constraint that limits the number
of sensor groups that should be switched on to some maximum
number. That is, we can add a constraint to problem P1

such that
∑|S|

i=1 ni � C < N . Inclusion of such a constraint
does not lead to any changes in the derivation of the sensor
group selection algorithm, since including it the Lagrangian
leads to very similar results to those of Theorem 2 and
its corollaries. The only change required in the algorithm
would be to exclude from the search for the maximum

value of zk any corresponding solutions that violate the
constraint.

B. Correlated sensor noise

The formulation contained in Ref. [22] differs from that
here, in that in Ref. [22], (i) each hypothesis is a Gaussian
distribution with different means, rather than constants; and
(ii) the performance measure is based on an output decision
threshold and probability of error. The first difference is
equivalent to assuming all sensors are subject to a common
noise signal, e.g., interference, in addition to iid sensor noise.
Despite these small differences, our results partially support
the numerical optimization results in Ref. [22], which show
that sometimes sensor classes should be removed. In future
work, we plan to examine whether the exact form of the
numerical optimization results considered in Ref. [22] is
dependent on the measure used.

However, regarding the problem description in Ref. [22], if
we attempt to generalize our results to the case of a common
noise source across all sensors, we obtain a more general
version of the problem solved above as follows.

The problem studied so far can be viewed as discriminating
between two deterministic stimuli, which are drawn randomly
according to the a priori probabilities P0 and P1. In a more
general setting, we can assume that each stimulus is also
randomly distributed. This can either model lack of perfect
knowledge or the presence of measurement noise. However, in
this context, the calculation performed earlier becomes invalid,
because the outputs of each sensor are no longer conditionally
independent, for a given hypothesis. The theory has to be
modified to take into account this fact. Indeed, if the input is
x + sm under Hm where x is some random variable, the uij are
conditionally independent to Hm and x but indeed dependent
when conditioned only on Hm.

We still have

E[z|Hm] =
|S|∑
i=1

Ni∑
j=1

E[uij |Hm] (17)

=
|S|∑
i=1

niū
m
i , (18)

where ūm
i = Eηi,m[ui(x,ηi)]. Here, we emphasize ηi is the

fluctuation or random element of the sensors of the ith class,
and x is the common observation distributed according to Pm,
where m = 0,1 is the hypothesis. To calculate the variance un-
der Hm, we use the well-known formula for the decomposition
of the variance var[z] = E[var[z|x]] + var[E[z|x]]. The first
calculation is the same as the calculation performed above,
except that we have to average over x as well. We have, using
conditional independence,

var[z|x,m] =
|S|∑
i=1

Ni∑
j=1

var[uij |x,m], (19)

and thus

E[var[z|x]] =
|S|∑
i=1

niv̄
m
i , (20)
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where v̄m
i = Exvarηi

[ui |x,m]. Now the last term is the variance
of the conditional mean. Let us write

E[z|x,Hm] =
|S|∑
i=1

Ni∑
j=1

E[uij |x,Hm] (21)

=
|S|∑
i=1

niui(x), (22)

where we have introduced um
i (x) = Eηi

[uij |x]. Thus, the
variance reads

var[E[z|x]] =
|S|∑
i=1

Ni∑
j=1

ninj cov[ui(x),uj (x)|Hm]. (23)

We now introduce the same notation as the first part of the
paper: a is the vector containing the differences ū1

i − ū0
i ; b

contains the terms P0v̄
0
i + P1v̄

1
i , and n contains the ni . Let

us introduce the covariance matrices 	m defined elementwise
by 	m

ij = cov[ui(x),uj (x)|Hm]. These matrices are obviously
positive semidefinite, as are the convex combination of the
matrices for m = 0,1. Let 	 = P0	

0 + P1	
1 be such a

combination. We then have for the Mahalanobis distance

� =
√

(a�n)2

n�	n + b�n
. (24)

This new form, however, is no longer convex. Nevertheless,
this form leads to the new optimization problem:

P4 : max
n

(a�n)2

n�	n + b�n + σ 2
o

s.t. ni ∈ {0,1} (i = 1, . . . ,N), (25)

where bi > 0 ∀i, and 	 is a covariance matrix, and thus is
positive semidefinite with 	i,j � 0 for all (i,j ).

The case we considered previously in this paper is a special
case where ai > 0 ∀i, and 	 = 0.

We assume there exists at least one ai �= 0, and therefore
n = 0 is never optimal. Note that we can write (a�n)2 =
n�An, where A = aa� is a square symmetric matrix that has a
single nonzero positive eigenvalue equal to |a|2. This follows
because the only nonzero eigenvalue of a matrix A1 such that
the only nonzero entry is a11 = |a|2 also has a single nonzero
eigenvalues equal to |a|2. Thus, A is positive semidefinite.

Suppose we relax this problem so that the constraints are
no longer integer to get

P4a : max
n

n�An
n�	n + b�n + σ 2

o

s.t. − ni � 0 (i = 1, . . . ,N),

ni − 1 � 0 (i = 1, . . . ,N). (26)

This problem is a fractional program written in standard
form [32,33]. A fractional program is classified as a concave-
convex fractional program (or simply concave fractional
program) if the numerator is concave and the denominator
and constraints are convex, where if the denominator is not
affine then the numerator must also be nonnegative [33]. Such
programs have been the subject of much study in the field
of fractional programming, since they can be converted into
concave programs [33].

However, here since the numerator and denominator are
both quadratic forms and the constraints form a convex set,
problemP4a is specifically a quadratic fractional program [33],
and since both quadratic forms involve positive semidefinite
matrices, we are maximizing the ratio of a convex function to
a convex function. This case of a quadratic fractional program
that cannot be converted into a concave-convex fractional
program has been studied recently [34–36].

Note also that the original integer program, P4, can also be
recast as a nonlinear program with polynomial constraints, as
studied by [37]:

P4b : min
n

−n�An
n�	n + b�n + σ 2

o

s.t. n2
i −ni = 0 (i = 1, . . . ,N). (27)

This problem is precisely one of the special cases studied by
Ref. [37], since the denominator of the objective function is a
positive real multivariate polynomial, and the numerator is a
twice continuously differentiable concave function.

Unfortunately, the inclusion of 	 in the problem makes the
solution method we derived invalid for problem P4. Recently
published work suggests two alternative algorithms for solving
this more general problem; the first is based on derivation of
a transformation of the problem that allows solution using
a method based on a form of branch-and-bound [34], and
the second is the method presented in Ref. [36], which is
based on the classical Dinkelbach method, combined with
integer programming. Although the latter method seems more
promising, because the problem solved in that paper is of
the form of the relaxed problem P4a , it is not clear how to
justify solving problem P4a as a proxy for solving problem
P4. Moreover, the method of Ref. [36] requires solving a
linear integer programming problem (the original noninteger
program is manipulated into an integer program), and integer
programming in general is NP-hard and may not readily enable
numerical solutions in reasonable runtimes.
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APPENDIX: SOLVING THE OPTIMAL SENSOR
SELECTION PROBLEM

The mathematical pathway to a solution is expressed more
readily if sensors are not grouped into classes. Therefore, we
introduce the vector m of length N , whose elements, mi ∈
{0,1}, represent whether sensor i is switched on or switched
off. In order to maintain the same notation for a and b, note
that we can assume without loss of generality that there are
as many classes as sensors, and so |S| = N and Ni = 1 ∀i for
the purposes of this section.

Through the same reasoning that led to stating problem
P1, re-expression in terms of m leads to the following integer
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programming problem:

P2 : max
m

(a�m)2

b�m + σ 2
o

s.t. mi ∈ {0,1} (i = 1, . . . ,N). (A1)

We consider a relaxed version of this nonlinear integer
program, namely the convex maximization problem:

P2a : max
m

(a�m)2

b�m + σ 2
o

s.t. − mi � 0 (i = 1, . . . ,N)

mi − 1 � 0 (i = 1, . . . ,N). (A2)

Since the objective function in P2 is convex, and the problem
is a maximization problem, the relaxed version P2a will be
optimized by the same optimal solution asP2, since the optimal
solution of a convex maximization with linear constraints is at
extreme points of the convex constraint set, and the extreme
points of the relaxed convex constraint set also consist of
ni ∈ {0,1}.

In order to reduce the solution space, we look for an
equivalent convex or linear problem. We can construct such
a problem, which while not directly solvable, does allow
derivation of conditions that suggest a polynomial time
solution algorithm for the original problem.

Let m∗ be the optimal solution to P2a and define β = a�m∗
(notice that β > 0 due to the assumption that at least one ai is
not equal to zero). We now construct a new problem

P3 : min b�x (A3)

s.t. a�x = β (A4)

−xi � 0 (i = 1, . . . ,N) (A5)

xi − 1 � 0 (i = 1, . . . ,N). (A6)

This problem can be thought of as one where the objective is to
solve Problem P2 by minimizing the denominator of Eq. (A2),
subject to the numerator being maximal.

We now state the following theorem.
Theorem 1. x = m∗ is the optimal solution to P3.
Proof. We shall now prove the theorem by contradiction.

Suppose there exists a x̄ �= m∗ such that constraint Eqs. (A4)
to (A6) are all satisfied (which implies that m = x̄ is feasible
for P2a) and b�x̄ < b�m∗. Then we have

(a�x̄)2

b�x̄ + σ 2
o

= β2

b�x̄ + σ 2
o

= (a�m∗)2

b�x̄ + σ 2
o

>
(a�m∗)2

b�m∗ + σ 2
o

,

(A7)

which means that m∗ is not an optimal solution to P2a . This
contradicts the fact that m∗ is the optimal solution to P2a . �

It is easy to verify that P3 is a convex optimzation
problem (indeed, it is a linear program). In order to simplify
the problem, it is of value to formulate the corresponding
Lagrangian function,

L = b�x +
∑

i

λi(−xi) +
∑

i

γi(xi − 1) + ν(a�x − β).

(A8)

Since the problem is a convex program, the optimal solution
x = m∗ will satisfy the following Karush-Kuhn-Tucker (KKT)

[27] conditions

λi(−m∗
i ) = 0 i = 1, . . . ,N (A9)

γi(m
∗
i − 1) = 0 i = 1, . . . ,N (A10)

λi � 0, γi � 0 i = 1, . . . ,N (A11)

bi + aiν − λi + γi = 0 i = 1, . . . ,N (A12)

Combining all the constraints above, we have the following
theorem

Theorem 2. m∗
i = 0 if bi + aiν > 0 and m∗

i = 1 if bi +
aiν < 0.

Proof. If λi > 0 then Eq. (A9) means that m∗
i = 0, so

that then Eq. (A10) means that γi = 0 and, therefore, from
Eq. (A12), bi + aiν > 0. Similarly, if γi > 0 then m∗

i = 1,
λi = 0 and, therefore, bi + aiν < 0. �

If it happens that bi + aiν = 0, we need γi = λi for
Eq. (A12) to hold. If both γi and λi are greater than 0, it will
be impossible for Eqs. (A9) and (A10) to hold simultaneously.
As a result, we must have γi = λi = 0, and we can’t determine
m∗

i based on the KKT conditions. However, clearly there can
only be one ratio ν = ai/bi for which this event occurs.

Since we have assumed ai > 0 ∀i, we can prove the
following corollary based on Theorem A.

Corollary 1. When ai > 0 for all i, m∗
i = 0 if bi/ai is greater

than a certain threshold τ and m∗
i = 1 if bi/ai is less than or

equal to τ , where τ �= bi/ai ∀i.
Proof. Since ai > 0, bi + aiν > 0 will be equivalent to

bi/ai > −ν and bi + aiν < 0 will be equivalent to bi/ai <

−ν. According to Theorem 2, m∗
i = 0 if bi/ai > −ν and

m∗
i = 1 if bi/ai < −ν.
Now we consider the case that bi + aiν = 0. Notice that a

negative ν is a necessary condition for bi + aiν = 0 to hold,
since both ai and bi are greater than 0. LetSν = {i ∈ S|bi/ai =
−ν}. To obtain m∗

i (i ∈ Sν), we need to solve the following
problem:

max

(
A + ∑

i∈Sν
aiyi

)2

B + ∑
i∈Sν

biyi
(A13)

s.t. yi ∈ {0,1} for i ∈ Sν,

where

A =
∑

i∈S\Sν

aim
∗
i � 0, (A14)

B =
∑

i∈S\Sν

bim
∗
i � 0. (A15)

Let z = ∑
i∈Sν

aiyi . Since bi + aiν = 0 (i ∈ Sν), the objective
function can be written as

fν = (A + ∑
i∈Sν

aiyi)2

B + (−ν)
∑

i∈Sν
aiyi

= (A + z)2

B + (−ν)z
. (A16)

If A = B = 0 (this happens when m∗
i = 0 for all i ∈ S\Sν

or S\Sν = ∅), the optimal solution will be y∗
i = 1(i ∈ Sν).

If A > 0 and B > 0 (this happens when m∗
i �= 0 for some

i ∈ S\Sν), the objective function, fν , is convex in Z, and
is, therefore, maximized either by z = 0 or z = ∑

ai , which
are the endpoints of the support in a relaxed problem where
yi ∈ [0,1]. This corresponds to either y∗

i = 0 for all i ∈ Sν
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or y∗
i = 1 for all i ∈ Sν . In the event that y∗

i = m∗
i = 0 for

all i ∈ Sν , we can choose τ such that τ < −ν and for all
bi/ai < −ν we have bi/ai < τ . In the event that y∗

i = m∗
i = 1

for all i ∈ Sν , we can choose τ such that τ > −ν and for all
bi/ai > −ν we have bi/ai > τ . �

Finally, we can use Corollary 1 to make a statement about
the optimal solution to problem P1.

Corollary 2. The optimal solution to the original problem,
Problem P1, where sensors are classed into groups where all
ratios bi/ai are identical within that group, is such that all
sensors in a group are either all included or all excluded.

Proof. This corollary follows from Corollary 1, since
the ratio bi/ai will be identical for all sensors within each
class. �
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