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Correlation functions in liquids and crystals: Free-energy functional and liquid-to-crystal transition
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A free-energy functional for a crystal that contains both the symmetry-conserved and symmetry-broken parts
of the direct pair-correlation function has been used to investigate the crystallization of fluids in three dimensions.
The symmetry-broken part of the direct pair-correlation function has been calculated using a series in ascending
powers of the order parameters and which contains three- and higher-body direct correlation functions of the
isotropic phase. It is shown that a very accurate description of freezing transitions for a wide class of potentials
is found by considering the first two terms of this series. The results found for freezing parameters including the
structure of the frozen phase for fluids interacting via the inverse power potential u(r) = ε (σ/r)n for n ranging
from 4 to ∞ are in very good agreement with simulation results. It is found that for n > 6.5 the fluid freezes into
a face-centered cubic (fcc) structure while for n � 6 the body-centered cubic (bcc) structure is preferred. The
fluid-bcc-fcc triple point is found to be at 1/n = 0.158, which is in good agreement with simulation result.
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I. INTRODUCTION

Freezing of a fluid into a crystalline solid is a particular,
but important, example of a first-order phase transition in
which the continuous symmetry of the fluid is broken into one
of the Bravais lattices. The transition in three dimensions is
marked by large discontinuities in entropy, density, and order
parameters, the order parameters being proportional to the
lattice components of one particle density distribution ρ(�r) [see
Eq. (2.3)]. Efforts have been made for over six decades [1,2]
to find a first-principles theory which can answer questions
regarding at what density, pressure, and temperature does a
particular fluid freeze? What is the change in entropy and the
change in density upon freezing? Which of the Bravais lattices
emerges at the freezing point for a given system and what are
values of the order parameters?

A crystal is a system of extreme inhomogeneities where the
value of ρ(�r) shows a several-orders-of-magnitude difference
between its values on the lattice sites and in the interstitial
regions. The density-functional formalism of classical statis-
tical mechanics has been employed to develop theories for
freezing transitions [2,3]. This kind of approach was initiated
in 1979 by Ramakrishnan and Yussouff (RY) [4], which was
later reformulated by Haymet and Oxtoby [5]. The central
quantity in this formalism is the reduced Helmholtz free energy
of both the crystal, A[ρ], and the fluid, A(ρl) [2]. For crystals,
A[ρ] is a unique functional of ρ(�r), whereas for fluids, A(ρl)
is simply a function of fluid density ρl which is a constant,
independent of position.

The density-functional formalism is used to write an
expression for A[ρ] (or for the grand thermodynamic potential)
in terms of ρ(�r) and the direct pair-correlation function
(DPCF). Minimization of this expression with respect to ρ(�r)
leads to an expression that relates ρ(�r) to the DPCF. The DPCF
that appears in these equations corresponds to the crystal and
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is functional of ρ(�r) and therefore depends on values of the
order parameters. In the RY theory the functional dependence
of the DPCF on ρ(�r) was neglected and was replaced by that
of the coexisting fluid of density ρl . Attempts to improve the
RY theory by incorporating a term involving three-body direct
correlation function of the coexisting fluid in the expression
of A[ρ] have failed [6,7]. The efforts made by Tarazona [8],
Curtin, Ashcraft, and Denton [9,10], and others [11,12] in the
direction of developing a theory using what is referred to as
the weighted density approximation have also met with only
limited success.

The reason, as has been pointed out recently [13,14], is that
at the fluid-solid transition the isotropy and the homogeneity
of space is spontaneously broken and a qualitatively new con-
tribution to the correlation in distribution of particles emerges.
This fact has been used to write the DPCF of the frozen phase
as a sum of two terms: one that preserves the continuous
symmetry of the fluid and one that breaks it and vanishes in the
fluid. An exact expression for the free-energy functional was
found by performing double functional integration in density
space of a relation that relates the second functional derivative
of A[ρ] with respect to ρ(�r) to the DPCF [see Eq. (2.7)].
This expression of free-energy functional contains both the
symmetry-conserved and the symmetry-broken parts of the
DPCF.

The values of the DPCF as well as of the total pair-
correlation function (described in Sec. II) in a classical
system can be found from solution of integral equation, the
Ornstein-Zernike (OZ) equation, and a closure relation that
relates correlation functions to pair potential [15]. The integral
equation theory has been quite successful in getting values
of pair-correlation functions of uniform fluids [15], but its
application to find pair correlation functions of symmetry-
broken phases has so far been limited. Recently, Mishra and
Singh [16] have used the OZ equation and the Percus-Yevick
(PY) closure relation to obtain both the symmetry-conserved
and symmetry-broken parts of pair correlation functions in
a nematic phase. In the nematic phase the orientational
symmetry is broken but the translational symmetry of the fluid
phase remains intact, whereas in a crystal both the orientational
and the translational symmetries of the fluid phase are broken.
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Since closure relations are derived assuming translational
invariance [15], they are valid in normal fluids as well as in
nematics but may not be in crystals. In view of this, Singh and
Singh [13] suggested a method in which the symmetry-broken
part of the DPCF is expanded in ascending powers of order
parameters. This series contains three- and higher-body direct
correlation functions of the isotropic phase. The first term of
this series was evaluated and used in investigating the freezing
transitions in two and three dimensions of fluids interacting via
inverse power potentials [13,17] and freezing of hard spheres
into crystalline and glassy phases [14]. It has been found
that contribution made by the symmetry-broken part to the
grand thermodynamic potential at the freezing point increases
with softness of the potential [13,17]. This suggests that for
long-ranged potentials the higher-order terms of the series may
not be negligible and need to be considered.

In this paper we calculate first and second terms of the series
[see Eq. (2.29)] which involve three- and four-body direct
correlation functions of the isotropic phase. We calculate the
four-body direct correlation function by extending the method
developed to calculate the three-body direct correlation func-
tion. The values found for the DPCF are used in the free-energy
functional and the crystallization of fluids is investigated. We
show that this free-energy functional gives a very accurate
description of freezing transitions for a wide class of potentials.

The paper is organized as follows: In Sec. II we describe
correlation functions in fluids and in crystals and calculate
them. The symmetry-broken part of the DPCF is evaluated
using first two terms of a series in ascending powers of
order parameters. These results are used in the free-energy
functional in Sec. III to calculate the contributions made
by different parts of the DPCF to the grand thermodynamic
potential at the freezing point. In Sec. IV we calculate these
terms and locate the freezing points for fluids interacting via
the inverse power potentials and compare our results with
those found from computer simulations and from approximate
free-energy functionals. The paper ends with a brief summary
and perspectives given in Sec. V.

II. CORRELATION FUNCTIONS

The equilibrium one particle distribution ρ(�r) defined as

ρ(�r) =
〈∑

l

δ(�r − �rl)

〉
, (2.1)

where �rl is position vector of the lth particle and the angular
bracket 〈. . .〉 represents the ensemble average and is a constant,
independent of position for a normal fluid but containing most
of the structural informations of a crystal. For a crystalline
solid there exists a discrete set of vectors �Ri such that

ρ(�r) = ρ(�r + �Ri), for all �Ri. (2.2)

This set of vectors which appears at the freezing point due
to spontaneous breaking of continuous symmetry of a fluid
necessarily forms a Bravais lattice. The ρ(�r) in a crystal can
be written as a sum of two terms:

ρ(�r) = ρ0 + ρ(b)(�r), (2.3a)

where

ρ(b)(�r) =
∑
G

ρGei �G.�r . (2.3b)

Here ρ0 is the average density of the crystal and ρG are the
order parameters (amplitude of density waves of wavelength
2π/| �G|). The sum in Eq. (2.3b) is over a complete set of
reciprocal lattice vectors (RLV) �G with the property that
ei �G. �Ri = 1 for all �G and for all �Ri . We refer the first term
of Eq. (2.3a) as symmetry conserved and the second as
symmetry-broken parts of single-particle distribution ρ(�r) .

The two-particle density distribution ρ(2)(�r1,�r2) which gives
probability of finding simultaneously a particle in volume
element d�r1 at �r1 and a second particle in volume element
d�r2 at �r2, is defined as

ρ(2)(�r1,�r2) =
〈∑

j

∑
k �=j

δ
(�r1 − �rj

)
δ (�r2 − �rk)

〉
. (2.4)

The pair-correlation function g(�r1,�r2) is related to
ρ(2)(�r1,�r2) by the relation

g(�r1,�r2) = ρ(2)(�r1,�r2)

ρ(�r1)ρ(�r2)
. (2.5)

The DPCF c(�r1,�r2), which appears in the expression of free-
energy functional A[ρ], is related to the total pair-correlation
function h(�r1,�r2) = g(�r1,�r2) − 1 through the OZ equation (see
Ref. [15] for details),

c(�r1,�r2) = h(�r1,�r2) −
∫

d�r3c(�r1,�r3)ρ(�r3)h(�r2,�r3). (2.6)

The second functional derivative of A[ρ] is expressed in
terms of c(�r1,�r2) as [2]

δ2A[ρ]

δρ(�r1) δρ(�r2)
= δ(�r1 − �r2)

ρ(�r1)
− c(�r1,�r2), (2.7)

where δ is the Dirac function. The first term on the right-hand
side of this equation corresponds to ideal part Aid[ρ] of the
free energy, whereas the second term corresponds to excess
part Aex[ρ] arising due to interparticle interactions.

In a normal fluid all pair-correlation functions defined
above are simple function of number density ρ and depend
only on magnitude of interparticle separation |�r2 − �r1| = r .
This simplification is due to homogeneity, which implies
continuous translational symmetry and isotropy which implies
continuous rotational symmetry. In a crystal which is both
inhomogeneous and anisotropic, pair-correlation functions can
be written as a sum of two terms: one that preserves the
continuous symmetry of the fluid and one that breaks it [13,16].
Thus,

h(�r1,�r2) = h(0)(|�r2 − �r1|,ρ0) + h(b)(�r1,�r2; [ρ]), (2.8)

c(�r1,�r2) = c(0)(|�r2 − �r1|,ρ0) + c(b)(�r1,�r2; [ρ]). (2.9)

While the symmetry-conserving part (h(0) and c(0)) depends
on the magnitude of interparticle separation r and is a function
of average density ρ0, the symmetry-broken parts h(b) and c(b)

are functional of ρ(�r) (indicated by square bracket) and are
invariant only under a discrete set of translations corresponding
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to lattice vectors �Ri ,

h(b)(�r1,�r2) = h(b)(�r1 + �Ri,�r2 + �Ri), (2.10)

c(b)(�r1,�r2) = c(b)(�r1 + �Ri,�r2 + �Ri). (2.11)

If one chooses a center-of-mass variable �rc = (�r1 + �r2)/2
and a difference variable �r = �r2 − �r1, then one can see from
Eqs. (2.10) and (2.11) that h(b) and c(b) are periodic functions
of the center-of-mass variable and a continuous function of the
difference variable �r [18]. Thus,

h(b)(�r1,�r2) =
∑
G

ei �G.�rch(G)(�r), (2.12)

c(b)(�r1,�r2) =
∑
G

ei �G.�rc c(G)(�r), (2.13)

Since h(G) and c(G) are real and symmetric with respect to
interchange of �r1 and �r2; h(−G)(�r) = h(G)(�r) and h(G)(−�r) =
h(G)(�r) and similar relations hold for c(G)(�r).

Substitution of values of h(�r1,�r2) and c(�r1,�r2) given by
Eqs. (2.8) and (2.9) in Eq. (2.6) allows us to split the OZ
equation into two equations; one that contains h(0), c(0), and
ρ0 while the other contains h(b), c(b), and ρ(�r3) along with h(0),
c(0), and ρ0:

h(0)(|�r2 − �r1|)
= c(0)(|�r2 − �r1|) + ρ0

∫
d�r3c

(0)(|�r3 − �r1|)h(0)(|�r3 − �r2|)
(2.14)

and

h(b)(�r1,�r2) = c(b)(�r1,�r2)

+
∫

d�r3c
(0)(|�r3 − �r1|)(ρ(�r3) − ρ0)h(0)(|�r3 − �r2|)

+
∫

d�r3ρ(�r3)[c(b)(�r1,�r3)h(0)(|�r3 − �r2|)

+ c(0)(|�r3−�r2|)h(b)(�r1,�r3)+c(b)(�r1,�r3)h(b)(�r2,�r3)].

(2.15)

Equation (2.14) is the well-known OZ equation of normal
fluids. We use it along with a closure relation to calculate the
values of these correlation functions and their derivatives with
respect to density ρ0. The derivatives of c(0)(r) are used to find
values of three- and four-body direct correlation functions of
the isotropic phase.

Equation (2.15) is the OZ equation for the symmetry-broken
part of correlation functions. In order to make use of it to
find values of h(b) and c(b) for a given ρ(�r) we need one
more relation (closure relation) that connects h(b) with c(b).
Alternatively, if we know values of one of these functions, then
Eq. (2.15) can be used to find values of the other function [19].
Here we calculate c(b)(�r1,�r2) using a series in ascending powers
of [ρ(�r) − ρ0].

A. Calculation of h(0), c(0) and their derivatives with respect to ρ

We use the OZ equation (2.14) and a closure relation
proposed by Roger and Young (RYC) [20] to calculate
pair-correlation functions h(0) and c(0) and their derivatives
with respect to ρ in fluids as well as in crystals. The RYC
relation joins smoothly the Percus-Yevick (PY) relation and

the hypernetted chain (HNC) relation with an ad hoc switching
function of intermolecular separation in such a way that at
r = 0 it reduces to the PY relation and for r → ∞ it reduces
to the HNC relation. The closure relation is written as

h(0)(r) = exp[−βu(r)]

[
1 + exp[χ (r)f (r)]

f (r)

]
− 1, (2.16)

where χ (r) = h(0)(r) − c(0)(r) and f (r) = 1 − exp(−ψr) is
the switching function which involves an adjustable parameter
0 � ψ � ∞. The value of ψ is chosen to guarantee thermo-
dynamic consistency between the virial and compressibility
routes to the equation of state [20]. Though there is no
fundamental basis for the RYC, it is able to fix the deficiencies
of the PY and the HNC relations in some systems and gives
results which are in excellent agreement with simulation
results in fluid phase up to the freezing point. For the repulsive
potentials (described below) considered in this paper the
parameter ψ is density independent. This and the fact that
the symmetry-conserving part of pair-correlation functions
pass smoothly through the freezing or melting point without
getting affected by the symmetry breaking and the OZ relation
connecting these functions remains unchanged we extend the
method to calculate h(0), c(0) and their derivatives with respect
to ρ at densities which correspond to average densities of
crystals.

The differentiation of Eqs. (2.14) and (2.16) with respect to
ρ yields the following relations:

∂h(0)(r)

∂ρ
= ∂c(0)(r)

∂ρ
+

∫
d�r ′c(0)(r ′)h(0)(|�r ′ − �r|)

+ ρ

∫
d�r ′ ∂c(0)(r ′)

∂ρ
h(0)(|�r ′ − �r|)

+ ρ

∫
d�r ′c(0)(r ′)

∂h(0)(|�r ′ − �r|)
∂ρ

(2.17)

and

∂h(0)(r)

∂ρ
= exp[−βu(r)]exp[χ (r)f (r)]

∂χ (r)

∂ρ
, (2.18)

∂2h(0)(r)

∂ρ2 = ∂2c(0)(r)

∂ρ2 + 2
∫

d�r ′
[
∂c(0)(r ′)

∂ρ
h(0)(|�r ′ − �r|)

+ c(0)(r ′)
∂h(0)(|�r ′ − �r|)

∂ρ

]
+ ρ

∫
d�r ′

[
2
∂c(0)(r ′)

∂ρ

∂h(0)(|�r ′ − �r|)
∂ρ

+ c(0)(r ′)
∂2h(0)(|�r ′ − �r|)

∂ρ2

+ ∂2c(0)(r ′)
∂ρ2 h(0)(|�r ′ − �r|)

]
, (2.19)

and

∂2h(0)(r)

∂ρ2 = exp[−βu(r)]exp[χ (r)f (r)]

×
[
∂2χ (r)

∂ρ2 +
(

∂χ (r)

∂ρ

)2

f (r)

]
. (2.20)
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FIG. 1. Plots of c(0)(r), ∂c(0)(r)
∂ρ

, and ∂2c(0)(r)
∂ρ2 vs r for n = 6 and γ = 2.30 which is close to the freezing point. The distance r is in unit of

a0 = ( 3
4πρ

)1/3. Insets show magnified values of respective quantities for r � 1.

The solution of the closed set of coupled equations (2.14)
and (2.17)–(2.20) gives values of h(0)(r), c(0)(r), ∂h(0)(r)

∂ρ
, ∂c(0)(r)

∂ρ
,

∂2h(0)(r)
∂ρ2 , and ∂2c(0)(r)

∂ρ2 as a function of r for a given potential u(r).
The pair potential taken here are the inverse power

potentials, u(r) = ε(σ/r)n, where ε, σ , and n are potential
parameters and r is the molecular separation. The parameter
n measures softness of the potential, n = ∞ corresponds to
hard sphere, and n = 1 to the one-component plasma. The
reason for our choosing these potentials is that the range of
potential can be varied by changing the value of n and the
fact that the equation of state and melting curves of these
potentials have been extensively investigated by computer
simulations [21–28] for several values of n so “exact” results
are available for comparison. The more repulsive (n � 7)
systems have been found to freeze into a face-centred cubic
(fcc) structure while the soft repulsions n < 7 freeze into a
body-centered cubic crystal (bcc) structure. The fluid-bcc-
fcc triple point is found to occur at 1

n
	 0.15 [25,26,28].

The atomic arrangements in the two cubic structures differ
substantially; the fcc is close packed in real space and the
density inhomogeneity is much sharper than for the bcc, which
is open structure in real space but close packed in Fourier
space. However, in spite of this difference in the atomic
arrangements, the two structures have a small difference in
free energy (or chemical potential) at the fluid-solid transition
[25–28] and, therefore, a correct description of the relative

stability of the two cubic structures is a stringent test for any
theory.

The inverse power potentials are known to have a simple
scaling property according to which the reduced thermody-
namic properties depend on a single variable which is defined
as

γ = ρσ 3(βε)3/n = ρ∗T ∗(−3/n)
,

where β = 1/kBT , where kB is the Boltzmann constant and
T is temperature. Using the scaling relation the potential is
written as

βu(r) =
(

4π

3
γ

)n/3 1

rn
,

where r is measured in the unit of a0 = ( 3
4πρ

)1/3.

In Fig. 1 we plot values of c(0)(r), ∂c(0)(r)
∂ρ

, and ∂2c(0)(r)
∂ρ2 for

n = 6 and γ = 2.30, which is close to the freezing point.

B. Calculation of three- and four-body direct
correlation functions

The higher-body direct correlation functions can be written
as functional derivatives of the DPCF with respect to ρ(�r),

cn (�r1,�r2, . . . ,�rn) = δn−2c(�r1,�r2)

δρ(�r3)δρ(�r4) · · · δρ(�rn)
.
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In the limit of a homogeneous fluid this leads to

∂c(0)(r,ρ0)

∂ρ
=

∫
d�r3c

(0)
3 (�r1,�r2,�r3; ρ0), (2.21)

∂2c(0)(r,ρ0)

∂ρ2 =
∫

d�r3
c

(0)
3 (�r1,�r2,�r3; ρ0)

∂ρ

=
∫

d�r3

∫
d�r4c

(0)
4 (�r1,�r2,�r3,�r4; ρ0), (2.22)

and so on, where c(0)
m is the m-body direct correlation function

of the isotropic phase of density ρ0. Note that these equations
are exact and connect the derivatives of c(0)(r) with respect
to density ρ with the higher-body direct correlation functions.
Since the values of the derivatives are known as a function
of r at a given density, these equations can be solved to fined
values of c

(0)
3 and c

(0)
4 . Barrat et al. [6] have solved Eq. (2.21)

by first writing c
(0)
3 as a product of an arbitrary function t(r),

c
(0)
3 (�r1,�r2,�r3) = t(r12)t(r13)t(r23), (2.23a)

which allowed separation of variables r12, r13, and r23 and then
determining the values of t(r) from Eq. (2.21). They compared
their results with “exact” molecular-dynamics results near
freezing and showed that the factorization ansatz leads to
accurate values of c

(0)
3 . We follow their method to calculate

values of c
(0)
3 and extend it to calculate values of c

(0)
4 .

We rewrite Eq. (2.23a) using a diagram as

c
(0)
3 (�r1,�r2,�r3) ≡

3

21

(2.23b)

where a line linking particles i and j denotes a t(r) function
and each circle (representing a particle) carry weight unity.
Similarly the relation (2.21) is written as

∂c(0)(r,ρ0)

∂ρ
= (2.24)

where the half-black circle represents the particle over which
integration is performed over its all configurations and all cir-
cles carry weight unity. Using known values of ∂c(0)(r,ρ0)/∂ρ0

we solve this equation to find values of t(r) for different density
ρ0(or γ ) following a method outlined in Ref. [6]. The values
of t(r) as a function of r are shown in Fig. 2 for n = 6,4 and
γ = 2.30,5.60, respectively.

Taking derivative of both sides of Eq. (2.23a) with respect
to ρ0 one gets

∂c
(0)
3 (�r1,�r2,�r3)

∂ρ0
= ∂t(r12)

∂ρ0
t(r13)t(r23) + t(r12)

∂t(r13)

∂ρ0
t(r23)

+ t(r12)t(r13)
∂t(r23)

∂ρ0
. (2.25)

Substitution of this into Eq. (2.22) leads to

∂2c(0)(r)

∂ρ0
2 =

∫
d�r ′

[
∂t(r)

∂ρ0
t(r ′)t(|�r ′ − �r|) + t(r)

∂t(r ′)
∂ρ0

t(|�r ′

− �r|) + t(r)t(r ′)
∂t(|�r ′ − �r|)

∂ρ0

]
, (2.26)
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r-6
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-4

-3

-2

-1

0

t(
r)

FIG. 2. Plot of t(r) vs r for n = 6 at γ = 2.32 and n = 4 at
γ = 5.60. The distance r is in unit of a0 = ( 3

4πρ
)1/3. The dashed

curve represents values for n = 4, γl = 5.60 and full curve for n = 6,
γl = 2.32.

where r12 = r , r13 = r ′, and r23 = |�r ′ − �r|. As values of t(r)
are known, Eq. (2.26) is used to find values of ∂t(r)/∂ρ0 in
same way as Eq. (2.24) was used to find values of t(r). In
Fig. 3 we plot ∂t(r)/∂ρ0 for n = 4,6 and γ = 5.60,2.30.

Guided by the relation of Eq. (2.24) we write ∂t(r)/∂ρ0 as

∂t(r)

∂ρ
= s(r)

∫
d�r ′′s(r ′′)s(|�r ′′ − �r|),

≡ (2.27)

where a dashed line connecting particles i and j is s(r)
function. Using the already-determined values of ∂t(r)/∂ρ0

at a given value of ρ0 (or γ ) we determine values of s(r) in
the same way that values of t(r) were determined from known
values of ∂c(0)(r)/∂ρ0. In Fig. 4 we plot values of s(r) for
n = 6,4 and γ = 2.30,5.60 as a function of r .

0 1 2 3 4 5

r-15

-10

-5

0

5

10

15

20

∂t(r)

∂ρ

FIG. 3. Plot of ∂t(r)
∂ρ

vs r for n = 6 at γ = 2.32 and n = 4 at
γ = 5.60. Other notations are same as in Fig. 2.
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From Eqs. (2.22), (2.25), and (2.27) we get

c
(0)
4 (�r1,�r2,�r3,�r4) = + + ,

21

34

21

34

21

3 4

(2.28)

where a dashed line represents the s(r) bond and a full line the t(r) bond. We calculate the values of c
(0)
3 and c

(0)
4 and plot them

in the Appendix.

C. Evaluation of c(b)(�r1,�r2)

The function c(b)(�r1,�r2) can be expanded in ascending powers of [ρ(�r) − ρ0] as [2,13]

c(b)(�r1,�r2; [ρ]) =
∫

d�r3c
(0)
3 (�r1,�r2,�r3; ρ0)[ρ(�r3) − ρ0] + 1

2

∫
d�r3

∫
d�r3c

(0)
4 (�r1,�r2,�r3,�r4; ρ0)[ρ(�r3) − ρ0][ρ(�r4) − ρ0]

+ . . . , (2.29a)

≡ +
1

2
+

1

2
+

1

2
+ . . ., (2.29b)

where black circles represent integration over all configura-
tions of these particles and each carries weight ρ(�ri) − ρ0 =∑

G ρGei �G.�ri , whereas each white circle carries weight unity.
In writing Eq. (2.29b) use has been made of Eqs. (2.23a)
and (2.28).

The usefulness of the series of Eq. (2.29) depends on how
fast it converges and on our ability to find values of c(0)

m . We
have already described the calculation of c

(0)
3 and c

(0)
4 . The same

procedure can be used to find c(0)
m for m > 4. We, however, find

that for a wide range of potentials it is enough to consider the
first two terms of the series (2.29). In fact, for most potentials
representing the interparticle interactions in real systems one
may need to consider the first term only as the contribution

0 1 2 3 4 5

r-4

-2

0

2

4

s(
r)

FIG. 4. Plot of s(r) vs r for n = 6 at γ = 2.32 and n = 4 at
γ = 5.60. Other notations are same as in Fig. 2.

made by the second term to the grand thermodynamic potential
at the freezing point turns out to be negligibly small unless the
potential has a long-range tail.

1. Evaluation of first term of Eq. (2.29)

Substituting the value of [ρ(�r3) − ρ0] from Eq. (2.3) and
using the notations �r = �r2 − �r1, �r ′ = �r3 − �r1, �rc = 1

2 (�r1 + �r2),
we find

≡ c(b,1)(�r1,�r2) =
∑
G

ρGei �G.�rc t(r)e− 1
2 i �G.�r

×
∫

d�r ′t(r ′)t(|�r ′ − �r|)ei �G.�r ′
. (2.30)

This is solved to give [13,14]

c(b,1)(�r1,�r2) =
∑
G

ei �G.�rc

∑
lm

c
(G,1)
l (r)Ylm(r̂)Y ∗

lm(Ĝ), (2.31)

where

c
(G,1)
l (r) = ρG

∑
l1

∑
l2

�1(l1,l2,l)jl2

(
1

2
Gr

)
Bl1 (r,G). (2.32)

Here jl(x) is the spherical Bessel function and Ylm(x̂) is the
spherical harmonics,

�1(l1,l2,l) = (i)l1+l2 (−1)l2
[

(2l1 + 1)(2l2 + 1)

(2l + 1)

] 1
2

× [Cg(l1,l2,l; 0,0,0)]2 (2.33)
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) (r
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FIG. 5. Comparison of values of c
(G,1)
l (r) as a function of r for

a G vector of first set of fcc and bcc lattices for n = 6, γs = 2.32,
αfcc = 32, and αbcc = 18. The distance r is in unit of a0 = ( 3

4πρ
)1/3

and μG = e−G2/4α . The dashed curve represents values of fcc structure
while full curve of bcc structure.

and

Bl1 (r,G) = 8t(r)
∫

dkk2t(k)jl1 (kr)

×
∫

dr ′r ′2t(r ′)jl1 (kr ′)jl1 (Gr ′), (2.34)

where Cg is the Clebsch-Gordan coefficient. The crystal
symmetry dictates that l and l1 + l2 are even and for a cubic
crystal, m = 0, ± 4.

The values of c
(G,1)
l (r) depend on order parameters ρG =

ρ0 μG, where μG = e−G2/4α and α is a localization parameter
[see Eq. (3.13)] and on magnitude of �G. In Figs. 5 and 6 we plot
and compare values of c

(G,1)
l (r) for bcc and fcc crystals at the

melting point for potential n = 6, γs = 2.32, αbcc = 18, and
αfcc = 32 (see Table I). The values given in these figures are
for the first and second sets of RLVs. As expected, the values
are far from negligible and differ considerably for the two
structures. The value is found to decrease rapidly as the value
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r
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)
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) (r
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20
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FIG. 6. Comparison of values of c
(G,1)
l (r) as a function of r for a G

vector of second set of fcc (dashed curve) and bcc (full curve) lattices
for n = 6, γs = 2.32, αfcc = 32, and αbcc = 18. Other notations are
same as in Fig. 5.
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FIG. 7. Comparison of values of c
(G,1)
0 (r) as a function of r for a

G vector of the first six sets of fcc and bcc lattices. The distance r is
in unit of a0 = ( 3

4πρ
)1/3.

of l is increased; the maximum contribution comes from l = 0.
We also find, as shown in Fig. 7, the value of c

(G,1)
l (r) decreases

rapidly as the magnitude of �G vector increases; the maximum
contribution comes from the first two sets of RLVs. The other
point to be noted is that, at a given point r , values of c

(G,1)
l (r)

are positive for some �G vectors while for others the values are
negative, leading to mutual cancellation in a quantity where
summation over �G is involved.

2. Evaluation of second term of Eq. (2.29)

The contribution arising from the second term of Eq. (2.29)
is the sum of three diagrams in which the last two contributions
are equal. Thus,

c(b,2)(�r1,�r2) = 1

2
. (2.35)

If we write �r ′′ = �r4 − �r1 and �r4 = �r ′′ + �rc − 1
2 �r and use other

notations defined above, the first diagram can be written as

1

2
≡ c(b,2,1)(�r1,�r2)

= 1

2
s(r)

∑
G1

∑
G2

ρG1ρG2e
i( �G1+ �G2).(�rc− 1

2 �r)

×
∫

d�r ′t(r ′)t(|�r ′ − �r|)ei �G1.�r ′

×
∫

d�r ′′s(r ′′)s(|�r ′′ − �r|)ei �G2.�r ′′
. (2.36)

This is solved to give

c(b,2,1)(�r1,�r2) =
∑
G

ei �G.�rc

∑
lm

∑
l′m′

c
(G,2,1)
lm,l′m′ (r)Y ∗

l′m′(Ĝ)Ylm(r̂),

(2.37)
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TABLE I. Freezing parameters γl , �γ and the contributions of ideal symmetry-conserving and symmetry-broken parts arising from first
and second terms of Eq. (2.29) to �W/N at the transition point.

n Lattice γl �γ �Wid/N �Wo/N �W
(1)
b /N �W

(2)
b /N

4 bcc 5.57 0.007 2.86 −2.09 −0.94 0.17
fcc 5.60 0.008 3.52 −2.64 −1.03 0.15

6 bcc 2.30 0.011 2.56 −1.99 −0.58 0.01
fcc 2.32 0.012 3.48 −2.75 −0.72 0.002

6.5 bcc 2.04 0.014 2.38 −1.89 −0.50 0.001
fcc 2.03 0.013 3.34 −2.69 −0.66 0.001

7 bcc 1.86 0.015 2.29 −1.85 −0.44 0.000
fcc 1.84 0.014 3.39 −2.76 −0.63 0.000

12 fcc 1.17 0.034 3.71 −3.14 −0.57 0.000
∞ fcc 0.937 0.106 4.44 −4.10 −0.34 0.000

where

c
(G,2,1)
lm,l′m′ (r) =

∑
G1

ρG1ρK

∑
l1m1

∑
l2m2

�
ll′l1l2
mm′m1m2

Ml1 (r,G1)Ml2 (r,K)

× jl′

(
1

2
Gr

)
Y ∗

l1m1
(Ĝ1)Y ∗

l2m2
(K̂). (2.38)

Here �K = �G − �G1,

�
ll′l1l2
mm′m1m2

= 16
∑
l3m3

(i)l1+l2+l′ (−1)l
′
[

(2l1 + 1)(2l2 + 1)(2l′ + 1)

(2l + 1)

]1/2

×Cg(l1,l2,l3; 0,0,0)Cg(l′,l3,l; 0,0,0)

×Cg(l1,l2,l3; m1,m2,m3)Cg(l′,l3,l; m′,m3,m), (2.39)

Ml1 (r,G1) =
∫

dr ′r ′2jl1 (Gr ′)t(r ′)
∫

dkk2t(k)jl1 (kr)jl1 (kr ′),

(2.40)

and

Ml2 (r,K) =
∫

dr ′′r ′′2jl2 (Kr ′′)s(r ′′)

×
∫

dkk2s(k)jl2 (kr)jl2 (kr ′′). (2.41)

The crystal symmetry dictates that all li are even and for a
cubic crystal all mi are 0 and ±4.

From the second diagram of Eq. (2.35) we get

≡ c(b,2,2)(�r1,�r2) = t(r)
∑
G1

∑
G2

ρG1ρG2

× ei( �G1+ �G2).(�rc− 1
2 �r)

∫
d�r ′s(r ′)t(|�r ′ − �r|)ei �G1.�r ′

×
∫

d�r ′′s(r ′′)s(|�r ′′ − �r ′|)ei �G1.�r ′′
. (2.42)

This is solved to give

c(b,2,2)(�r1,�r2) =
∑
G

ei �G.�rc

∑
lm

∑
l′m′

c
(G,2,2)
lm,l′m′ (r)Y ∗

l′m′(Ĝ)Ylm(r̂),

(2.43)

where

c
(G,2,2)
lm,l′m′ (r)

=
∑
G1

ρG1ρK

∑
l1m1

∑
l2m2

∑
l3m3

�
ll′l1l2l3
mm′m1m2m3

Nl1,l2,l3 (r,G,G1)

× jl′

(
1

2
Gr

)
Y ∗

l1m1
(Ĝ1)Y ∗

l2m2
(K̂), (2.44)

�
ll′l1l2l3
mm′m1m2m3

= 32(i)l1+l2+l′ (−1)l
′
[

(2l1 + 1)(2l2 + 1)(2l′ + 1)

(2l + 1)

]1/2

×Cg(l1,l2,l3; 0,0,0)Cg(l′,l3,l; 0,0,0)

×Cg(l1,l2,l3; m1,m2,m3)Cg(l′,l3,l; m′,m3,m), (2.45)

Nl1,l2,l3 (r,G,G1)

= t(r)
∫

dr ′r ′2s(r ′)jl1 (G1r
′)Bl2 (r ′,K)Al3 (r,r ′), (2.46)

Al3 (r,r ′) =
∫

dkk2t(k)jl3 (kr)jl3 (kr ′), (2.47)

and

Bl2 (r ′,K) =
∫

dr ′′r ′′2jl2 (Kr ′′)s(r ′′)

×
∫

dkk2s(k)jl2 (kr ′)jl2 (kr ′′). (2.48)

The total contribution arising from the second term of
Eq. (2.29) is

c(b,2)(�r1,�r2) =
∑
G

ei �G.�rc

∑
lm

∑
l′m′

[
c

(G,2,1)
lml′m′ (r) + c

(G,2,2)
lml′m′ (r)

]
×Ylm(r̂)Y ∗

l′m′(Ĝ), (2.49)
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FIG. 8. Comparison of values of c
(G,2)
lml′m′ (r) as a function of r for a

G vector of the first set of fcc and bcc lattices for n = 6 at γs = 2.32,
αfcc = 32, and αbcc = 18. The distance r is in unit of a0 = ( 3

4πρ
)1/3.

There are two sets of values for the bcc lattice, one for �G vectors
lying in x-y plane and the other for the rest of the �G vectors of the
first set. There is only one set of values for the fcc lattice.

where l,l′ are even and m = 0, ± 4 for cubic lattices. In
Figs. 8 and 9 we plot values of

c
(G,2)
lml′m′(r) = c

(G,2,1)
lml′m′ (r) + c

(G,2,2)
lml′m′ (r), (2.50)

as a function of r for bcc and fcc structures for n = 6,
γs = 2.32, αbcc = 18, and αfcc = 32. The values given in these
figures are for the first two sets of RLVs for l = l′ = 0 and 2
and m = m′ = 0. These are the terms which mostly contribute
to c

(G,2)
lml′m′ (r); the contributions from terms l �= l′ and m �= m′

are approximately an order of magnitude smaller. For a bcc
lattice we find two sets of values, one for �G vectors lying in
the x-y plane and the other for the rest of the vectors. Since
all vectors of the first set of RLVs of a fcc lattice are from the
x-y plane we get only one set of values. For the second set of
RLVs of a fcc lattice, two sets of values are found but they are
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r-60

-50

-40

-30

-20

-10

0

c(G
,2

) (r
)

bcc (G in xy-plane)
bcc (G off xy-plane)
fcc (G off xy-plane)
fcc (G in xy-plane)

0 0.5 1 1.5 2 2.5 3

r

-2

0

2

4

6

8

c(G
,2

) (r
)

00
00

20
20

FIG. 9. Comparison of the values of c
(G,2)
lml′m′ (r) as a function of r

for a G vector of the second set of fcc and bcc lattices. Other notations
are same as in Fig. 8, except that there is now two sets of values shown
by dashed and dotted curves for fcc lattice (see text).

close, unlike in the case of the bcc lattice where the two sets of
values differ not only in magnitude but also in sign. The values
differ considerably for the two cubic structures. The value of
c

(G,2)
lml′m′(r) decreases rapidly for both bcc and fcc structures as

the magnitude of �G vectors increases, as was found in the case
of c

(G,1)
l (r). Furthermore, the values of c

(G,2)
lml′m′(r) at a given

value of r is positive for some �G vector and negative for
others.

In order to compare the magnitude of contributions made
by the first and second terms of Eq. (2.29), we calculate
ĉ(G,1)(k,θk,φk) and ĉ(G,2)(k,θk,φk), defined as

ĉ(G,1)(k,θk,φk) = ρ
∑
lm

∫
d�rc(G,1)

l (r)ei�k.�rYlm(r̂)Y ∗
lm(Ĝ)

= 4π ρ
∑
lm

(i)lYlm(k̂)Y ∗
lm(Ĝ)

×
∫ ∞

0
dr r2c

(G,1)
l (r)jl(kr) (2.51)

and

ĉ(G,2)(k,θk,φk) = ρ
∑
lm

∑
l′m′

∫
d�rc(G,2)

lml′m′(r)ei�k.�rYlm(r̂)Y ∗
l′m′(Ĝ)

= 4π ρ
∑
lm

∑
l′m′

(i)lYlm(k̂)Y ∗
l′m′(Ĝ)

×
∫ ∞

0
dr r2c

(G,2)
lml′m′(r)jl(kr). (2.52)

In Figs. 10 and 11 we compare, using color codes
(shown on the right-hand side of each figure), the values of
these functions arising from the first and second terms of
Eq. (2.29) for both fcc and bcc structures for n = 6, γs =
2.32, αfcc = 32, and αbcc = 18. The values given in Fig. 10
are for a fcc lattice for a �G vector of first and a vector of
second sets, i.e., G1a0 = 4.25, θG1 = 54.7◦, and φG1 = 45◦
and G2a0 = 4.91, θG2 = 0◦, φG2 = 90◦. The values of ka0

are taken to be equal to 4.25 and 4.91 which are the magnitude
of G1a0 and G2a0, respectively. In Fig. 11 we compare the
values of c(G,1)(k,θk,φk) and c(G,2)(k,θk,φk) for a bcc lattice
for G1a0 = 4.37, θG1 = 90◦, φG1 = 45◦ and G2a0 = 6.19,
θG2 = 90◦, φG2 = 0◦ and ka0 = 4.37 and 6.19. From these
figures it is clear that the contribution made by the second term
to c(b)(�r1,�r2) is small compared to the first term, indicating
fast convergence of the series. As is shown below, in the
expression of the free-energy functional, c(b)(�r1,�r2) is averaged
over density and order parameters and also there is summation
over �G vectors, As a consequence, the contribution of second
term of Eq. (2.29) is found to be an order of magnitude smaller
than the first term. We show that the consideration of the
first two terms of Eq. (2.29) is enough to give an accurate
description of the freezing transitions for a wide class of
potentials.
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FIG. 10. (Color online) Comparison of values (shown using color codes given on right-hand side of each figure) of c(G,1)(k,θk,φk) [(a) and (b)]
and c(G,2)(k,θk,φk) [(c) and (d)] as a function of cosθk (plotted on x axis) and cosφk (plotted on y axis) for G1a0 = ka0 = 4.25, θG1 = 54.7◦,
φG1 = 45◦ [(a) and (c)] and G2a0 = ka0 = 4.91, θG2 = 0◦, φG2 = 90◦ [(b) and (d)] for a fcc lattice for n = 6, γs = 2.32, αfcc = 32.

III. FREE-ENERGY FUNCTIONAL
AND FLUID-SOLID TRANSITION

The reduced free-energy functional A[ρ] of a symmetry-
broken phase can be written as [13,14,17]

A[ρ] = Aid[ρ] + A(0)
ex [ρ] + A(b)

ex [ρ], (3.1)

where

Aid[ρ] =
∫

d�rρ(�r)[ln(ρ(�r)�) − 1], (3.2)

A(0)
ex [ρ]

= Aex(ρl) + β(μ − ln(ρl�))
∫

d�r(ρ(�r) − ρl)

− 1

2

∫
d�r1

∫
d�r2(ρ(�r1) − ρl)(ρ(�r2) − ρl)c

(0)(|�r2 − �r1|),
(3.3)

and

A(b)
ex [ρ] = −1

2

∫
d�r1

∫
d�r2(ρ(�r1) − ρ0)(ρ(�r2) − ρ0)c(b)(�r1,�r2).

(3.4)

Here � is the cube of the thermal wavelength associated
with a molecule, β = (kBT )−1, where kB is the Boltzmann
constant and T is the temperature, A(0)

ex (ρl) is the excess
reduced free energy of the coexisting isotropic fluid of density
ρl and the chemical potential μ, and ρ0 = ρl (1 + �ρ∗) is the

average density of the solid,

c(0)(|�r2 − �r1|)

= 2
∫ 1

0
dλλ

∫ 1

0
dλ′c(0)(|�r2 − �r1|; ρl + λλ′(ρ0 − ρl))

(3.5)

and

c(b)(�r1,�r2)

= 4
∫ 1

0
dλλ

∫ 1

0
dλ′

∫ 1

0
dξξ

∫ 1

0
dξ ′c(b)(�r1,�r2; λλ′ρ0,ξξ ′ρG).

(3.6)

As the density difference between the solid and the coexist-
ing fluid at the freezing point is very small, c(0)(|�r2 − �r1|,ρ0)
can, as shown below, be replaced by c(0)(r,ρl). This reduces
Eq. (3.3) to the one that appears in the RY functional.

The expression for the symmetry-conserving part of the
reduced excess free energy A(0)

ex [ρ] given by Eq. (3.3) is found
by performing double functional integration of [13,17]

δ2A(0)
ex [ρ]

δρ(�r1) δρ(�r2)
= −c(0)(|�r2 − �r1|). (3.7)

This integration is carried out in the density space, taking
the coexisting uniform fluid of density ρl and the chemical
potential μ as a reference. The expression for the symmetry-
broken part A(b)

ex [ρ] given by Eq. (3.4) is found by performing
double functional integration of [13,17]

δ2A(b)
ex [ρ]

δρ(�r1) δρ(�r2)
= −c(b)(�r1,�r2) (3.8)
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Ga0 = ka0 = 4.37; θG = 90°, φG = 45°
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FIG. 11. (Color online) Comparison of values (given in a color code) of c(G,1)(k,θk,φk) [(a) and (b)] and c(G,2)(k,θk,φk) [(c) and (d)] as a
function of cosθk and cosφk for G1a0 = ka0 = 4.37, θG1 = 90◦, φG1 = 45◦ [(a) and (c)] and G2a0 = ka0 = 6.19, θG2 = 90◦, φG2 = 0◦ [(b) and
(d)] for a bcc lattice for n = 6, γs = 2.32, αbcc = 18. Other notation are same as in Fig. 10.

in the density space corresponding to the symmetry-broken
phase. The path of integration in this space is characterized
by two parameters, λ and ξ . These parameters vary from 0 to
1. The parameter λ raises the density from zero to the final
value ρ0 as it varies from 0 to 1, whereas parameter ξ raises
the order parameter from 0 to its final value ρG. The result is
independent of the order of integration.

In locating the transition the grand thermodynamic potential
defined as

−W = A − βμ

∫
d�rρ(�r) (3.9)

is generally used as it ensures that the pressure and chemical
potential of both phases remain equal at the transition. The
transition point is determined by the condition �W = Wl −
W = 0, where Wl is the grand thermodynamic potential of the
coexisting fluid. The expression of �W is found to be [13,14]

�W =
∫

d�r
[
ρ(�r)ln

(
ρ(�r)

ρl

)
− (ρ(�r) − ρl)

]
− 1

2

∫
d�r1

∫
d�r2(ρ(�r1) − ρl)(ρ(�r2) − ρl)c

(0)(|�r2 − �r1|)

− 1

2

∫
d�r1

∫
d�r2(ρ(�r1) − ρ0)(ρ(�r2) − ρ0)c(b)(�r1,�r2).

(3.10)

Minimization of �W with respect to ρ(�r) subject to the
perfect crystal constraint leads to

ln
ρ(�r1)

ρl

= φ +
∫

d�r2[ρ(�r2) − ρl]c̃
(0)(|�r2 − �r1|)

+
∫

d�r2[ρ(�r2) − ρ0]c̃(b)(�r1,�r2), (3.11)

where

c̃(0)(|�r2 − �r1|) =
∫ 1

0
dλc(0)[|�r2 − �r1|; ρl + λ(ρ0 − ρl)]

and

c̃(b)(�r1,�r2) =
∫ 1

0
dλ

∫ 1

0
dξc(b) (�r1,�r2; λρ0,ξρG)) .

The value of the Lagrange multiplier φ in Eq. (3.11) is
found from the condition

1

V

∫
d�r ρ(�r)

ρ0
= 1, (3.12)

where V is volume of the system.
It may be noted that, in principle, one needs only values of

symmetry-conserved and symmetry-broken parts of the DPCF
to determine ρ(�r) that minimizes the grand potential W . In
practice, however, it is found convenient to do minimization
with respect to an assumed form of ρ(�r). The ideal part is
calculated using a form of ρ(�r) which is a superposition of
normalized Gaussians centered around the lattice sites,

ρ(�r) =
(

α

π

)3/2 ∑
n

exp[−α(�r − �Ri)
2], (3.13)

where α is the variational parameter that characterizes the
width of the Gaussian and the square root of α is inversely
proportional to the width of a peak. It thus measures the
nonuniformity; α = 0 corresponds to the limit of a uniform
fluid and an increasing value of α corresponds to increasing
localization of particles on their respective lattice sites defined
by vectors �Ri . For the interaction part it is convenient to use the
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expression of ρ(�r) given by Eq. (2.3). The Fourier transform
of Eq. (3.13) leads to ρG = ρ0μG, where μG = e−G2/4α .

A. Evaluation of c(0)(r) and c(b)(�r1,�r2)

The values of c(0)(r) for a given fluid density ρl and the
average crystal density ρ0 are found from the known values
of c(0)(r,ρ), where ρ varies from ρl to ρ0 by performing
integrations in Eq. (3.5) which can be rewritten as

c(0)(r,ρ0) = 2
∫ 1

0
dλλ

∫ 1

0
dλ′c(0)(r; ρl(1 + λλ′�ρ∗)),

(3.14)

where �ρ∗ = (ρ0 − ρl)/ρl . The integrations have been done
numerically using a very fine grid for variables λ and λ′.
As the system in the density range of ρl to ρl(1 + �ρ∗) is
inhomogeneous due to nucleation, the density that appears in
Eq. (3.14) corresponds to the averaged density. Since at the
freezing point ρl�ρ∗  1, one can use Taylor expansion to
solve Eq. (3.14), leading to

c(0)(r,ρ0) = c(0)(r,ρl) + 1

3
ρl�ρ∗ ∂c(0)(r,ρl)

∂ρl

+ O
(
ρ2

l �ρ∗2)
.

(3.15)

The contribution arising from the second term in the
free energy is found to be negligibly small, suggesting the
replacement of c(0)(r,ρ0) by c(0)(r,ρl).

Since the order parameters that appear in c(b)(�r1,�r2) are lin-
ear in c(b,1)(�r1,�r2) and quadratic in c(b,2)(�r1,�r2), the integration
over ξ variables in Eq. (3.4) can be performed analytically,
leading to

c(b)(�r1,�r2)

=
∑
G

ei �G.�rc

[∑
lm

c
(G,1)
l (r)Y ∗

lm(Ĝ)Ylm(r̂)

+
∑
lm

∑
l′m′

(
c

(G,2,1)
lm,l′m′ (r) + c

(G,2,2)
lm,l′m′ (r)

)
Y ∗

l′m′(Ĝ)Ylm(r̂)

]
,

(3.16)

where

c
(G,1)
l (r) = 1

3
ρG

∑
l1

∑
l2

�1(l1,l2,l)jl2

(
1

2
Gr

)
Bl1 (r,G),

(3.17)

c
(G,2,1)
lm,l′m′ (r) = 1

6

∑
G1

ρG1ρK

∑
l1m1

∑
l2m2

�
ll′l1l2
mm′m1m2

jl

(
1

2
Gr

)
×Ql1l2

(r,G,G1)Y ∗
l1m1

(Ĝ1)Y ∗
l2m2

(K̂), (3.18)

c
(G,2,2)
lm,l′m′ (r) = 1

6

∑
G1

ρG1ρK

∑
l1m1

∑
l2m2

∑
l3m3

�
ll′l1l2l3
mm′m1m2m3

jl′

(
1

2
Gr

)
×Nl1l2l3 (r,G,G1)Y ∗

l2m2
(Ĝ1)Y ∗

l3m3
(K̂), (3.19)

with

Bl1 (r,G) = 2
∫ 1

0
dλλ

∫ 1

0
dλ′Bl1 (r,G; λλ′ρ), (3.20)

Ql1l2
(r,G,G1) = 2

∫ 1

0
dλλ

∫ 1

0
dλ′Ql1l2 (r,G,G1; λλ′ρ),

Ql1l2 (r,G,G1; ρ) = Ml1 (r,G1; ρ) Ml2 (r,K; ρ) , (3.21)

and

Nl1l2l3 (r,G,G1) = 2
∫ 1

0
dλλ

∫ 1

0
dλ′Nl1l2l3 (r,G,G1; λλ′ρ).

(3.22)

The quantities Bl1 (r,G), Ml1 (r,G1), Ml2 (r,K), and
Nl1l2l3 (r,G,G1) are defined by Eqs. (2.34), (2.40), (2.41), and
(2.46), respectively. The integrations over λ and λ′ have been
performed numerically by varying them from 0 to 1 on a fine
grid and evaluating the functions Bl1 , Ql1l2 , and Nl1l2l3 on these
densities. Since these functions vary smoothly with density
and their values have been evaluated at closely spaced values
of density, the result found for c(b)(�r1,�r2) is expected to be
accurate.

B. Evaluation of �W

Substituting expression of ρ(�r) given by Eqs. (2.3) and
(3.14) and of c(0)(r) and c(b)(�r1,�r2) given above in Eq. (3.10)
we find

�W

N
= �Wid

N
+ �W0

N
+ �W

(1)
b

N
+ �W

(2)
b

N
, (3.23)

where

�Wid

N
= 1 − (1 + �γ )

[
5

2
+ lnρl − 3

2
ln

(
α

π

)]
, (3.24)

�W0

N
= −1

2
�γ ĉ

(0)
(0) − 1

2
(1 + �γ )2

∑
G �=0

|μG|2̂c(0)
(G),

(3.25)

�W
(1)
b

N

= −1

2
ρl(1 + �γ )2

∑
G

′∑
G2

′
μG2μ−G−G2̂c

(G,1)
(

�G2 + 1

2
�G
)

,

(3.26)

�W
(2)
b

N

= −1

2
ρl(1 + �γ )2

∑
G

′∑
G2

′
μG2μ−G−G2̂c

(G,2)
(

�G2 + 1

2
�G
)

,

(3.27)

where �γ = (γs − γl) /γl ; the subscripts s and l stand for solid
and fluid, respectively. Here �Wid, �W0, �W

(1)
b , and �W

(2)
b

are, respectively, the ideal, the symmetry-conserving, and the
symmetry-broken contributions from the first and second terms
of series (2.29) to �W . The prime on summation in Eqs. (3.26)
and (3.27) indicates the condition �G �= 0, �G1 �= 0, �G2 �= 0,
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�G + �G1 �= 0, and �G + �G2 �= 0 and

ĉ
(0)

(G) =
∫

d�rc(0)(r,γl)e
i �G.�r , (3.28)

ĉ
(G,1)

(
�G2 + 1

2
�G
)

= 1

3
μG

∑
l1

∑
l2

�1(l1,l2,l)Y
∗
lm(Ĝ)

∫
d�r jl2

(
1

2
Gr

)
Bl1 (r,G)ei( �G2+ 1

2
�G).�rYlm(r̂), (3.29)

ĉ
(G,2)

(
�G2 + 1

2
�G
)

= ĉ
(G,2,1)

(
�G2 + 1

2
�G
)

+ 2 ĉ
(G,2,2)

(
�G2 + 1

2
�G
)

,

ĉ
(G,2,1)

(
�G2 + 1

2
�G
)

= 1

6

∑
G1

μG1μK

∑
lm

∑
l′m′

∑
l1m1

∑
l2m2

�
ll′l1l2
mm′m1m2

Y ∗
l′m′ (Ĝ)Y ∗

l1m1
(Ĝ1)Y ∗

l2m2
(K̂)

×
∫

d�r jl2

(
1

2
Gr

)
Ql1l2

(r,G,G1)ei( �G2+ 1
2

�G).�rYlm(r̂), (3.30)

ĉ
(G,2,2)

(
�G2 + 1

2
�G
)

= 1

6

∑
G1

μG1μK

∑
lm

∑
l′m′

∑
l1m1

∑
l2m2

∑
l3m3

�
ll′l1l2l3
mm′m1m2m3

Y ∗
l′m′ (Ĝ)Y ∗

l2m2
(Ĝ1)Y ∗

l3m3
(K̂)

×
∫

d�r jl2

(
1

2
Gr

)
Nl1l2l3 (r,G,G1)ei( �G2+ 1

2
�G).�rYlm(r̂). (3.31)

The terms �W0
N

,
�W

(1)
b

N
, and �W

(2)
b

N
are, respectively, second,

third, and fourth orders in order parameters.

IV. RESULTS FOR FLUID-TO-CRYSTAL TRANSITION

We use the above expression of �W/N to locate the
fluid-fcc crystal and the fluid-bcc crystal transitions by varying
γl , �γ , and α. For a given γl and �γ , �W/N is minimized
with respect to α; next �γ is varied until the lowest value of
�W/N at its minimum is found. If this lowest value of �W/N

at its minimum is not zero, then γl is varied until �W/N = 0.
The values of the transition parameters, γl , �γ , and α, for
a given lattice structure can also be found from simultane-
ous solution of equations ∂

∂(�γ ) (
�W
N

) = 0, ∂
∂α

(�W
N

) = 0, and
�W/N = 0.

In Table I we compare the values of different terms of
�W/N [see Eq. (3.23)] at the freezing point for potentials with
n = 4,6,6.5,7,12, and ∞. The values corresponding to hard
spheres are taken from Ref. [14]. The contribution made by the
symmetry-broken part to the grand thermodynamic potential
at the freezing point is substantial and its importance increases
with the softness of the potential. For example, while for
n = ∞ the contribution of the symmetry-broken part is about
8% of the contribution made by the symmetry-conserved part,
it increases to 45% for n = 4. As this contribution is negative,
it stabilizes the solid phase. Without it the theory strongly
overestimates the stability of the fluid phase, especially for
softer potentials. This explains why the Ramakrishanan-
Yussouff theory gives good results for hard-core potentials
but fails for potentials that have a soft-core and/or attractive
tail.

The other point to be noted from these results is about
the convergence of the series (2.29) which has been used
to calculate c(b)(�r1,�r2). The contribution made by the second

term of the series to the grand thermodynamic potential at
the freezing point is found to be negligible compared to
that of the first term for n � 6 and for n < 6, though the
contribution is small but not negligible. For example, while
for n = 6 this contribution is about 2% of the first term,
for n = 4 this increases to 18%. From these results one can
conclude that the first two terms of the series of Eq. (2.29) are
enough to describe the freezing transition for a wide class of
potentials.

In Table II, we compare results of freezing parameters γl ,
γs , �γ , the Lindemann parameter Ln, and Pσ 3

ε
, where P is

the pressure at the transition point, of the present calculation
with those found from computer simulations [21–28] and with
the results found by others [12,29–31] using approximate
free-energy functionals. The Lindemann parameter is defined
as the ratio of the mean-field displacement of a particle
to the nearest-neighbor distance in the crystal. For the fcc
crystal with the Gaussian density profile of Eq. (3.13) it is
given as

Ln =
(

3

a2
fccα

)1/2

, (4.1)

where afcc = (4/ρ0)1/3 is the fcc lattice constant. For the bcc
crystal,

Ln =
(

2

a2
bccα

)1/2

, (4.2)

where abcc = (2/ρ0)1/3 is the bcc lattice constant. In Fig. 12
we plot γl vs 1/n at the transition found from simulations and
from the present calculations.

One may note that simulation results have spread (see
Table II) and do not agree within each others uncertainties.
This may be due to the application of different theoretical
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TABLE II. Comparison of the parameters γl , γs , and �γ , the Lindemann parameter L, and the pressure P at the coexistence found from
different free-energy functional and computer simulations. MWDA denotes the modified weighted density approximation, RY DFT denotes
the Ramakrishnan-Yussouff density-functional theory, MHNC denotes the modified hypernetted-chain closure relation, and MSMC denotes
the Mayer sampling Monte Carlo.

n Lattice Theory/simulation γl γs �γ L Pσ 3

ε

∞ fcc Present result 0.937 1.036 0.106 0.09 11.46
MWDA-static reference [12] 0.863 0.964 0.115 0.13

MWDA [12] 0.906 1.044 0.116 0.10
RY DFT [29,30] 0.980 1.146 0.174 0.06
Simulation [22] 0.939 1.037 0.104 ∼0.13
Simulation [23] 0.942 1.041 0.105

MC simulation [25] 0.94 1.041 0.107 0.12 11.70
MC simulation [26] 0.939 1.037 0.104 11.57

12 fcc Present result 1.17 1.21 0.034 0.11 23.67
MWDA-static reference [12] 1.12 1.16 0.037 0.14

MWDA/MHNC [31] 1.19 1.25 0.046 0.10
RY DFT [29] 1.28 1.37 0.07 0.07

MC simulationa [25] 1.17 1.22 0.042 0.14 23.64
MSMC technique [27] 1.16 1.20 0.037 23.24

MC simulation [26] 1.16 1.21 0.037 23.41
7 fcc Present result 1.84 1.87 0.014 0.12 64.97

MC simulationa [25] 1.85 1.88 0.017 0.15 64.98
MC simulation [26] 1.84 1.87 0.016 64.22

bcc Present result 1.86 1.89 0.015 0.18 67.12
MC Simulation [26] 1.83 1.86 0.015 63.88

6.5 fcc Present result 2.03 2.06 0.013 0.12 80.11
MC simulationa [25] 2.04 2.07 0.014 0.15 80.40

bcc Present result 2.04 2.07 0.014 0.17 78.98
MC simulationa [28,32] 2.03 2.05 0.010 0.18 78.40

6 fcc Present result 2.32 2.35 0.012 0.12 103.7
MWDA-static reference [12] 2.33 2.35 0.007 0.17

MWDA/MHNC [31] 2.67 2.72 0.02 0.07
RY DFT [29] 3.43 3.52 0.026 0.07

MC simulationa [25] 2.34 2.37 0.012 0.15 104.5
MC simulation [26] 2.32 2.35 0.012 103.0

bcc Present result 2.30 2.33 0.011 0.16 101.22
MC simulationa [25] 2.32 2.35 0.011 0.17 103.6

MSMC technique [27] 2.30 2.32 0.011 100.1
MC simulation [26] 2.30 2.33 0.012 100.0

MC simulationa [28,32] 2.29 2.31 0.009 0.18 99.34
4 fcc Present result 5.60 5.63 0.008 0.12 565.6

MWDA-static reference [12] 5.22 5.26 0.008 0.13
MWDA/MHNC [31] 8.18 8.24 0.007 0.07

RY DFT [29] 12.3 12.47 0.014 0.07
MC simulation [25] 5.68 5.71 0.005 0.17 637.0

bcc Present result 5.57 5.61 0.007 0.16 561.2
MWDA-static reference [12] 5.05 5.09 0.008 0.18

MC simulation [25] 5.73 5.75 0.004 0.18 648.0

aIndicates values obtained from interpolation of the tabulated values.

methods used in locating the transition and system sizes in the
calculations. The other sources of errors include the existence
of an interface, truncation of the potential, free-energy bias,
and so on. Agrawal and Kofke [25], who have reported results
for 0 � 1/n � 0.33, have considered a system of 500 particles
only. Since they have not used finite-size corrections, their
results for softer potentials (say n � 6) may not be accurate.
For example, they reported that for 1/n > 0.16 fluid freezes
into a bcc structure but for 1/n = 0.25 they found that the γl

for the fluid-bcc transition is higher than that of the fluid-fcc

transition. The recent calculations where large systems have
been considered [26–28] results are available for n � 5 (or
1/n < 0.2). From these results it is found that fluid freezes
into fcc crystal for n � 7 and for n < 7 the bcc structure is
preferred; the fluid-bcc-fcc triple point is estimated to be close
to 1/n ∼ 0.15.

From Table II and Fig. 12 we find that our results are in very
good agreement with simulation results for all cases. We find
that for n > 6.5 the fluid freezes into a fcc structure while for
n � 6 it freezes into a bcc structure. The fluid-bcc-fcc triple
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FIG. 12. Comparison of equilibrium phase diagram of 1
n

vs γl

found from simulation results and from our theory. In inset the fluid-
fcc and fluid-bcc transition lines are plated at a magnified scale and
the fluid-bcc-fcc triple point is found at 1

n
= 0.158.

point is found at 1
n

= 0.158 (see the inset in Fig. 12). The value
of Lindemann parameter found by us is, however, somewhat
lower than those found by Agrawal and Kofke [25] and Saija
et al. [32]. The energy difference between the two cubic
structures at the transition is found to be small in agreement
with the simulation results [28].

V. SUMMARY AND PERSPECTIVES

We used a free-energy functional for a crystal proposed
by Singh and Singh [13] to investigate the crystallization
of fluids interacting via power-law potentials. This free-
energy functional was found by performing double functional
integration in the density space of a relation that relates the
second functional derivative of A[ρ] with respect to ρ(�r) to
the DPCF of the crystal. The expression found for A[ρ] is
exact and contains both the symmetry-conserved part of the
DPCF, c(0)(r,ρ), and the symmetry-broken part, c(b)(�r1,�r2).
The symmetry-conserved part corresponds to the isotropy and
homogeneity of the phase and passes smoothly to the frozen
phase at the freezing point, whereas the symmetry-broken
part arises due to heterogeneity which sets in at the freezing
point and vanishes in the fluid phase. The values of c(0)(r)
and its derivatives with respect to density ρ as a function
of interparticle separation r have been determined using an
integral equation theory comprising the OZ equation and the
closer relation of Roger and Young [20]. From the results of
∂c(0)(r)

∂ρ
and ∂2c(0)(r)

∂ρ2 , we calculated the three- and four-body direct
correlation functions of the isotropic phase. These results have
been used in a series written in ascending powers of the order
parameters to calculate c(b)(�r1,�r2). The contributions made by
the first and second terms of the series have been calculated
for bcc and fcc crystals. The contribution made by the second
term is found to be considerably smaller than the first term,
indicating that the first two terms are enough to give accurate
values for c(b)(�r1,�r2). The values of c(G)(�r) for bcc and fcc
structures are found to differ considerably.

The contribution of the symmetry-broken part of DPCF
to the free energy is found to depend on the nature of
pair potentials; the contribution increases with softness of
potentials. In the case of power-law potentials we found that
the contribution to the grand thermodynamic potential at the
freezing point arising from the second term of the series
(2.29) which involves four-body direct correlation function is
negligible for n > 6 and small but not negligible for n < 6. For
n = 4 the contribution made by the second term is about 18%
of the first term. The contribution made by the second term is
positive, whereas the contribution of the first term is negative.
As the net contribution made by the symmetry-broken term
is negative, it stabilizes the solid phase. Without the inclusion
of this term the theory strongly overestimates the stability of
the fluid phase, especially for softer potentials. Our results
reported in this paper and elsewhere [14,17] explain why the
Ramakrishanan-Yussouff theory gives good results for hard-
core potentials but fails for potentials that have a soft-core/or
attractive tail.

The agreement between theory and simulation values of
freezing parameters found for potentials with n varying from
4 to ∞ indicates that the free-energy functional used here
with values of c(b)(�r1,�r2) calculated from the first two terms
of the series (2.29) provides an accurate theory for freezing
transitions for a wide class of potentials. Since this free-energy
functional takes into account the spontaneous symmetry
breaking, it can be used to study various phenomena of ordered
phases near their melting points.
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APPENDIX

In this Appendix we calculate c
(0)
3 (�r1,�r2,�r3) and

c
(0)
4 (�r1,�r2,�r3,�r4). Using the notation r = |�r2 − �r1|, r ′ = |�r3 −

�r1|, and |�r ′ − �r| = |�r3 − �r2| we write c
(0)
3 (�r1,�r2,�r3) as [see

Eq. (2.23)]

c
(0)
3 (�r,�r ′) = t(r)t(r ′)t(|�r ′ − �r|). (A1)

The function t(|�r ′ − �r|) can be expanded in spherical
harmonics,

t(|�r ′ − �r|) = 2

π

∑
lm

Al(r,r
′)Ylm(r̂)Y ∗

lm(r̂ ′), (A2)

where

Al(r,r
′) =

∫ ∞

0
dq q2t(q)jl(qr)jl(qr ′). (A3)

Here jl(x) is the spherical Bessel function and Ylm(r̂) the
spherical harmonics.

From Eqs. (A1) and (A2) we get

c
(0)
3 (�r,�r ′) = 2

π

∑
lm

Dl(r,r
′)Ylm(r̂)Y ∗

lm(r̂ ′), (A4)

where

Dl(r,r
′) = Al(r,r

′)t(r)t(r ′).
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FIG. 13. Values of ĉ
(0)
3 (q,q,q) as a function of cosθ (geometry

is shown schematically in the figure) for q1a0 = q2a0 = 4.3 and
for potentials n = 12,γl = 1.17 (dashed curve) and n = 6,γl = 2.30
(full curve).

The Fourier transform of Eq. (A4), defined as

ĉ
(0)
3 (�q1,�q2) = ρ2

∫
d�r

∫
d�r ′ e−i �q1.�re−i �q2.�r ′

c
(0)
3 (�r,�r ′),

gives

ĉ
(0)
3 (�q1,�q2) = 32π

∑
lm

(−1)lDl(q1,q2)Ylm(q̂1)Y ∗
lm(q̂2), (A5)

where

Dl(q1,q2) = ρ2
∫

dr r2
∫

dr ′ r ′2jl(q1r)jl(q2r
′)Dl(r,r

′).

(A6)

The value of ĉ
(0)
3 (�q1,�q2) is plotted in Fig. 13 for q1 = q2 =

qmax for various angles θ such that 0 < |�q1 + �q2| < 2qmax,
where θ is the angle between �q1 and �q2 as shown in the figure.
The values plotted in this figure correspond to qa0 = 4.3 and
for n = 6, γl = 2.30 (full line) and n = 12, γl = 1.17 (dashed
line). In Fig. 14 we plot values of ĉ

(0)
3 (�q1,�q2) for an equilateral

triangle with various side lengths. The values for n = 12,γl =
1.17 are in good agreement with the values given in Ref. [6]
(see Figs. 3 and 4 of Ref. [6]).

For c
(0)
4 (�r1,�r2,�r3,�r4) the contribution arises from three dia-

grams shown in Eq. (2.28). Using the notation |�r4 − �r1| = r ′′,
|�r4 − �r2| = |�r ′′ − �r|, |�r4 − �r3| = |�r ′′ − �r ′| and other notations
defined above we get

c
(0)
4 (�r,�r ′,�r ′′) = + + ,

21

34

21

34

21

3 4

(A7)

Each diagram of Eq. (A7) has two circles connected by three
bonds, two s bonds (dashed line) and one t bond (full line),
where one of the remaining circles is connected by two t bonds
and the other by two s bonds. By permuting circles one can
convert one diagram into another. The values of c

(0)
4 (�r,�r ′,�r ′′)

depend on three vectors, �r , �r ′, and �r ′′.
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FIG. 14. Values of ĉ
(0)
3 (q,q,q) vs qa0 (equilateral triangles). The

dashed curve represents the values for n = 12,γl = 1.17 and full
curve for n = 6,γl = 2.30. Inset shows values for qa0 � 4.0 on
magnified scale.

We calculate ĉ
(0)
4 (�q1,�q2,�q3) defined as

ĉ
(0)
4 (�q1,�q2,�q3) = ρ3

∫
d�r

∫
d�r ′

×
∫

d�r ′′ e−i �q1.�re−i �q2.�r ′
e−i �q2.�r ′

c
(0)
4 (�r,�r ′,�r ′′),

(A8)

Using Eq. (A7) and writing each diagram in terms of t and
s bonds we get

ĉ
(0)
4 (�q1,�q2,�q3)

= 108

π2

∑
l1m1

∑
l2m2

∑
l3m3

(−i)(l1+l2+l3)�
m1m2m3
l1l2l3

Ml1l2l3 (q1,q2,q3)

× [
Y ∗

l3m3
(q̂1)Yl1m1 (q̂2)Yl2m2 (q̂3)

+Yl1m1 (q̂1)Y ∗
l3m3

(q̂2)Yl2m2 (q̂3)

+ (−1)l1 Yl1m1 (q̂1)Y ∗
l3m3

(q̂2)Yl2m2 (q̂3)
]
, (A9)

where

�
m1m2m3
l1l2l3

=
[

(2l1 + 1)(2l2 + 1)

4π (2l3 + 1)

]1/2

Cg(l1,l2,l3; 0,0,0)

×Cg(l1,l2,l3; m1,m2,m3) (A10)

and

Ml1l2l3 (q1,q2,q3)

= ρ3
∫ ∞

0
dr r2s(r)

∫ ∞

0
d�r ′ r ′2t(r ′)

∫ ∞

0
d�r ′′ r ′′2s(r ′′)

× jl3 (q1r)jl1 (q2r
′)jl2 (q3r

′′)Al1 (r,r ′)El2 (r,r ′′). (A11)

Al1 (r,r ′) is defined by Eq. (A3). El2 (r,r ′′) is given as

El(r,r
′′) =

∫ ∞

0
dq q2s(q)jl(qr)jl(qr ′′). (A12)

The values of ĉ
(0)
4 (�q1,�q2,�q3) depend on magnitudes and

directions of vectors �q1, �q2, and �q3. In Figs. 15 and 16 we
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FIG. 15. (Color online) Values of ĉ
(0)
4 (�q1,�q2,�q3) (shown using a color code shown on the right-hand side of each figure) as a function of φq2

and φq3 for q1 = q2 = qmax with qmaxa0 = 4.3, θq1 = 0◦, φq1 = 0◦: (a) θq2 = 45◦, θq3 = 45◦, (b) θq2 = 45◦, θq3 = 90◦, (c) θq2 = 90◦, θq3 = 45◦,
and (d) θq2 = 90◦, θq3 = 90◦.

use color codes (shown at the right-hand side of each figure)
to plot values of ĉ

(0)
4 (�q1,�q2,�q3) for q1 = q2 = q3 = qmax as a

function of φq2 and φq3 for different choices of θq2 and θq3 .
The values of qmaxa0 is taken to be equal to 4.3 as in Fig. 13.
While the values plotted in Fig. 15 correspond to θq1 = 0◦, the

values plotted in Fig. 16 correspond to θq1 = 90◦ and φq1 = 0◦.
These figures show how the values of ĉ

(0)
4 (�q1,�q2,�q3) depend on

orientations of vectors �q1, �q2, and �q3. Emergence of ordering
in maxima and minima depending on orientations of these
vectors is evident.
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FIG. 16. (Color online) Same as described in the in caption to Fig. 15 except for θq1 = 90◦ and φq1 = 0◦.
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