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Typical and rare fluctuations in nonlinear driven diffusive systems with dissipation
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We consider fluctuations of the dissipated energy in nonlinear driven diffusive systems subject to bulk
dissipation and boundary driving. With this aim, we extend the recently introduced macroscopic fluctuation
theory to nonlinear driven dissipative media, starting from the fluctuating hydrodynamic equations describing
the system mesoscopic evolution. Interestingly, the action associated with a path in mesoscopic phase space,
from which large-deviation functions for macroscopic observables can be derived, has the same simple form
as in nondissipative systems. This is a consequence of the quasielasticity of microscopic dynamics, required
in order to have a nontrivial competition between diffusion and dissipation at the mesoscale. Euler-Lagrange
equations for the optimal density and current fields that sustain an arbitrary dissipation fluctuation are also
derived. A perturbative solution thereof shows that the probability distribution of small fluctuations is always
Gaussian, as expected from the central limit theorem. On the other hand, strong separation from the Gaussian
behavior is observed for large fluctuations, with a distribution which shows no negative branch, thus violating
the Gallavotti-Cohen fluctuation theorem, as expected from the irreversibility of the dynamics. The dissipation
large-deviation function exhibits simple and general scaling forms for weakly and strongly dissipative systems,
with large fluctuations favored in the former case but heavily suppressed in the latter. We apply our results to
a general class of diffusive lattice models for which dissipation, nonlinear diffusion, and driving are the key
ingredients. The theoretical predictions are compared to extensive numerical simulations of the microscopic
models, and excellent agreement is found. Interestingly, the large-deviation function is in some cases nonconvex
beyond some dissipation. These results show that a suitable generalization of macroscopic fluctuation theory is
capable of describing in detail the fluctuating behavior of nonlinear driven dissipative media.
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I. INTRODUCTION

Since the seminal articles of Einstein on the theory of
Brownian movement [1] more than 100 years ago, strong
links have been found in macroscopic systems between their
equilibrium fluctuations and the transport coefficients that
control their relaxation to equilibrium. In this respect, the
derivation of the fluctuation-dissipation theorem is a milestone
in the development of modern statistical mechanics [2,3]:
The linear response to an external perturbation is directly
related to the fluctuation properties in thermal equilibrium.
Thus, essential physical information is encoded in the ap-
parently, from a macroscopic perspective, random motion
at the microscopic scale. In fact, the study of fluctuation
statistics provides an alternative route to derive the relevant
thermodynamic potentials in equilibrium [4], complementing
the usual ensemble picture. In a general nonequilibrium
situation, there is no systematic approach to the problem of
connecting microscopic dynamics to macroscopic nonequi-
librium properties yet. Arguably, the simplest nonequilibrium
situations are steady states with nonvanishing currents, and
the hope is that the investigation of their fluctuation properties
may lead to this micro-macro connection out of equilibrium.
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This line of research, mathematically based on the theory of
large deviations [5,6], has started much more recently but
has led already to some remarkable results [5–15]. The main
idea is that the large deviation function (LDF) of the relevant
observables may play in nonequilibrium statistical mechanics
a role akin to that of the free energy in equilibrium [5,6]. Most
of the recent work in this field deals with systems with conser-
vative dynamics; that is, the microscopic dynamics conserves
locally some magnitude (number of particles, energy, mass,
charge, ...). Thus, the statistics of the associated current is
physically relevant and some general results have been derived
in this context [6–15]. A key result is the Gallavotti-Cohen
fluctuation theorem [7,8], which relates the probability of
observing a given current fluctuation �J with the probability
of the reversed event − �J . More recently, this theorem has
been generalized to the so-called isometric fluctuation relation
[15], linking the probability of any pair of isometric current
fluctuations ( �J , �J ′) with | �J | = | �J ′|. Interestingly, a crucial
point for deriving these results is the reversibility of the
underlying microscopic dynamics.

The dynamics of nonequilibrium systems is often inherently
dissipative, so a continuous input of energy is needed in order
to reach a stationary state. Typical examples are granular media
[16], dissipative biophysical systems [17], turbulent fluids
[18], active matter [19], chemical reactions [20], population
dynamics [21], etc. In general, all of them share the same
physical mechanisms: Dissipation, diffusion, and external
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driving (usually through the boundaries) lead to the appearance
of mesoscopic evolution equations of the reaction-diffusion
type. Theoretical results for dissipative systems are scarce,
because of the irreversibility of the microscopic dynamics
that make the results in the previous paragraph (Gallavotti-
Cohen theorem, isometric relation, etc.) not applicable. In
this paper, we investigate the extension of some of these
results to dissipative media, giving a partial answer to this
demanding problem. Central to this point is the identification
of the relevant physical quantities. While there is a general
and well-established theory for equilibrium systems [4], the
situation in nonequilibrium systems is far from clear. On a
physical basis, it is expected that the fluctuation statistics of the
dissipated energy plays a main role in dissipative systems [22].

In this work, we analyze both typical and rare fluctuations
in nonlinear driven diffusive systems with dissipation. This is
done by combining a suitable generalization of macroscopic
fluctuation theory (MFT) [9] to the realm of dissipative media
and extensive numerical simulations of a particular albeit
broad class of microscopic models. Our starting point is a
general fluctuating balance equation for the (energy) density,
with a drift term proportional to the spatial derivative of
the current and a sink term. This mesoscopic description is
expected to be valid for many driven dissipative media over
a certain “hydrodynamic” time scale, much larger than the
one characteristic of the microscopic dynamics. Over the
fast (microscopic) time scale, the system forgets the initial
conditions and relaxes to a local equilibrium state in which
all the properties of the system become functionals of a few
“hydrodynamic” fields, here the density, the current, and the
dissipation. Afterwards, over the much slower hydrodynamic
time scale, the system eventually approaches the steady state
following the mesoscopic balance equation. We focus on
the fluctuations of the system in this nonequilibrium steady
state, in which the dissipation and the injection of energy
balance each other. By using this fluctuating hydrodynamic
picture together with a path integral formulation, we derive
a general form for the action associated with a history of
the density, current, and dissipation fields (that is, a path
in mesoscopic phase space). Remarkably, this action takes
the same form as in conservative nonequilibrium systems
[6,9–15], simplifying the analysis in the dissipative case. This
is both an important and a surprising result, which stems
from the quasielastic character of the underlying microscopic
dynamics in the large system size limit. This quasielasticity
is necessary in order to have a balanced competition between
diffusion and dissipation at the mesoscopic level. From the
derived action functional, and using the recently introduced
additivity conjecture [11–14], a general form for the LDF
of the dissipated energy is derived, with a “Lagrangian”
including second-order derivatives. Therefrom, we derive the
Euler-Lagrange equation (a fourth-order differential equation)
for the optimal fields responsible for an arbitrary fluctuation.
This Lagrangian variational problem can be mapped onto
an equivalent Hamiltonian problem (four coupled first-order
differential equations), which turns out to simplify the analysis.
We use this Hamiltonian picture to analyze in detail three
different limits, namely small fluctuations around the average
for arbitrary dissipation coefficient and the whole spectrum
of fluctuations (typical and rare) for weakly and strongly

dissipative systems. The statistics of typical (that is, small)
fluctuations is Gaussian, as expected from the central limit
theorem. However, strong separation from Gaussian behavior
is observed for rare fluctuations, with a distribution which
shows no negative branch, thus violating the Gallavotti-Cohen
fluctuation theorem as otherwise expected from the irreversible
character of microscopic dynamics. We study in general the
weakly dissipative system limit using a singular perturbation
expansion. This yields a simple scaling form for the dissipation
LDF, showing that large dissipation fluctuations are favored
in this weakly dissipative limit, with a LDF which extends
over a broad regime and decays slowly in the far positive
tail. On the other hand, a different perturbative analysis in
the strongly dissipative system limit can be carried out based
on the formation of boundary energy layers in this limit for
all fluctuations, which effectively decouples the system in
two almost-independent parts. This analysis shows that large
dissipation fluctuations are heavily suppressed in this limit, as
opposed to the weakly dissipative regime result.

We apply this theoretical scheme to a general class of
κ-dimensional dissipative lattice models with stochastic mi-
croscopic dynamics, for which the hydrodynamic fluctuating
picture used above as starting point can be demonstrated
in the large system size limit [23] (we focus here in one
dimension, κ = 1, for simplicity). In these models there is
one particle at each lattice site, characterized by its energy.
Dynamics is stochastic and proceeds via collisions between
nearest neighbors, at a rate which depends on the energy of
the colliding pair. In a collision, a certain fraction of the pair
energy is dissipated, and the remaining energy is randomly
distributed within the pair. This mechanism gives rise to a
nonlinear competition between diffusion and dissipation in the
macroscopic limit, provided that the microscopic dissipation
coefficient scales adequately with the system size. This class
of models represents at a coarse-grained level the physics of
many reaction-diffusion systems of technological as well as
theoretical interest. In particular, when the colliding pair is
chosen completely at random, independently of the value of
its energy, the Kipnis-Marchioro-Presutti (KMP) model [24]
for heat conduction is recovered in the conservative case.
The KMP model has been often used to test theoretical
advances in nonequilibrium statistical mechanics [7–15,24].
Our general class of models contains the essential ingredients
characterizing most dissipative media, namely: (i) diffusive
dynamics, (ii) bulk dissipation, and (iii) boundary injection.
The chances are that our results may remain valid for more
complex dissipative media described at the mesoscopic level
by a similar evolution equation. Here we report analytical and
simulation results for the statistics of the dissipated energy in
this general class of models using both standard simulations
and an advanced Monte Carlo method [25]. The latter allows
the sampling of the tails of the distribution and implies
simulating a large number of clones of the system.

The plan of the paper is as follows. Section II describes a
suitable generalization of MFT to nonlinear driven dissipative
media. The large-deviation statistics of the dissipated energy,
a central observable in this type of system, is investigated
here within both the Lagrangian and Hamiltonian equivalent
frameworks. Section III is devoted to the detailed study
of different asymptotic behaviors within the Hamiltonian
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formulation, which turns out to simplify the analysis. In
Sec. IV, we first introduce a general class of microscopic lattice
models, whose stochastic dynamics is dissipative. Second,
the theoretical framework developed in the previous sections
is applied to this family of models, and the LDF for the
dissipated energy is explicitly worked out. The analytical
predictions are compared to extensive numerical simulations
of the microscopic models, and a very good agreement is
found. A summary of the main results of the paper, together
with a physical discussion thereof, is given in Sec. V. Finally,
the appendices deal with some technical details that, for the
sake of clarity, we have preferred to omit in the main text.

II. MACROSCOPIC FLUCTUATION THEORY
FOR DRIVEN DISSIPATIVE SYSTEMS

In this work, we analyze a general class of systems whose
dynamics at the mesoscale is described by the following
fluctuating evolution equation:

∂tρ(x,t) = −∂xj (x,t) + d(x,t). (2.1)

We focus here in one dimension for simplicity, but our
analysis can be carried out in an equivalent manner in κ

dimensions. In Eq. (2.1), ρ(x,t), j (x,t), and d(x,t) are the
density, current, and dissipation fields, respectively, and t and
x ∈ [−1/2,1/2] are the macroscopic time and space variables,
obtained after a diffusive scaling limit such that x = x̃/L

and t = t̃/L2, with x̃ and t̃ the microscopic space and time
variables and L the system length. These coarse-grained spatial
and temporal scales emerge from a suitable continuum limit of
the underlying microscopic dynamics [23]. The current field
is a fluctuating quantity and can be written as

j (x,t) = −D(ρ)∂xρ(x,t) + ξ (x,t). (2.2)

The first term is Fourier’s law, where D(ρ) is the diffusivity
(which might be a nonlinear function of the local density), and
ξ (x,t) is the current noise that is Gaussian and white,

〈ξ (x,t)〉 = 0, 〈ξ (x,t)ξ (x ′,t ′)〉 = σ (ρ)

L
δ(x − x ′)δ(t − t ′),

(2.3)

with σ (ρ) being the so-called mobility. This Gaussian fluctu-
ating field is expected to emerge for most situations in the
appropriate mesoscopic limit as a result of a central limit
theorem: Although microscopic interactions for a given model
can be highly complicated, the ensuing fluctuations of the
slow hydrodynamic fields result from the sum of an enormous
amount of random events at the microscale, which give rise to
Gaussian statistics, with an amplitude of the order of L−1/2,
in the mesoscopic regime in which Eq. (2.1) emerges. On the
other hand, the dissipation field d(x,t) is

d(x,t) = −νR(ρ(x,t)), (2.4)

where ν is the macroscopic dissipation coefficient and R(ρ) is
a certain function of the density ρ. For the calculations which
follow throughout this section, it is useful to introduce a new
variable y, such that

y = R(ρ), (2.5a)

d(x,t) = −νy(x,t). (2.5b)

The dissipation field is present at the mesoscopic level because
the microscopic stochastic dynamics of the models of interest
dissipates some energy; that is, we have the equivalent of a
microscopic restitution coefficient α, so that the amount of
dissipated energy is proportional to 1 − α. The macroscopic
dissipation coefficient ν is thus proportional to 1 − α. Note that
there is no-noise term in the dissipation field d(x,t) in Eq. (2.4),
so the local fluctuations of the dissipation field are enslaved to
those of the density ρ(x,t). Although at the microscopic level
the dissipation has its own (microscopic) noise, its induced
effective noise at the mesoscopic description scales as L−3/2

because of the quasielasticity of the microscopic dynamics.
Thus, it is negligible against the current noise, which scales as
L−1/2 in the mesoscopic limit. The microscopic dynamics must
be quasielastic in order to ensure that dissipation and diffusion
take place over the same time scale in the thermodynamic
limit. Typically, 1 − α must scale as L−2, which is the order of
magnitude of the diffusive term in a system of length L [22,23].

The boundary conditions for Eq. (2.1) depend on the
physical situation of interest. For instance, we may consider
that the system is kept in contact with two thermal reservoirs
at x = ±1/2, at the same temperature T , so ρ(±1/2,t) = T .
In that case, the system eventually reaches a steady state in
the long time limit, for which the injection of energy through
the boundaries and the dissipation balance each other. The
stationary average (macroscopic) solution of (2.1) verifies

j ′
av(x) + νR(ρav(x)) = 0, jav(x) = −D(ρav(x))ρ ′

av(x),

(2.6)

where the prime indicates spatial derivative. The first equation
in (2.6) follows from (2.1), and the second one is Fourier’s law
for the averages. Equivalently, a closed second-order equation
for ρ may be written,

d

dx
[D(ρav)ρ ′

av] = νR(ρav), (2.7)

with the boundary conditions ρav(±1/2) = T . Equations (2.6)
and (2.7) can be also written for the variable y introduced in
Eq. (2.5a),

j ′
av(x) + νyav(x) = 0, jav(x) = −D̂(yav(x))y ′

av(x), (2.8)

with

D̂(y) =
(

dy

dρ

)−1

D(ρ), (2.9)

since

jav(x,t) = −D̂(yav)∂xy(x,t). (2.10)

Thus, D̂ is an “effective” diffusivity: It is the factor multiplying
the spatial gradient when writing Fourier’s equation in terms
of the new variable y. Equation (2.8) can also be summarized
in a second-order differential equation for yav,

[D̂(yav)y ′
av]′ = νyav, yav(±1/2) = R(T ). (2.11)

Interestingly, it can be shown (see below) that D̂ is constant,
independent of y, whenever y = R(ρ) depends algebraically
in ρ, a case we study in detail in Sec. IV. This observation
considerably simplifies the subsequent analysis.

The probability of observing a history {ρ(x,t),j (x,t)}τ0 of
duration τ for the density and current fields, starting from
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a given initial state, can be written now as a path integral
over all the possible realizations of the current noise {ξ (x,t)}τ0,
weighted by its Gaussian measure, and restricted to those
realizations compatible with Eq. (2.1) at every point of space
and time [13]. This probability hence obeys a large deviation
principle of the form [5,6,9–14,22]

P
({ρ,j}τ0

) ∼ exp (+L Iτ [ρ,j ]) , (2.12)

with a rate functional [9,10]

Iτ [ρ,j ] = −
∫ τ

0
dt

∫ 1/2

−1/2
dx

[j + D(ρ)∂xρ]2

2σ (ρ)
, (2.13)

with ρ(x,t) and j (x,t) coupled via the balance equation
(2.1), and the dissipation d(x,t) given in terms of ρ(x,t)
by (2.4). Equation (2.13) expresses the Gaussian nature of
the local current fluctuations around its average (Fourier’s
law) behavior. The functional in (2.13) is the same as in the
conservative case (that is, with no bulk dissipation), due to
the quasielasticity of the microscopic dynamics, which makes
the current noise the only relevant one in the hydrodynamic
description [23]. Note that this is completely different from
the situation in other dissipative models [26,27], in which two
independent microscopic stochastic processes contribute to the
hydrodynamic equation at the mesoscopic scale. This compe-
tition results in a more complex large deviation functional,
with different terms coming from both noise sources. In our
case, the existence of only one noise source at the mesoscopic
scale simplifies the subsequent variational problem, as seen in
what follows.

We focus now on the fluctuations of the dissipated energy,
integrated over space and time,

d = − 1

τ

∫ τ

0
dt

∫ 1/2

−1/2
dx d(x,t)

= ν

τ

∫ τ

0
dt

∫ 1/2

−1/2
dx R(ρ(x,t)) > 0, (2.14)

where we have introduced a minus sign for the sake of
convenience, in order to make d positive. As discussed above,
this is a fundamental observable to understand the statistical
physics of driven dissipative media. The probability of such a
fluctuation Pτ (d) scales in the long-time limit as

Pτ (d) ∼ exp[+τLG(d)], G(d) = 1

τ
max
ρ,j

Iτ [ρ,j ].

(2.15)

This defines a new large deviation principle for d (see
Fig. 1), such that G(d) is obtained from Iτ [ρ,j ] via a
saddle-point calculation for long times (that is, it follows
from the contraction of the original rate function Iτ [6]). The
optimal fields ρ0(x,t ; d), j0(x,t ; d), which are the solution of
the variational problem (2.15), must be consistent with the
prescribed value of the dissipated energy d in (2.14) and are
also related by the balance equation (2.1), supplemented with
(2.4) and the appropriate boundary conditions. These optimal
fields can be interpreted as the ones adopted by the system to
sustain a long-time fluctuation of the space and time-integrated
dissipation d. For the sake of simplicity, we have not explicitly
introduced in our notation the parametric dependence of the

FIG. 1. (Color online) Convergence of the space and time-
integrated dissipation to its ensemble value for many different
realizations and sketch of the probability concentration as time
increases associated with the large deviation principle, Eq. (2.15).

LDF G(d) and the associated optimal profiles on the boundary
temperature T , though this should be borne in mind for later
reference.

We now assume that these optimal profiles do not depend
on time. In conservative systems, this conjecture has been
shown [9] to be equivalent to the additivity principle recently
introduced to study current fluctuations in diffusive media [11].
The validity of this additivity scenario has been recently
confirmed in extensive numerical simulations for a broad
interval of fluctuations [12,15], though it may eventually
break down for extreme fluctuations via a dynamic phase
transition [28–30]. As we see below, the applicability of
this generalization of the additivity conjecture to dissipative
systems is well supported by numerical evidence. Under this
simplifying hypothesis, the fluctuating balance equation (2.1)
reduces to

j ′(x) + νy(x) = 0, y(x) = −j ′(x)/ν, (2.16)

making use of the variable y defined in Eq. (2.5a). Moreover,
we can integrate over time in the definition (2.14) of the
integrated dissipation d,

d = ν

∫ 1/2

−1/2
dx y(x), (2.17a)

or, equivalently,

d = −
∫ 1/2

−1/2
dx j ′(x) = j (−1/2) − j (1/2) > 0. (2.17b)

In this way, by using the additivity hypothesis we can eliminate
ρ(x) and write G(d) in terms of only one variable as

G(d) = − min
j (x)

S[j ], with S[j ] =
∫ 1/2

−1/2
dxL(j,j ′j ′′),

(2.18a)

L(j,j ′,j ′′) =
[
j − D̂(−j ′/ν) j ′′

ν

]2

2σ̂ (−j ′/ν)
, (2.18b)

where D̂ is the effective diffusivity defined in Eq. (2.9),
and σ̂ is the mobility, defined in Eq. (2.3), both written
in terms of y = −j ′/ν. Borrowing the terminology that is
usual in classical mechanics, the function L(j,j ′,j ′′) plays
the role of a generalized Lagrangian with dependence on
first and also second-order derivatives, while S[j ] plays the
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role of the action. If we were dealing with an unconstrained
variational problem, the solution thereof would verify the
following generalized Euler-Lagrange equation [31] (see also
Appendix A):

d2

dx2

(
∂L
∂j ′′

)
− d

dx

(
∂L
∂j ′

)
+ ∂L

∂j
= 0. (2.19)

Nevertheless, the calculation of G(d) implies the solution of a
constrained variational problem, that is, finding the minimum
of S[j ] for the considered value of the integrated dissipation d.
Therefore, one should use Lagrange multiplier method [31].
However, symmetry considerations can be used to simplify
the analysis and map the constrained variational problem onto
the unconstrained one with certain boundary conditions. We
present here a simplified discussion of this point. As the
thermal reservoirs at both system ends are identical, we expect
the optimal profiles to have well-defined parity: ρ(x) should
be even and j (x) should be odd as functions of x. Then
Eq. (2.17b) leads to j (−1/2) = −j (1/2) = d/2, the value of
the integrated dissipation d fixes the boundary conditions for
the current. Naively, one can then assume that the solution of
the variational problem for a fixed value of d is given by the
solution of the unconstrained Euler-Lagrange equation (2.19)
with boundary conditions

j ′(±1/2; d) = −νR(T ), j (−1/2; d) = −j (1/2; d) = d/2.

(2.20)

The correctness of this naive approximation to the problem is
shown in Appendices B and C.

For a Lagrangian with second-order derivatives, there
is also an equivalent Hamiltonian description [32]. In this
way, one obtains four first-order differential equations that
are completely equivalent to the Euler-Lagrange fourth-order
differential equation (2.19). The complete mathematical pro-
cedure is presented in Appendix D; here we present the main
results. We consider y and j as the canonical coordinates, with
the appropriate definition of conjugate canonical momenta py

and pj , namely,

py ≡ −ν
∂L
∂j ′′ , pj = ∂L

∂j ′ − d

dx

(
∂L
∂j ′′

)
. (2.21)

Note that the definition of pj allows writing the Euler-
Lagrange equation as dpj/dx = ∂L/∂j , as in the case of a
Lagrangian with first-order derivatives. The Hamiltonian is
obtained in the usual way,H = ypy + jpj − L, with the result

H = 1

2
Q(y)p2

y − D̂−1(y)jpy − νypj , (2.22a)

Q(y) ≡ σ̂ (y)

D̂2(y)
. (2.22b)

The optimal profiles are determined by the four first-order
canonical equations,

y ′ = ∂H
∂py

= Q(y)py − D̂−1(y)j, (2.23a)

j ′ = ∂H
∂pj

= −νy, (2.23b)

p′
y = −∂H

∂y
= −dQ(y)

dy

p2
y

2
+ dD̂−1(y)

dy
jpy + νpj ,

(2.23c)

p′
j = −∂H

∂j
= D̂−1(y)py, (2.23d)

whose boundary conditions are

y(±1/2) = R(T ), j (−1/2) = −j (1/2) = d/2. (2.24)

Similarly to the situation in classical mechanics, there appears
a relation between the canonical momenta and the partial
derivatives of the action S[j ] evaluated over the solution of
the variational problem (here, optimal profiles; there, real
trajectories),

∂G

∂d
= pj (1/2),

∂G

∂T
= 2ν

dR(T )

dT
pj ′(1/2), (2.25)

as shown in Appendix C.
The LDF (2.18) can be rewritten in the simple form

G(d) = −
∫ 1/2

−1/2
dx L = −1

2

∫ 1/2

−1/2
dx Q(y)p2

y, (2.26)

where y and py are evaluated over the solutions of the
canonical equations for the corresponding value of d. In
addition, we have made use of the expression of the Lagrangian
in terms of the canonical variables, L = Q(y)p2

y/2, as shown
in Appendix D. Note that the canonical equations (2.23) have a
particular solution with vanishing canonical momenta, py = 0
and pj = 0 for all x, which leads to an also vanishing G(d)
and thus to the average behavior. In fact, substitution of py = 0
and pj = 0 into (2.23) implies that y ′ = −j/D̂(y), j ′ = −νy,
which are equivalent to Eq. (2.11) for the average profiles. The
corresponding value of the average integrated dissipation dav

reads

dav = ν

∫ 1/2

−1/2
dx yav(x) = 2jav(−1/2). (2.27)

III. ANALYSIS OF THE LDF IN SOME LIMITING CASES

In the following sections, we further analyze the form of
the LDF in certain limits of interest, for which some general
results can be obtained. First, we focus on the behavior of G(d)
for small fluctuations around the average, where a quadratic
shape of the LDF is expected (corresponding to Gaussian
fluctuations). We then analyze the limit of weakly dissipative
systems, ν 	 1, for which an adequate perturbative expansion
allows us to obtain a nontrivial and interesting scaling form
for the LDF. Finally, we consider the opposite limit of strongly
dissipative systems, ν 
 1, for which a different scaling for
the LDF is found.

A. Small fluctuations around the average

As the average behavior corresponds to the particular
solution of the canonical equations corresponding to vanishing
momenta pj = 0, py = 0, small fluctuations can be thus
analyzed by assuming that the canonical momenta are small.
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Let us define the dimensionless parameter

ε = d − dav

dav
(3.1)

to measure the separation from the average integrated dissi-
pation dav. As we have just discussed, the canonical momenta
vanish for ε = 0. We write

y = yav + ε�y, j = jav + ε�j,
(3.2)

py = ε�py, pj = ε�pj ,

and linearize Eqs. (2.23) around the average solution; that is,
we only retain terms linear in ε. Then

�y ′ = Q(yav)�py − D̂−1(yav)�j − jav
dD̂−1(yav)

dyav
�y,

(3.3a)

�j ′ = −ν�y, (3.3b)

�p′
y = jav

dD̂−1(yav)

dyav
�py + ν�pj , (3.3c)

�p′
j = D̂−1(yav)�py. (3.3d)

The boundary conditions for these equations are �y(±1/2) =
0, �j (−1/2) = −�j (1/2) = dav/2. The solution of this sys-
tem of equations must be inserted into the expression (2.26)
for the LDF and yields

G(d) ∼ −ε2

2

∫ 1/2

−1/2
dx Q(yav)�p2

y (3.4)

for small fluctuations of the dissipation around the average.
Taking into account (3.1) and the large deviation principle
(2.15), Eq. (3.4) means that the probability of such small
fluctuations of the integrated dissipation d is approximately
Gaussian,

Pτ (d)
|ε|	1∝ exp

[
−Lτ

(d − dav)2

2d2
av

2
ν

]
, (3.5)

with 2
ν given by

2
ν =

(∫ 1/2

−1/2
dx Q(yav)�p2

y

)−1

. (3.6)

In this way, the Gaussian estimation for the standard deviation
of the dissipation, by looking at (3.5), is given by χ ≡
davν/

√
τL. In order to make a more detailed study of the

LDF, concrete functional dependencies of the diffusivity D,
the mobility σ and the dissipation R on the density ρ must be
considered. This is done in the following sections of the paper,
where we investigate a broad family of models for which the
transport coefficients can be explicitly obtained. On the other
hand, it is important to notice that Gaussian statistics is only
expected for small fluctuations around the average dissipation.
In general, the solution of the variational problem given by
the integration of Eq. (2.23), when inserted into (2.26), will
give rise to non-Gaussian statistics (that is, a nonquadratic
dependence of the LDF) for an arbitrary fluctuation of the
dissipated energy d.

B. Weakly dissipative systems, ν � 1

We proceed now by analyzing the canonical equations
(2.23) in the limit ν 	 1. Unsurprisingly, a regular pertur-
bation expansion in powers of ν breaks down, since it is not
possible to impose the necessary boundary conditions for the
current. This singularity of the elastic limit was to be expected
on a physical basis, as it is not possible to obtain the behavior of
weakly dissipative systems (ν 	 1) as a correction around the
conservative case ν = 0, for which ρ(x) = T and j (x) = 0.
Therefore, a singular perturbation analysis should be done,
looking for a suitable rescaling of the variables. Equation (2.8)
for the averages implies that

yav = R(T ) + O(ν), jav = −νR(T )x + O(ν2), ν 	 1.

(3.7)

The average current vanishes linearly in ν in the limit ν → 0+,
as expected. Moreover, the average dissipation, obtained by
combining Eqs. (2.27) and (3.7), is given by

dav = νR(T ) + O(ν2). (3.8)

Therefore, it is sensible to propose the following rescaling of
variables

j (x) = νψ(x), pj (x) = �ψ (x)

ν
, (3.9)

which is consistent with the canonical equations (2.23), since

ψ ′ = 1

ν
j ′ = 1

ν

∂H
∂pj

= ∂H
∂�ψ

, (3.10a)

�′
ψ = νp′

j = −ν
∂H
∂j

= −∂H
∂ψ

, (3.10b)

with the same HamiltonianH. In other words, Eq. (3.9) defines
a “canonical transformation” from the pair of canonical con-
jugate variables {j,pj } to {ψ,�ψ }, a transformation that heals
the singular behavior in the ν → 0+ limit. The Hamiltonian
can be now written as

H = 1
2Q(y)p2

y − y�ψ − νD̂(y)
−1

ψpy (3.11)

in the rescaled variables. Note that the transformation intro-
duced is essential to obtain the correct “dominant balance”
[33] to the lowest order. In particular, before the rescal-
ing, the term proportional to ypj was of the order of ν

and the term proportional to jpy was of the order of unity;
after the rescaling the orders of magnitude are interchanged,
the term proportional to y�ψ is of the order of unity while the
term proportional to ψpy is of the order of ν. We now start
from the zeroth-order rescaled Hamiltonian by putting ν = 0
in Eq. (3.11),

H0 = 1
2Q(y)p2

y − y�ψ, (3.12)
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from which we we arrive at

y ′ = ∂H0

∂py

= Q(y)py, (3.13a)

p′
y = −∂H0

∂y
= −1

2

dQ(y)

dy
p2

y + �ψ, (3.13b)

ψ ′ = ∂H0

∂�ψ

= −y, (3.13c)

�′
ψ = −∂H0

∂ψ
= 0. (3.13d)

In order not to clutter our formulas, we do not introduce
a different notation for the canonical variables, although
the approximate canonical equations (with H0) are different
from the exact ones (with H). We have only to remember
that our results are valid to the lowest order in ν. The
canonical equations (3.13) have to be solved with the boundary
conditions

y(±1/2) = R(T ), ψ(−1/2) = −ψ(1/2) = �/2,

(3.14)

where

� = d

ν
= R(T )

d

dav
(3.15)

is assumed to be of the order of unity; that is, d = O(ν)
or d/dav = O(1). Thus, our rescaling allows us to obtain a
solution for the optimal profiles for the density ρ by inverting
the relation y = R(ρ) and the current j = νψ for integrated
dissipations d very different from its average value dav.

It is worth noticing that ψ is a cyclic variable and its
conjugate momentum is thus constant, �ψ ≡ �ψ0 = const.
[see Eq. (3.13d)]; this fact allows us to obtain a closed
first-order differential equation for y(x) in the ν 	 1 limit.
Moreover, by recalling Eq. (2.25), we have that

�ψ0 = ∂G

∂�
, (3.16)

which gives the physical interpretation of this first integral of
the approximate canonical equations: It is the partial derivative
of the LDF with respect to the rescaled dissipation. The
Hamiltonian H0 is also constant, since it does not depend
explicitly on x, and combining (3.12) and (3.13a),

y ′2 = 2Q(y)(H0 + y�ψ0), y(±1/2) = R(T ). (3.17)

Once this is solved, the rescaled current ψ can be obtained
from (3.13c),

ψ ′ = −y, ψ(−1/2) = −ψ(1/2) = R(T )
d

2dav
, (3.18)

so that the two constants H0 and �ψ0 will be given in terms of
the temperature T and d/dav. There are no more constants to
be adjusted in the solution of Eqs. (3.17) and (3.18) due to the
parity properties of (y,ψ): y is an even function of x and ψ

is an odd function of x in the interval [−1/2,1/2]. Of course,
the average profiles yav(x) and jav(x) are reobtained from the
canonical equations by putting �ψ = 0 and py = 0 therein.
Equation (3.12) implies that H0 = 0 over the average profiles.

The simple form of the differential equation (3.17) allows
us to infer some of the properties of the optimal profile y(x)

associated with a given dissipation fluctuation in the limit
of weakly dissipative systems. First, notice that in general
the solution of Eq. (3.17) will be nonmonotonic, exhibiting
extrema in the interval x ∈ [− 1

2 , 1
2 ]. Moreover, taking into

account that the function Q(y) is positively defined, it follows
that the profile at the extrema will take an unique value,

y0 ≡ − H0

�ψ0
. (3.19)

Note that �ψ0 �= 0 for d �= dav and, moreover, it must have
a different sign that H0, that is, sgn(�ψ0) �= sgn(H0), since
y(x) > 0 ∀ x. Therefore, the optimal profile y(x) can only
have a single extremum (minimum or maximum) [34], which
is located at x = 0 because of symmetry reasons. By rewriting
Eq. (3.17) as

y ′2 = 2Q(y)H0

(
1 − y

y0

)
(3.20)

we conclude that the constant H0 and y0 − y(x) must have
the same sign ∀ x ∈ [− 1

2 , 1
2 ]. Thus, for H0 > 0 the profile

y(x) has a single maximum, y(x) > y(±1/2) = R(T ) ∀ x,
and thus d > dav. On the other hand, H0 < 0 implies a single
minimum, y(x) < R(T ) ∀ x and d < dav. All these properties
are confirmed below for particular examples, both analytically
and numerically.

Interestingly, the leading behavior for the LDF can be also
easily obtained in terms of the first integrals H0 and �ψ0. In
fact,

G(d) ∼ −1

2

∫ 1/2

−1/2
dx Q(y)p2

y = −1

2

∫ 1/2

−1/2
dx

y ′2

Q(y)
, (3.21)

and making use of Eq. (3.17),

G(d) ∼ −
(
H0 + �ψ0

∫ 1/2

−1/2
dx y(x)

)
= −(H0 + �ψ0�) = −H0

(
1 − �

y0

)
. (3.22)

Thus, the remaining task consists of writing the constants H0

and y0 (or equivalently H0 and �ψ0) in terms of the integrated
dissipation d and the temperature at the boundaries T . Once
this is done, the LDF follows from the simple expression given
by Eq. (3.22). Furthermore, we may obtain bounds for the
profile extremum y0 by taking into account that G(d) < 0
for d �= dav: (i) for H0 > 0 we already know that y0 is a
maximum and this implies that y0 > �, while (ii) for H0 < 0
we already know that y0 corresponds to a minimum and thus
y0 < �. Interestingly, we can also use Eq. (3.22) together
with Eq. (3.16) to obtain a simple relation between H0, G, and
∂G/∂d, namely,

−H0 = G + �
∂G

∂�
= G(d) + d

∂G(d)

∂d
= const. (3.23)

It must be stressed that this relation holds only in the weakly
dissipative system limit, in the sense that the macroscopic
dissipation coefficient is small, ν 	 1, and the considered
integrated dissipation verifies that d = O(ν).

For many systems of interest, the function Q(y) is typically
a homogeneous function of y of degree γ ,

Q(cy) = cγ Q(y), (3.24)
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where c is an arbitrary real number, that is, Q(y) ∝ yγ . This
type of dependence is common to many driven dissipative
media, as for instance the general family of models that we
study in Sec. IV [22,23] or different reaction-diffusion systems
[35]. However, it should be noted that not all systems obey
this homogeneity condition, e.g., symmetric simple exclusion
processes with dissipative dynamics have a nonhomogeneous
Q(y) [10,26]. By introducing the scaling

y(x) = R(T )Y (x), y0 = R(T )Y0, H0 = R(T )2−γ H̃,

(3.25)

Eq. (3.17) is transformed into

Y ′(x)2 = 2H̃Q(Y )

(
1 − Y (x)

Y0

)
, Y (±1/2) = 1. (3.26)

This is quite a natural transformation: We scale the variable y

with its value R(T ) at the boundaries; besides, we will be able
to find a physically relevant scaling variable for the dissipation
LDF. Accordingly, we also introduce

ψ(x) = R(T )�(x), � ′(x) = −Y (x), (3.27a)

�(−1/2) = �(1/2) = �

2R(T )
= d

2dav
. (3.27b)

The (even) solution of Eq. (3.26) has the form

Y = Y (x,H̃,Y0). (3.28)

As said before, there are no more integration constants when
solving Eqs. (3.26) and (3.27), since Y (�) is an even (odd)
function of x. The boundary condition is

Y (x = 1/2,H̃,Y0) = 1, (3.29)

which implies that Y0 = Y0(H̃); the scaled height Y0 is only
a function of the scaled Hamiltonian H̃. Now, taking into
account that the (odd) solution of Eq. (3.27) has the form

� = �(x,H̃,Y0), (3.30)

we have that

�(x = −1/2,H̃,Y0(H̃)) = d

2dav
. (3.31)

Therefore,

H̃ = H̃
(

d

dav

)
; (3.32)

that is, H̃ is a function only of the integrated dissipation d

relative to its average value dav.
This observation is used in what follows to find a simple

scaling form for the dissipation LDF. In fact, Eq. (3.22) can be
readily rewritten as

R(T )γ−2G(d) ∼ −
[

1 − d/dav

Y0(H̃)

]
H̃. (3.33)

The equation above gives the general scaling of the LDF in the
limit of weakly dissipative systems: Since both H̃ and Y0 are

only functions of d/dav,(
dav

ν

)γ−2

G(d) = −
[

1 − d/dav

Y0(H̃)

]
H̃ (3.34)

is only a function of d/dav [we have made use of Eq. (3.8) for
R(T )]. This is quite a strong result: It means that, for each value
of γ , all the curves of (d/dav)γ−2G(d) plotted as a function
of d/dav fall on a certain “master” curve for all values of the
dissipation coefficient ν, provided that ν 	 1 so we are dealing
with a weakly dissipative system. The only hypothesis is that
Q(y) must be a homogeneous function of y, with an arbitrary
degree γ , a rather general assumption satisfied in many cases
of interest (see below). That being said, it is important to
stress that the differential equation (3.26) for Y (x) contains
the function Q(y), which has γ as a parameter. Thus, both
(Y,�) and the right-hand side of Eq. (3.34) also contain γ

as a parameter; in principle, different physical models with
different functions Q(y) have different scaling functions. The
simplest situation appears for γ = 2; in that case, Eq. (3.34)
predicts that G(d) is only a function of the relative dissipation
d/dav, with no additional dependence on ν.

Finally, it is also interesting to note that the optimal profiles
y and ψ also have simple scaling forms. In fact, Eq. (3.28),
together with Eq. (3.25), implies that

y(x) = dav

ν
Y (x,H̃,Y0(H̃)). (3.35)

On the other hand, Eq. (3.30), together with Eqs. (3.26), yields
that

ψ(x) = dav

ν
�(x,H̃,Y0(H̃)). (3.36)

Therefore, both y(x) and ψ(x) multiplied by ν/dav [that is,
divided by R(T )], plotted as a function of x collapse onto
a single curve for constant d/dav for each value of γ and
all possible ν 	 1 in the weakly dissipative regime. From
Eqs. (3.35) and (3.36), the optimal profiles for the density and
the current are readily obtained, since y = R(ρ) and j = νψ .
On the other hand, the first integrals H0 and �ψ0 follow from
Eqs. (3.19) and (3.25),

H0 =
(

dav

ν

)2−γ

H̃, �ψ0 = −
(

dav

ν

)1−γ H̃
Y0(H̃)

. (3.37)

C. Strongly dissipative systems, ν � 1

We now proceed to analyze the limit ν 
 1, that is, the
limit of strongly dissipative dynamics. Equation (2.11) for
the average profile implies that yav(x) develops two boundary
layers of width �ν ∼ ν−1/2 close to x = ±1/2, where most of
the system energy is localized. This is reasonable on physical
grounds: For ν 
 1 one expects that the injection of energy
through the boundaries would be limited to a small region
near them: Most of the energy has been dissipated before
reaching the bulk of the system, effectively decoupling the
system into two almost-independent halves. This picture can
be used to simplify the integration of the system of canonical
equations (2.23): We can restrict ourselves to the half interval
x ∈ [−1/2,0] and use the boundary conditions

y(−1/2) = R(T ), j (−1/2) = d/2, y ′(0) = 0, j (0) = 0,

(3.38)

022110-8



TYPICAL AND RARE FLUCTUATIONS IN NONLINEAR . . . PHYSICAL REVIEW E 88, 022110 (2013)

because of the symmetry of the solutions (y even, j odd).
Now, by introducing the following rescaling (suggested by the
typical length scale �ν ∼ ν−1/2),

j = √
νψ, X = √

ν
(
x + 1

2

)
, py = √

ν�y, (3.39)

we arrive at the equivalent system of equations

dy

dX
= Q(y)�y − D̂−1(y)ψ, (3.40a)

dψ

dX
= −y, (3.40b)

d�y

dX
= −dQ(y)

dy

�2
y

2
+ dD̂−1(y)

dy
ψ�y + pj , (3.40c)

dpj

dX
= D̂−1(y)�y, (3.40d)

with the boundary conditions

y(X = 0) = R(T ),
dy

dX

∣∣∣∣
X=√

ν/2

= 0, (3.41a)

ψ(X = 0) = d

2
√

ν
, ψ(X = √

ν/2) = 0. (3.41b)

Interestingly, ν does not appear explicitly in the rescaled
canonical equations (3.40), but only in the boundary condi-
tions. Therefore, in the limit ν → ∞ we have to solve (3.40)
with the boundary conditions

y(X = 0) = R(T ), ψ(X = 0) = d̃, (3.42a)

lim
X→∞

dy

dX
= 0, lim

X→∞
ψ = 0, (3.42b)

where we have defined

d̃ = d

2
√

ν
, (3.43)

which is assumed to be of the order of unity. In fact, from
Eq. (2.17) one gets

d = 2ν

∫ 0

−1/2
dxy(x) = 2

√
ν

∫ √
ν/2

0
dX y(X), (3.44)

that is,

d̃ ∼
∫ ∞

0
dX y(X), ν 
 1. (3.45)

In this strongly dissipative regime, the canonical equations
themselves are not simplified, but a physically appealing
picture emerges: The system decouples in two independent
boundary shells of width O(

√
ν) close to the boundaries, where

the rescaled variable X = O(1) (we have restricted ourselves
to the semi-interval [−1/2,0]; the solution in [0,1/2] is found
by the symmetry arguments already used). Moreover, a simple
scaling can be derived for the LDF G(d), Eq. (2.26),

G(d) = −
∫ 0

−1/2
dxQ(y)p2

y ∼ −√
ν

∫ ∞

0
dXQ(y)�2

y,

(3.46)

where y and �y are the solutions of (3.40) with the boundary
conditions (3.42). Therefore, both y and �y depend on
R(T ) and d̃ through the boundary conditions and G(d) =√

νF (R(T ),d̃), where F is a certain function.

A particularly simple situation appears when both the
mobility σ (y) and the diffusivity D(y) are proportional to
some power of y, so that (i) the function Q(y) is homogeneous,
Q(y) ∝ yγ , as in Eq. (3.24), and (ii) the effective diffusivity
D̂ does not depend on y, D̂(y) = D̂ = const., as discussed in
Sec. II. In fact, this is the case for the general class of dissipative
models analyzed in Sec. IV. The average dissipation for ν 
 1
is

dav ∼ 2
√

νD̂R(T ) ⇒ d̃ =
√

D̂R(T )
d

dav
. (3.47)

The canonical equations (3.40) can be analyzed following
a line of reasoning similar to the one used in the weakly
dissipative system limit. Since the details are not necessary
for the work presented here, we only give the final result for
the LDF, that is,

G(d) = −
√

ν

D̂
F

(
[R(T )]γ−2 ,

d

dav

)
, (3.48)

where F is a certain scaling function. The scaling in Eq. (3.48)
is more complex than in the weakly dissipative system
limit. For instance, in the case γ = 2 we get that G(d) =√

ν/D̂F(1,d/dav), so the LDF curves, once rescaled by

(D̂/ν)1/2, collapse for all ν 
 1 when plotted as a function
of the relative dissipation d/dav. The factor

√
ν in front of

the scaling function accounts for the strong suppression of
the fluctuations of the dissipation that takes place in strongly
dissipative systems: For a given value of the relative dissi-
pation d/dav, the probability of such a fluctuation decreases
exponentially with

√
ν.

IV. LARGE DEVIATIONS OF THE DISSIPATED ENERGY

In order to investigate in detail the validity of the general
framework presented in previous sections, we now introduce
a broad class of dissipative lattice models with stochastic
microscopic dynamics that contain the essential ingredients
characterizing many dissipative media, namely: (i) nonlinear
diffusive dynamics, (ii) bulk dissipation, and (iii) boundary
driving. For the sake of simplicity, we present them for the
one-dimensional (1D) case, but the extension to an arbitrary
dimension is straightforward. First, the average profiles are ex-
plicitly obtained by solving the particularization of Eq. (2.11)
to our case. Afterwards, we analyze both typical and large
fluctuations of the dissipated energy, mainly by using singular
perturbation theory and advanced Monte Carlo simulations.

A. A general class of nonlinear driven dissipative models

We thus consider a system defined on a 1D lattice with
N sites. A configuration at a given time step p is given by
ρ = {ρl,p}, l = 1, . . . ,N , where ρl,p � 0 is the energy of the
lth site at time p, so the total energy of the system at this
time is Ep = ∑N

l=1 ρl,p; see Fig. 1. The dynamics is stochastic
and sequential and proceeds via collisions between nearest
neighbors. In an elementary step, a nearest neighbor pair of
sites (l,l + 1) interacts with probability

Pl,p(ρ) = f
(
�l,p

)∑L
l′=1 f

(
�l′,p

) , �l,p = ρl,p + ρl+1,p, (4.1)
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FIG. 2. (Color online) The model is defined on lattice sites, each
one characterized by an energy ρl . The dynamics is stochastic and
proceeds via random collisions between nearest neighbors where
part of the pair energy is dissipated to the environment and the rest
is randomly redistributed within the pair. Such dynamics mimics
at the mesoscopic level the evolution of a wide class of systems
characterized by a nontrivial competition between diffusion and
dissipation.

where f is a given function of the pair energy �l,p, and
L is the number of possible pairs. Clearly, L ∼ N , but
the particular relation depends on the boundary conditions
imposed (e.g., L = N + 1 for open boundaries while L = N

for the periodic case). Once a pair is chosen, a certain
fraction of its energy, namely (1 − α)�l,p, is dissipated to
the environment, mimicking the energy drain observed in
real dissipative media. The remaining energy α�l,p is then
randomly redistributed between both sites,

ρl,p+1 = zpα�l,p , ρl+1,p+1 = (1 − zp)α�l,p , (4.2)

with zp an homogeneously distributed random number in the
interval [0,1]. This microscopic random exchange mechanism
yields nonlinear diffusion at the mesoscale, being an accurate
representation of the coarse-grained local energy dynamics
in many dissipative systems. The above dynamics defines the
evolution of all bulk pairs, l = 1, . . . ,N − 1. In addition, and
depending on the boundary conditions imposed, boundary sites
might interact with thermal baths at both ends, possibly at
different temperatures TL (left) and TR (right). In this case the
dynamics is

ρ1,p+1 = zpα(ρ1,p + ρ̃L), ρN,p+1 = zpα(ρN,p + ρ̃R),

(4.3)

when the first (last) site interacts with its neighboring thermal
reservoir (see Fig. 2). Here ρ̃k , k = L,R is an energy randomly
drawn at each step from the canonical distribution at tempera-
ture Tk , that is, with probability prob(ρ̃k) = T −1

k exp(−ρ̃k/Tk)
(our unit of temperature is fixed by making kB = 1); see Fig. 1.
We may consider instead an isolated system with periodic
boundary conditions, such that L = N and Eqs. (4.1) and
(4.2) remain valid for l = 0 (l = N ) with the substitution
ρ0,p = ρN,p (ρN+1,p = ρ1,p).

The class of models here presented is an optimal candidate
to study dissipation statistics because: (a) one can obtain
explicit predictions for the LDF, and (b) its simple dynamical
rules allow for a detailed numerical study. The chances are that
our results remain valid for more complex dissipative media
with similar macroscopic dynamics. In what follows we apply
the theory developed in Secs. II and III to this general class of
dissipative models. More concretely, we restrict ourselves to a
choice for the collision rate function,

f (ρ) = 2

�(β + 3)
ρβ ; (4.4)

that is, f (ρ) ∝ ρβ , with β > −3, but otherwise arbitrary.
We have introduced the constant 2/�(β + 3) [36] for the
sake of convenience, as it simplifies the expressions of the

transport coefficients; see below. For β = 0, f (ρ) = 1 and
all the pairs collide with equal probability, independently of
their energy value. Thus, the dissipative generalization of the
KMP model introduced in Ref. [22] is recovered. For β = 1,
f (ρ) = ρ/3 and the colliding pairs are chosen with probability
proportional to their energy. The conservative case has been
recently analyzed in [37].

Over appropriate continuous time and length variables, the
time evolution of the energy density ρ(x,t) can be shown
to obey a fluctuating balance equation of the general form
(2.1) [23],

∂tρ(x,t) = −∂xj (x,t) + d(x,t),

where the current field j (x,t) and the dissipation field d(x,t)
follow the general scheme presented in Eqs. (2.2)–(2.5). The
macroscopic dissipation coefficient ν can be related to the
inelasticity of the underlying microscopic dynamics,

1 − α ≡ ν

2L2
. (4.5)

Thus, 1 − α ∝ L−2 in order to ensure that both diffusion
and dissipation take place over the same time scale in the
continuum limit. This scaling also ensures that the dissipation
noise, which scales as L−3/2, is subdominant against the
current noise, which scales as L−1/2 and has been proved
to be Gaussian. Moreover, the transport coefficients for this
family of models can be explicitly calculated, using a local
equilibrium approximation that works well for a wide range
of the model parameters [23]. The new dissipation coefficient
is given by

R(ρ) = ρ

∫ ∞

0
dr r5f (ρr2)e−r2 = ρβ+1, (4.6)

which gives the rationale behind the choice of the proportion-
ality constant in Eq. (4.4). On the other hand, the diffusivity is

D(ρ) = 1

6

∫ ∞

0
dr r7f (ρr2)e−r2 = β + 3

6
ρβ. (4.7)

Finally, the mobility σ (ρ) follows from the fluctuation-
dissipation relation,

σ (ρ) = 2ρ2D(ρ) = β + 3

3
ρβ+2. (4.8)

Of course, for β = 0 the values of the transport coefficients
of the dissipative version of the KMP model are recovered,
D(ρ) = 1/2, σ (ρ) = ρ2, and R(ρ) = ρ [22]. Interestingly, the
algebraic dependence of transport coefficients with the energy
density ρ appears ubiquitously in real systems. One example
is granular materials [38], where the density field ρ may be
assimilated to the local granular temperature. For the hard
sphere model, the average collision rate is proportional to the
square root of the granular temperature. Thus, this granular gas
case should correspond to β = 1/2, and in fact it is found that
D(ρ) ∝ ρ1/2 while the dissipative term goes as R(ρ) ∝ ρ3/2.
The latter is responsible for the algebraic decay with time
of the granular temperature (Haff’s law; ∝t−2 for large
times) observed in the homogeneous case when the system is
isolated [38].

Before going into the detail, it is convenient to write the
explicit form of the auxiliary variable y, related to the density
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ρ, defined in Eq. (2.5a). For our family of models,

y = ρ1+β, ρ = y
1

1+β , (4.9)

where we have made use of Eq. (4.6). Following the notation
introduced in Sec. II, we also need the “effective” diffusivity
D̂(y), given by Eq. (2.9), and the mobility σ̂ = σ (y), both
written in terms of y,

D̂(y) = D(ρ(y))
dρ

dy
= 3 + β

6(1 + β)
, (4.10a)

σ̂ (y) = σ (ρ(y)) = 3 + β

3
y

2+β

1+β . (4.10b)

Hence, as anticipated in Sec. II, while the “true” mobility
D(ρ) depends on ρ [see Eq. (4.7)], the “effective” diffusivity
is constant, D̂(y) = D̂. This allows us to calculate explicitly
the average profiles for the density and the current, using the
linearity on y of Eq. (2.11) above. The steady average solution
is thus

yav(x) = T 1+β
cosh

(
x
√

ν

D̂

)
cosh

√
ν

4D̂

, (4.11)

jav(x) = −D̂y ′
av = −T 1+β

√
νD̂

sinh
(
x
√

ν

D̂

)
cosh

√
ν

4D̂

. (4.12)

Moreover, the average density is readily obtained by combin-
ing (4.9) and (4.11),

ρav(x) = T

⎡⎣cosh
(
x
√

ν

D̂

)
cosh

√
ν

4D̂

⎤⎦
1

1+β

. (4.13)

The validity of these hydrodynamic predictions has been tested
via extensive numerical experiments in Ref. [23]. Notice that
one can define a unique natural length scale associated with
a given ν from the hydrodynamic profiles above, namely,

�ν =
√

D̂/ν. This is the length scale over which profiles

vary appreciably, and it decreases like ∼ν−1/2 as ν grows.
In fact, this observation suggests that, in the limit of strongly
dissipative systems ν 
 1, boundary energy layers develop
localized around the thermal baths, effectively decoupling
the system in two almost-independent parts, an observation
that we have already used in Sec. III C to obtain a simple
scaling relation for the dissipation LDF for strongly dissipative
systems ν 
 1.

We are interested in the probability of a given fluctuation
of the dissipated energy d, integrated over space and time, as
defined in Eq. (2.14). As described in Sec. II, this probability
obeys a large deviation principle Pτ (d) ∼ exp [+τLG(d)],
where the LDF G(d) is obtained by solving a variational prob-
lem for the so-called “optimal” profiles {ρ0(x; d),j0(x; d)},
which sustain the considered fluctuation, after an (additivity)
conjecture on the time independence of optimal paths. In fact,
G(d) is given by Eq. (2.26), with {y(x),py(x)} being the
solutions of the canonical equations (2.23) with the appropriate
boundary conditions,

y(±1/2) = T 1+β, j (−1/2) = −j (1/2) = d

2
, (4.14)

which are the particularization of Eq. (2.24) for our family of
models. The Hamiltonian introduced in Eq. (2.22a) must also
be particularized for the family of models we are considering,
for which (i) the effective diffusivity D̂ is constant, as given by
(4.10a), (ii) the auxiliary function Q(y), defined in Eq. (2.22b),
is

Q(y) = σ̂ (y)

D̂2
= 12(1 + β)2

3 + β
y

2+β

1+β . (4.15)

Thus, Q(y) is simply proportional to the mobility σ (y), being
a homogeneous function of degree γ ,

Q(y) = c yγ , γ = 2 + β

1 + β
, (4.16)

with c = 12(1 + β)2/(3 + β). The parameter γ varies from
the value γ = 2 for the case β = 0, which corresponds to the
dissipative KMP model, to γ = 1 for the limit β → ∞. The
main simplification with respect to the general case considered
in Sec. II comes from D̂ being constant and not a function of y.
Of course, just as in the general case, the canonical equations
have a particular solution with vanishing canonical momenta,
py = 0, pj = 0,

y ′ = − j

D̂
, j ′ = −νy, (4.17)

which is again the particularization of Eq. (2.8) for our family
of models, whose solution gives the average profiles (4.11)
and (4.12).

B. Typical fluctuations and Gaussian behavior

As described in Sec. III A, Gaussian fluctuations are
expected for small deviations from the average dissipation be-
havior, Pτ (d) ≈ exp[−Lτ (d − dav)2/(2d2

av
2
ν)]; see Eq. (3.5).

Following the general theory, small fluctuations correspond
to small canonical momenta, since the average behavior is
obtained for py = 0, pj = 0. We linearize the canonical
equations by introducing the parameter ε = (d − dav)/dav 	
1. Recalling Eq. (2.27), and making use of Eq. (4.11), the
average dissipation is

dav = ν

∫ 1/2

−1/2
dx yav(x) = T 1+β

√
4νD̂ tanh

√
ν

4D̂
. (4.18)

Writing the canonical variables as their averages plus a
linear correction in ε [see Eq. (3.2)], we find at first order in ε

the set of equations

�y ′ = Q(yav)�py − 1

D̂
�j, (4.19a)

�j ′ = −ν�y, (4.19b)

�p′
y = ν�pj , (4.19c)

�p′
j = 1

D̂
�py, (4.19d)

which particularizes Eq. (3.3) for our family of models.
The boundary conditions are �y(±1/2) = 0, �j (−1/2) =
−�j (1/2) = dav/2. The solution of this system must be
inserted into Eq. (3.6), which gives the variance of the Gaussian
distribution, χ2 ≡ d2

av
2
ν/Lτ . The canonical momentum �py
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is directly obtained by integrating Eqs. (4.19c) and (4.19d),

�py = K sinh

(
x

√
ν

D̂

)
, (4.20)

since �py must be an odd function of x as a consequence of
y being even. The constant K is to be determined with the
aid of the boundary conditions, but this can be done only after
solving Eqs. (4.19a) and (4.19b), having previously inserted
(4.20) into them. Substitution of Eq. (4.20) into Eq. (3.6) gives

2
ν = K2

[∫ 1/2

−1/2
dx Q(yav) sinh2

(
x

√
ν

D̂

)]−1

. (4.21)

In order to evaluate the integral, Eq. (4.16) for Q(y) must be
used, Q(y) ∝ yγ , with the parameter γ being a function of β,
1 < γ � 2. We now analyze the simplest choice β = 0, that
is, γ = 2, which corresponds to the dissipative version of the
KMP model introduced in [22]. In this case, the calculation is
straightforward and yields

2
ν = sinh(2

√
2ν) − 2

√
2ν

4
√

2ν sinh2(
√

2ν)
. (4.22)

Interestingly, 2
ν ∼ 1/3 independent of ν in the limit of

weakly dissipative systems ν 	 1. This can be understood
as a reminiscence of the scaling of G(d) derived in Sec. III.
In fact, Eq. (3.34) tells us that, for γ = 2, G(d) is just
a function of d/dav. In the Gaussian approximation, this
implies the convergence of 2

ν to a constant value in the
quasielastic limit as ν → 0+. On the other hand, 2

ν ∼
(2

√
2ν)−1 for ν 
 1, which is consistent with the suppression

of dissipation fluctuations previously found in the strongly
inelastic regime, as expressed by the general scaling of the
LDF given by Eq. (3.48). The same qualitative observations
apply to other values of β, though the calculation is more
convoluted.

We have tested the above predictions in standard Monte
Carlo simulations of the dissipative KMP model described in
this section for the particular case β = 0. Figure 3 shows the
probability density function (pdf) for the dissipated energy,
integrated over the whole system and over a long time τ

for many different values of the macroscopic dissipation
coefficient ν ∈ [10−3,103]. In order to minimize finite-size
effects in the measurements, we performed simulations for
systems with increasing size as ν grows, L ∝ �−1

ν , in such
a way that the number of lattice sites per unit typical
length is constant and large enough so we are within the
hydrodynamic regime. Furthermore, the integration time τ =
O(1) for the continuous, diffusive time scale over which
the hydrodynamic predictions should hold [39]. Standard
Monte Carlo simulations do not allow us to sample the tails
of the distribution, but they are useful to study the typical
fluctuations around the average we are interested in here
(e.g., a regime of 5 standard deviations around the average).
Figure 3 shows that, when plotted against the reduced variable
z ≡ (d − dav)/χ , the distribution Pτ (z) follows approximately
a normal distribution for typical fluctuations. Moreover, all
curves for different ν collapse in this regime. However, even
at this standard simulation level, it becomes apparent that the
tails of the distribution (corresponding to moderate dissipation
fluctuations) deviate from Gaussian behavior (see inset in
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FIG. 3. (Color online) Probability distribution for the dissipated
energy, integrated over space and a long time τ , plotted versus the
reduced variable (d − dav)/χ (of unit variance) for many different
values of ν ∈ [10−3,103], for the case β = 0. (Inset) Semilog plot
of the same data. In both cases the line is the normal distribution.
Gaussian statistics is observed for typical fluctuations, but the tails
already show signs of asymmetry.

Fig. 3), showing asymmetric tails and breaking the collapse
to Gaussian behavior observed for small fluctuations. The
analysis of the complete dissipation LDF in the following
section shows that the large fluctuations statistics is far from
Gaussian.

In order to further check our theory, we have also compared
the measured average dissipation and its variance with the
analytical results above, as a function of the macroscopic
dissipation coefficient ν, varying in a range which covers 6
orders of magnitude. Again, we see in Fig. 4 that the agreement
is excellent in all cases. In particular, the average dissipation
grows as ν (ν1/2) in the weakly (strongly) dissipative system
limit, while the variance remains constant for ν 	 1 but decays
as ν−1/2 for ν 
 1. Remarkably, the Gaussian approximation
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FIG. 4. (Color online) Measured average dissipation and its
variance as a function of ν for β = 0. The solid line corresponds
to the theoretical prediction for dav [Eq. (4.18)], while the dashed
line is the Gaussian estimation of the dissipation variance parameter,
2

ν ; see Eq. (4.22). The agreement is excellent in all cases. Notice, in
particular, the scaling with ν of both observables in the weakly and
strongly dissipative system limits.
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for the variance turns out to be an excellent estimator of the
empirical dissipation variance. For Lτ 
 1, large fluctuations
of the dissipation are very rare and most of the probability
concentrates in a region of width proportional to (Lτ )−1/2

around the average value, a regime described by the Gaussian
approximation.

C. Complete fluctuation spectrum for the integrated dissipation

We now investigate the whole spectrum of fluctuations
(both typical and rare) of the integrated dissipation. Thus, we
need to evaluate the LDF G(d) for arbitrary values of d, in
general not close to its average value dav, both analytically and
numerically. Exploring in standard simulations the tails of the
dissipation distribution associated to the nontrivial structure
of G(d) is a daunting task, since LDFs involve, by definition,
exponentially unlikely rare events; see Eq. (2.12). This has
been corroborated in Fig. 3, where the dissipation distribution
has been measured directly but we are unable to gather enough
statistics in the tails of the pdf to obtain clear-cut results in the
non-Gaussian regime. A recent series of works have addressed
this issue, developing an efficient method to measure directly
LDFs in many particle systems [25,40,41]. The method is
based on a modification of the dynamics so that the rare events
responsible for the large deviation are no longer rare [25], and
it has been developed for discrete- [25] and continuous-time
Markov dynamics [40]. For a recent review, which also
discusses Hamiltonian systems, see Ref. [41]. The method
yields the Legendre-Fenchel transform of the dissipation LDF,
which is usually defined as μ(s) = maxd [G(d) + sd] [6,42]. In
particular, if UC ′C is the transition rate from configuration C to
C ′ of the associated stochastic process, the modified dynamics
is defined as ŨC ′C(s) = UC ′C exp(s dC ′C), where dC ′C is the
energy dissipated in the elementary transition C → C ′. It can
be then shown [12,25,40,41] that the natural logarithm of the
largest eigenvalue of matrix Ũ (s) gives μ(s), which in turn
can be Legendre-transformed back to obtain a Monte Carlo
estimate of G(d). The method of Refs. [25,40,41] thus provides
a way to measure μ(s) by evolving a large number M of copies
or clones of the system using the modified dynamics Ũ (s). This
method is exact in the limit M → ∞, but in practice we are
able to simulate a large but finite population of clones, typically
M ∈ [103,104]. This introduces additional finite-size effects
related to the population of clones which must be considered
with care; see [14] for further discussion along this line. The
numerical results for the LDF in the following sections have
been obtained using these advanced Monte Carlo techniques.

1. Weakly dissipative systems, ν � 1

We now focus our attention on the analysis of LDF of
the integrated dissipation for weakly dissipative systems, in
which ν 	 1. In the general framework developed in Sec. II,
we found a scaling property for G(d), as given by Eq. (3.34),(

dav

ν

)γ−2

G(d) = −
[

1 − d/dav

Y0(H̃)

]
H̃, (4.23)

where γ = (2 + β)/(1 + β), Y0(H̃) is determined by
Eq. (3.29), and the constant H̃ depends only on the ratio d/dav,
as given by Eq. (3.31).

For the sake of concreteness, let us consider now the
simplest case β = 0, corresponding to the dissipative KMP
model introduced in [22]. Equation (3.26) for the rescaled
density profile now reads

Y ′(x)2 = 8H̃Y 2

(
1 − Y

Y0

)
, Y (±1/2) = 1, (4.24)

which can be explicitly integrated, with the solution

Y (x,H̃) = Y0 sech2(x
√

2H̃), Y0 = cosh2

√
H̃
2

, (4.25)

where we have already used that Y (x) must be an even function
of x. The rescaled current profile �(x) introduced in (3.27) is

�(x,H̃) = −
cosh2

√
H̃
2√

2H̃
tanh(x

√
2H̃). (4.26)

The optimal profiles for the density and the current can be now
readily written by combining the previous two equations with
Eqs. (3.35) and (3.36), yielding

ρ(x) = T Y (x) = T cosh2

√
H̃
2

sech2(x
√

2H̃), (4.27a)

j (x) = dav�(x) = −dav

cosh2
√

H̃
2√

2H̃
tanh(x

√
2H̃), (4.27b)

in terms of H̃ = H̃(d). We have taken into account that y ≡ ρ

for β = 0. Note that the curves ρ(x)/T = Y (x,H̃) for different
values of ν plotted as a function of x only depend on the relative
dissipation d/dav. Now, Eq. (3.31) implies that

d

dav
= 2�(−1/2) = sinh

√
2H̃√

2H̃
, (dav ∼ νT ), (4.28)

which gives the constant H̃ implicitly in terms of d/dav.
Finally, particularizing Eq. (4.23) for the case γ = 2 we are
analyzing (that is, β = 0), we obtain

G(d) =
√

2H̃ tanh

√
H̃
2

− H̃. (4.29)

Note that Eq. (4.28) for H̃(d) requires some careful analysis.
From the general discussion in Sec. III B, we have that H̃ > 0

for d > dav, and thus
√

2H̃ is a real number, while H̃ < 0

for d < dav and
√

2H̃ is imaginary. The latter case poses no
problem for G(d), which is always real valued. In fact, if we

write
√
H̃ = i

√
|H̃| we arrive at G(d) = −

√
2|H̃| tan

√
|H̃|
2 +

|H̃| for H̃ < 0. In the limit as d → 0, we have that H̃ →
−π2/2, and thus G(d) → −∞ as expected on a physical basis.

Equation (4.29) gives a simple scaling form for G(d),
independent of ν, for the linear (β = 0) dissipative KMP
model in the low-dissipation limit ν 	 1 [22]. As anticipated
by (4.23), the curve of G(d) vs the relative dissipation
d/dav is independent of ν in this quasielastic regime. This
scaling is fully confirmed in Fig. 5, in which we plot G(d)
for different, small values of ν ∈ [10−2,10−1] measured in
simulations of the dissipative KMP model using the advanced
Monte Carlo technique described at the beginning of this
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FIG. 5. (Color online) Scaling of the dissipation LDF in the
quasielastic limit (ν 	 1) for N = 50, T = 1 and varying β for
two different values of ν, namely ν = 0.01 (solid symbols) and
ν = 0.1 (open symbols). The solid lines are the MFT predictions
in each case. Curves have been shifted vertically for convenience,
G(dav) = 0, ∀ ν,β. For the case β = 0, the simulation curves are
plotted for d < dI , with dI being the inflection point at which G(d)
changes convexity in the limit ν 	 1 (see the text and also Fig. 6).
(Inset) Comparison of the theoretical G(d) for different β, where it
is clear that increasing β favors larger dissipation fluctuations.

section. In particular, the agreement between theory and
simulations is excellent in the broad fluctuation regime that
we could measure (see below). The dissipation LDF is highly
skewed with a fast decrease for fluctuations d < dav and no
negative branch, so fluctuation theorem-type relations linking
the probabilities of a given integrated dissipation d and the
inverse event −d do not hold [7,8]. This was, of course,
expected from the lack of microreversibility, a basic tenet
for the fluctuation theorem to apply [43]. The limit H̃ 
 1
corresponds to large dissipation fluctuations, where G(d) ≈
− 1

2 [ln(d/dav)]2, that is, a very slow decay which shows that
such large fluctuations are far more probable than expected
within Gaussian statistics [∼− 3

2 (d/dav)2]. In fact, such slow
decay implies the presence of an inflection point in G(d):
There is a value dI such that G′′(dI ) = 0. The convexity
of G(d) changes at d = dI , G′′(d) < 0 for d < dI , while
G′′(d) > 0 for d > dI . Specifically, Eqs. (4.28) and (4.29)
imply that dI /dav = 2.27672 (see middle-left inset in Fig. 6).
The complete measurement of nonconvex LDFs in computer
simulations is a challenge which remains unsolved. The reason
is that the advanced Monte Carlo method described above
to directly measure LDFs in simulations is based on the
Legendre-Fenchel transform for the LDF of interest, which is
not well behaved in regimes where the LDF is nonconvex [6].

To better understand this issue, recall that the Legendre-
Fenchel transform of the dissipation LDF can be written as

μ(s) = max
d

[G(d) + sd] = G[d∗(s)] + s d∗(s), (4.30)

where d∗(s) is solution of the equation

∂G(d)

∂d
= −s. (4.31)

Note that, mathematically, μ(s) is the Legendre-Fenchel
transform of −G(d), because the Legendre-Fenchel transform
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FIG. 6. (Color online) Scaling plot of the Legendre transform
of the dissipation LDF, μ(s) = maxd [G(d) + sd], in the quasielastic
limit ν 	 1 for N = 50, T = 1, β = 0 and two different values of ν,
namely ν = 0.01 (circles) and ν = 0.1 (triangles). The solid line is
the MFT prediction; see Eq. (4.34). Notice that μ(s) is defined up to
a threshold value sI = 0.878 458/dav, beyond which the Legendre-
Fenchel transform diverges. The top-right inset shows a zoom around
the threshold sI . This is related to the existence of an inflection point
in G(d) for dI = 2.276 72dav, that is, a point at which G′′(dI ) = 0 (see
middle-left inset), beyond which the dissipation LDF is nonconvex;
see discussion in main text.

is defined for convex functions [6]. The partial derivative of
G with respect to d is related to the first integral of Hamilton
equations �ψ0 [see Eq. (3.16)], which in turn can be obtained
from Eqs. (3.37) and (4.25), yielding

�ψ0 = ν
∂G

∂d
= −H̃

T
sech2

√
H̃
2

. (4.32)

Equivalently,

s = −∂G

∂d
= H̃

νT
sech2

√
H̃
2

. (4.33)

In this way, making use of Eqs. (4.28), (4.29), and (4.33), the
Legendre transform of the dissipation LDF can be written as

μ(s) = 2
√

2H̃ tanh

√
H̃

2
− H̃, (4.34)

in terms of H̃, which is obtained implicitly as a function of s

from Eq. (4.33). Note that the scaling of G(d) with d/dav

[see Eq. (4.23)] implies a similar collapse for μ(s) when
plotted as a function of s dav. Equation (4.31) has a single
solution d∗(s) for s < 0 and hence poses no problem. On the
other hand, due to the existence of an inflection point, G′(d)
exhibits a minimum at dI , increasingly smoothly afterward to
reach asymptotically zero in the limit d → ∞; see middle-left
inset in Fig. 6. Therefore, for s > 0 there exist two solutions
d∗

1 (s) � dI � d∗
2 (s) for Eq. (4.31), but only the first one

maximizes Eq. (4.30). This means that we cannot obtain G(d)
by inverse Legendre-transforming μ(s) for dissipations above
the inflection point dI = 2.276 72 dav. In fact, μ(s) is defined
up to a critical sI , such that sI = 0.878 45/dav [the slope of
−G(d) at the inflection point], beyond which μ(s) diverges.
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This can be seen by noticing the main properties of μ(s),
namely,

∂μ

∂s
= d ,

∂2μ

∂s2
= −

[
∂2G

∂d2

]−1

. (4.35)

Therefore, μ has a singularity at the value of the slope
sI corresponding to the inflection point dI , where ∂2μ/∂s2

diverges. The transition to nonconvex behavior thus implies
that we can only measure the statistics of rare dissipation
fluctuations up to dI using the cloning algorithm [25,40,41].
Figure 6 shows a comparison between the measured μ(s) for
two different values of ν 	 1 and the theoretical expectation,
up to the critical sI . The agreement is excellent in all cases, and
the collapse of μ(s) when plotted against s dav is confirmed.
The challenge remains to devise computational techniques
capable of exploring rare-event statistics even in regimes where
the associated LDF is nonconvex.

We may solve in a similar way the MFT for the integrated
dissipation for arbitrary values of the exponent β, though
mathematical expressions are far more convoluted than in the
illustrative case β = 0 described above. Figure 5 also shows
the dissipation LDF for other exponents β > 0, as well as the
results of numerical experiments in these cases. Qualitatively,
the results are equivalent to those discussed above, with a
ν-independent scaling form of the LDF in the ν 	 1 limit,
which goes rapidly to zero as d → 0 and has a relatively
fat tail for d 
 dav. This tail changes convexity (based on a
numerical analysis) at a large dissipation dI , which increases
with (a) ν for fixed β and (b) β for fixed ν. For β = 0, we
have dI /dav � 2.8 for ν = 1, while dI /dav > 6 for ν = 10. On
the other hand, G′′(d) < 0 in the considered region for β = 1.
For β = 0.5, the positive values of G′′(d) are so small that we
have chosen not to eliminate the points behind the numerical
inflection point, dI /dav � 3.2 for ν 	 1 and dI /dav � 5.1 for
ν = 1, although they roughly coincide with the values at which
the theoretical and the simulation curves begin to separate.
Furthermore, comparison with numerical results is excellent in
all cases. Interestingly (see inset in Fig. 5), increasing β results
in a broader dissipation LDF, meaning that large dissipation
fluctuations are enhanced as β grows away from the linear case
β = 0.

We have also measured the typical energy profile associated
to a given dissipation fluctuation for the case β = 0 (see
top panel in Fig. 7, finding also very good agreement with
the macroscopic fluctuating theory developed in this paper.
Remarkably, optimal profiles for varying ν 	 1 also collapse
for constant d/dav (all the simulations have been done with
the same value of the energy density at the boundaries T = 1),
as predicted by Eq. (4.27a). Furthermore, profiles exhibit the
x ↔ −x symmetry conjectured for simplifying the variational
problem in all cases, with a single extremum which can be
minimum or maximum depending on the value of the relative
dissipation d/dav, a property which was deduced from the
general formalism in Sec. III B. Interestingly, profiles associ-
ated with dissipation fluctuations above the average exhibit an
energy overshoot in the bulk. This observation suggests that
the mechanism responsible for large dissipation fluctuations
consists of a continued overinjection of energy from the
boundary bath, which is transported to and stored in the bulk

-0.4 -0.2 0 0.2 0.4
x

0

1

2

3

ρ 0(x
;d
)

FIG. 7. (Color online) (Top) Optimal energy profiles for varying
d/dav and β = 0, measured for ν = 10−3 (symbols) and ν = 10−2

(dashed lines) and MFT predictions (solid lines). Agreement is very
good in all cases. (Bottom) MFT prediction for the optimal density
profiles for varying d/dav.

before being dissipated. The same qualitative observations and
good agreement between theory and simulations is observed
for other values of the exponent β > 0; see Fig. 8. Notice in
particular the nice collapse of optimal profiles for different
values of ν 	 1 but equal relative dissipation. An interesting
observation is that optimal density profiles are less pronounced
the larger the nonlinearity exponent β is; see Fig. 8. This gives
a plausible explanation of the widening of G(d) as β increases:
For the same value of d/dav and increasing β, the associated
optimal profile is closer to the hydrodynamic solution the
larger β is, and hence its fluctuation cost decreases, having
a larger associated probability.

2. Arbitrary dissipation coefficient ν

For arbitrary values of ν � 1 no general scaling function
can be derived in principle for G(d). For each particular case,
the whole variational problem must be solved, which is often
analytically intractable. In order to further advance, we resort
now to a numerical evaluation of the optimal profiles, which are
used in turn to compute the dissipation LDF. Figure 9 shows the
theoretical predictions for G(d) for increasing, nonperturbative
values of ν, together with numerical results from simulations,
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FIG. 8. (Color online) Collapse of the optimal energy profiles
measured for N = 50 and T = 1 as a function of the relative
dissipation d/dav for different values of ν 	 1, namely ν = 10−2

(dotted lines) and ν = 10−1 (dashed lines), for β = 0 (top, green),
β = 0.5 (middle, red), and β = 1 (bottom, blue). Curves have been
shifted vertically for convenience; ρ = 1 at the boundaries for all ν,
β. The larger is β, the less pronounced the central overshoot is for
d > dav. Solid lines correspond to MFT predictions.

for different values of β. As for the weakly dissipative system
limit previously discussed, the agreement between theory and
measurements in Fig. 9 is quite good. We attribute the observed
differences between theory and simulation to finite size effects
in the latter, which are more apparent for large ν as compared to
the weakly dissipative system limit ν 	 1; compare with Fig. 5
(see also [23]). Such strong finite-size effects are expected
since the natural length scale associated with a given ν is

�ν =
√

D̂/ν. As follows from Eq. (4.11) and the associated
discussion, �ν decreases as ν grows so larger system sizes are
needed to observe convergence to the macroscopic limit. In
addition, finite-size effects related to the number of clones M

used for the sampling become an issue in this limit [14,29].

0 1 2 3 4 5 6
d/dav
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G
(d
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ν=10
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-1

ν=1
ν=10
β=1.0
β=0.5
β=0.0

FIG. 9. (Color online) Dissipation LDF for N = 50, T = 1 and
varying β = 0, 0.5, 1.0 and ν ∈ [10−2,10]. Curves for β = 0.5 and
0 have been shifted vertically for convenience [recall that G(dav) =
0 ∀ ν,β], so that β = 1, 0.5, and 0 correspond to top (blue), medium
(red), and bottom (green). The MFT predictions are plotted with
lines: solid for β = 1, dashed for β = 0.5, and dotted for β = 0.
As in Fig. 5, for a fixed ν increasing β results in larger dissipation
fluctuations.
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FIG. 10. (Color online) (Top) Optimal energy profiles as a
function of the relative dissipation measured for ν = 10, N = 50, and
T = 1 for the particular case β = 0. Dashed green lines correspond
to measurements while solid red lines are MFT predictions. (Bottom)
Measured optimal energy profiles for ν = 10, N = 50, and T = 1 and
varying values of the nonlinearity exponent β, namely β = 0 (dotted
green line), β = 0.5 (dashed red), and β = 1 (solid blue). Curves have
been shifted vertically for convenience, ρ = 1 at the boundaries for
all ν, β. For a given relative dissipation, energy localization around
thermal baths decreases as β increases.

In any case, the sharpening of G(d) as ν increases for
any β shows that large dissipation fluctuations are strongly
suppressed in this regime, as was argued for ν 
 1 on quite
general grounds in Sec. III C. In this strongly dissipative
system limit ν 
 1 the scale �ν → 0, and the system decouples
effectively into two independent boundary shells. Thus, the
energy is concentrated around the boundary baths, a picture
which agrees again with the analysis of Sec. III C. This
behavior is evidenced by the optimal energy profiles for a
given d measured for ν = 10 (see Fig. 10), in contrast to
the behavior observed for ν 	 1; see Figs. 7 and 8. The
agreement of the observed profiles with MFT predictions is
rather good, taking into account the non-negligible finite-size
effects affecting these measurements. The bottom panel in
Fig. 10 shows the measured energy profiles as a function
of the relative dissipation and for different values of the
nonlinearity exponent β. From this figure, it is clear that
for a given relative dissipation, energy localization around
thermal baths decreases as β increases. This suggests again
that, as in the ν 	 1 limit, the probability of a fixed relative
dissipation fluctuation d/dav, increases as β grows, giving rise
to a broadening of G(d) with β.

022110-16



TYPICAL AND RARE FLUCTUATIONS IN NONLINEAR . . . PHYSICAL REVIEW E 88, 022110 (2013)

V. SUMMARY AND CONCLUSIONS

In this paper we have developed a general theoretical
framework for calculating the probability of large deviations
for the dissipated energy in a general class of nonlinear driven
diffusive systems with dissipation. Our starting point is a
mesoscopic fluctuating hydrodynamic theory for the energy
density in terms of a few slow hydrodynamic fields, that
is, a fluctuating reaction-diffusion equation with a drift term
compatible with Fourier’s law and a sink term which can be
written in terms of the local energy density. The validity of
this hydrodynamic description can be demonstrated for a large
family of stochastic microscopic models [23], but it is expected
to describe the coarse-grained physics of many real systems
sharing the same main ingredients, namely: (i) nolinear
diffusive dynamics, (ii) bulk dissipation, and (iii) boundary
driving. From this fluctuating hydrodynamic description, and
using a standard path integral formulation of the problem,
we can write the probability of a path in mesoscopic phase
space, that is, the space spanned by the slow hydrodynamic
fields. Interestingly, the action associated with this path, from
which LDFs for macroscopic observables can be derived, has
the same simple form as in nondissipative systems. This is a
consequence of the quasielasticity of microscopic dynamics,
required in order to have a nontrivial competition between
diffusion and dissipation at the mesoscale [23].

We use the derived action functional to investigate the
LDF of the dissipated energy. The energy dissipated in a
nonconserving diffusive system is, together with the energy
current, the relevant macroscopic observable characterizing
nonequilibrium behavior. A simple and powerful additivity
conjecture simplifies the resulting variational problem for the
dissipation LDF, from which we arrive at Euler-Lagrange
equations for the optimal density and current fields that
sustain an arbitrary dissipation fluctuation. A Hamiltonian
reformulation of this variational problem greatly simplifies
the calculations, allowing us to analyze the general theory
in certain interesting limits. A perturbative solution thereof
shows that the probability distribution of small (that is, typical)
fluctuations of the dissipated energy is always Gaussian, as
expected from the central limit theorem. Moreover, a general
expression for the variance of the distribution in the Gaussian
approximation has been derived which compares nicely with
numerical results. On the other hand, strong separation from
the Gaussian behavior is expected for large dissipation fluctu-
ations, with a distribution which shows no negative branch,
thus violating the Gallavotti-Cohen fluctuation theorem as
expected from the irreversibility of the dynamics. Furthermore,
the dissipation LDF exhibits simple and general scaling forms
in the weakly and strongly dissipative system limits, which can
be analyzed in general without knowing the explicit solution
of the canonical equations.

We apply our results to a general class of diffusive lattice
models for which dissipation, nonlinear diffusion, and driving
are the key ingredients. The theoretical predictions, which can
be explicitly worked out in certain cases, are compared to
extensive numerical simulations of the microscopic models
(which cover both typical fluctuations and rare events), and
excellent agreement is found in all cases. In particular, the
simple scaling for the dissipation LDF in the weakly dissipative

system limit is fully confirmed for different values of the
nonlinearity exponent β, exhibiting nonconvex behavior for
large-enough fluctuations. Interestingly, in this limit ν 	 1
energy profiles associated with large dissipation fluctuations
exhibit an overshoot in the bulk resulting from an excess
energy injection from boundary baths. On the other hand,
in the strongly dissipative system limit ν 
 1 the typical
length scale goes to zero and the system decouples into two
almost-independent boundary shells, giving rise to a different
scaling form for the LDF and a strong suppression of the
dissipation fluctuations in this regime.

In summary, our results show that a suitable generalization
of MFT [9] is capable of describing in detail the fluctuating
behavior of general nonlinear driven dissipative media. In
this scheme, the dissipation LDF follows from a variational
problem whose solution also gives the optimal profiles that the
system has to sustain to achieve the considered fluctuation. The
proposed framework is very general, as MFT is based only on
(a) the knowledge of the conservation laws governing a system,
which make it possible to write the balance equations for the
fluctuating fields, and (b) a few transport coefficients appearing
in these fluctuating balance equations. This opens the door to
further general results in the nonequilibrium statistical physics
of dissipative media. In particular, it would be interesting to
explore the existence of phase transitions and spontaneous
symmetry breaking at the fluctuating level therein, in a way
similar to the phenomenon reported in conservative systems
[28,29]. Moreover, as the relevant magnitudes characterizing
nonequilibrium behavior in dissipative systems are both the
dissipated energy and the current, it would be worth analyzing
the joint fluctuations of these two observables within the MFT
approach.

ACKNOWLEDGMENTS

We acknowledge financial support from Spanish Ministerio
de Ciencia e Innovación Projects No. FIS2011-24460 and No.
FIS2009-08451, EU-FEDER funds, and Junta de Andalucı́a
Projects No. P07-FQM02725 and No. P09-FQM4682.

APPENDIX A: VARIATIONAL PROBLEM
WITH A LAGRANGIAN INCLUDING

SECOND-ORDER DERIVATIVES

Let us analyze a variational problem in which the “action”
is defined as the integral of a “Lagrangian” with second-order
derivatives, that is,

S[j ] =
∫ x2

x1

dx L(j,j ′,j ′′). (A1)

The action S[j ] is a functional of the profile j (x) in the fixed
interval x1 � x � x2. The variational problem arises when one
looks for the “optimal” profile j (x) for which the functional
S[j ] is an extremum. For the sake of concreteness, let us
consider a problem similar to the one analyzed in this paper:
We are interested in calculating G defined as

G = − min
j (x)

S[j ]. (A2)
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Then we consider the variation δS of the functional when a
given profile j (x) is slightly changed to j (x) + δj (x),

δS =
∫ x2

x1

dx

(
∂L
∂j

δj + ∂L
∂j ′ δj

′ + ∂L
∂j ′′ δj

′′
)

. (A3)

Now, we take into account that

δj ′ = d

dx
δj, δj ′′ = d2

dx2
δj, (A4)

in order to integrate by parts: (i) once the term proportional to
δj ′, (ii) twice the term proportional to δj ′′. We arrive thus at

δS =
{[

∂L
∂j ′ − d

dx

(
∂L
∂j ′′

)]
δj + ∂L

∂j ′′ δj
′
}x2

x1

+
∫ x2

x1

dx

[
∂L
∂j

− d

dx

(
∂L
∂j ′

)
+ d2

dx2

(
∂L
∂j ′′

)]
, (A5)

where [f ]x2
x1

= f (x2) − f (x1). By analogy with the case of
the usual Lagrangian with only first-order derivatives, we
introduce the generalized momenta as

pj = ∂L
∂j ′ − d

dx

(
∂L
∂j ′′

)
, pj ′ = ∂L

∂j ′′ . (A6)

In this way, the boundary term has the usual form and Eq. (A5)
can be rewritten as

δS = [pjδj + pj ′δj ′]x2
x1

+
∫ x2

x1

dx

[
∂L
∂j

− d

dx

(
∂L
∂j ′

)
+ d2

dx2

(
∂L
∂j ′′

)]
δj.

(A7)

The extremum condition is δS = 0. If the values of j and j ′
are prescribed at the boundaries, both δj and δj ′ vanish at x1,2

and the boundary term vanishes. Then, as δj is arbitrary for
x1 < x < x2, the “optimal” profile solution of the variational
problem verifies the Euler-Lagrange equation

d2

dx2

(
∂L
∂j ′′

)
− d

dx

(
∂L
∂j ′

)
+ ∂L

∂j
= 0, (A8)

which is a fourth-order differential equation. Interestingly,
Eq. (A8) can be written as dpj/dx = ∂L/∂j , which is formally
identical to the usual Euler-Lagrange equation for Lagrangians
with only first-order derivatives. The boundary conditions for
the Euler-Lagrange equation are the prescribed values of j

and j ′ at the boundaries, four conditions for the fourth-order
differential equation. However, in physical problems there are
sometimes fewer prescribed quantities at the boundaries than
necessary. In that case, as pointed out by Lanczos [32], the
extremum condition δS = 0 provides the “missing” boundary
conditions. For instance, if we only have fixed values of j ′ at
the boundaries (as in the LDF problem we have dealt with in the
main text), δj ′(x1) = δj ′(x2) = 0, but δj (x1) and δj (x2) are free
parameters. Equation (A7) still implies the Euler-Lagrange
equation but also that

pj (x1) = pj (x2) = 0. (A9)

The generalized momentum conjugate of the variable that is
not fixed at the boundary must vanish: The solution of the
variational problem verifies then the Euler-Lagrange equation
(A8) with the prescribed values of j ′ at the boundaries and

the “extra” conditions provided by Eq. (A9). In this way, we
obtain the four conditions needed to determine completely the
solution of the Euler-Lagrange equation.

The function G defined in Eq. (A2) depends on the values
of j and j ′ at the boundaries. Making use of Eq. (A7) and
taking into account that the optimal profile j (x) verifies the
Euler-Lagrange equation, we get

δG = −pj,2δj2 − pj ′,2δj
′
2 + pj,1δj1 + pj ′,1δj

′
1. (A10)

We have introduced the notation pj,i = pj (xi), δji = δj (xi),
i = 1,2 and so on. Equation (A10) implies that

pj,2 = −∂G

∂j2
, pj ′,2 = −∂G

∂j ′
2

,

(A11)

pj,1 = ∂G

∂j1
, pj ′,1 = ∂G

∂j ′
1

.

Equation (2.25) of the main paper is the particularization of
this result for the case (i) x2 = −x1 = 1/2; (ii) solutions of the
Euler-Lagrange equation with well-defined parity, in which
pj,2 = pj,1, pj ′,2 = −pj ′,1; and (iii) the boundary conditions
of Eq. (2.20).

APPENDIX B: THE CONSTRAINED
VARIATIONAL PROBLEM

We have to find the optimal current profile j0(x; d), that
is, the solution of the variational problem (2.18), with the
constraint that the integrated dissipation d has a definite value,
as given by (2.17). Therefore, we must use the Lagrange
multiplier procedure [31,32], that is, look for an extremum
of

Sλ[j ] = S[j ] − λ

∫ 1/2

−1/2
dx (j ′ + d) (B1)

=
∫ 1/2

−1/2
dx Lλ(j,j ′,j ′′), (B2)

where

Lλ(j,j ′,j ′′) = L(j,j ′,j ′′) − λ(j ′ + d), (B3)

with λ being the Lagrange multiplier. The extremum of Sλ

follows from two conditions: (i) δSλ = 0 and (ii) ∂Sλ/∂λ = 0.
The first condition implies

d2

dx2

(
∂Lλ

∂j ′′

)
− d

dx

(
∂Lλ

∂j ′

)
+ ∂Lλ

∂j
= 0, (B4)

which is the Euler-Lagrange equation for a Lagrangian Lλ

containing second-order derivatives (see Appendix A 4).
Condition (ii) leads to the constraint on the integrated
dissipation, given by Eq. (2.17). The boundary conditions for
the Euler-Lagrange equation are

j ′(±1/2) = −νR(T ), pλj (±1/2) = 0. (B5)

We have introduced the generalized momentum pj conjugate
of j , for the new Lagrangian Lλ, as

pλj = ∂Lλ

∂j ′ − d

dx

(
∂Lλ

∂j ′′

)
. (B6)

These boundary conditions arise from (1) the values of the
density at the boundaries, which are prescribed, ρ(±1/2) = T ;
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and (2) the condition δSλ = 0, which provides the additional
needed conditions when there are not enough values of the
variables fixed at the boundaries (see Appendix A, and also
[32]).

APPENDIX C: MAPPING THE CONSTRAINT
TO BOUNDARY CONDITIONS

The respective generalized momenta conjugate of the
current, pλj for the Lagrangian Lλ and pj for the original
Lagrangian L, verify

pλj = pj − λ. (C1)

We have taken into account the relation between Lλ and L
[Eq. (B3)] and the definition of the momenta [Eq. (A6)].
Moreover, the Euler-Lagrange equation (B4) implies that

d2

dx2

(
∂L
∂j ′′

)
− d

dx

(
∂L
∂j ′

)
+ ∂L

∂j
= 0; (C2)

that is, we also obtain the Euler-Lagrange equation corre-
sponding to the original Lagrangian L. Now, the boundary
conditions can be written as

j ′(±1/2) = −νR(T ), pj (±1/2) = λ, (C3)

which follow from Eqs. (B5) and (C1). The above result
implies that our constrained variational problem can be
mapped onto a unconstrained variational problem with the
original Lagrangian L, its associated Euler-Lagrange equation
(C2), and the boundary conditions (C3). The unknown value
λ for the generalized momentum pj at the boundaries must be
determined by imposing the prescribed value of the integrated
dissipation, as given by Eq. (2.17), that is, λ = λ(d). In
particular, λ = 0 is equivalent to imposing no restrictions on
the integrated dissipation, so that we should recover (as we
will see later) the average profiles and dissipation in this case.
In this sense, a nonzero value of λ = pj (±1/2) is a measure
of the departure from the average hydrodynamic behavior.

On physical grounds, we expect the corresponding optimal
density profile to be an even function of x, because of
the symmetry of our system around the center x = 0. In
fact, the Euler-Lagrange equation (C2) admits solutions with
well-defined parity. Since the Lagrangian has the symmetry
property L(−j,j ′, − j ′′) = L(j,j ′,j ′′), Eq. (C2) has solutions
with j being an odd function of x, which implies that y

(and therefore ρ) is an even function of x. From now on,
we restrict ourselves to these symmetric solutions of the
variational problem. Thus, Eq. (2.17) reduces to

d = 2j (−1/2; d) = −2j (1/2; d), (C4)

so the boundary conditions for the Euler-Lagrange equation
boil down to

j ′(±1/2; d) = −νR(T ), j (−1/2; d) = −j (1/2; d) = d/2 ,

(C5)

that is, much simpler than Eq. (C3). This follows from pj being
an even function of x for the solutions with well-defined parity
we are considering. In this way, symmetry considerations
lead to the simpler boundary conditions (C5), which in turn
allow us to get rid of the Lagrange multiplier λ. In summary,
we have mapped our original variational problem with the

subsidiary condition that the dissipation has a given value
to an unconstrained variational problem, with the original
Lagrangian L(j,j ′,j ′′) and prescribed values of j and j ′ at
the boundaries.

Once the optimal current profile is obtained, the optimal
density profile can be calculated from the balance equation
(2.16). Of course, the density profile so obtained obeys the
boundary conditions ρ(±1/2; d) = T . It must be stressed that
the Euler-Lagrange equation (C2) with boundary conditions
(C5) gives the correct solution to the constrained variational
problem when the optimal profiles have a well-defined parity.
Nevertheless, one cannot rule out the existence of symmetry-
breaking solutions without well-defined parity, since in general
a variational problem may have multiple solutions [31]. If that
were the case, one would solve the more complex variational
problem comprising the Euler-Lagrange equation (C2) with
the boundary conditions (C3), where the Lagrange multiplier
λ = λ(d) is determined by imposing the constraint (2.17). We
note, however, that numerical evidence strongly supports the
validity of symmetric solutions, as discussed in the main text.

The LDF G(d) depends on d and T through the boundary
conditions (recall that its T dependence has been omitted
in notation for simplicity). Particularizing Eq. (A10) for the
solutions with well-defined parity,

δG(d) = pj (1/2)δd + 2pj ′ (1/2)ν
dR(T )

dT
δT , (C6)

which offers a geometric interpretation for the values of the
generalized momenta at the boundaries. They are directly
related to the partial derivatives of the LDF,

∂G

∂d
= pj (1/2),

∂G

∂T
= 2ν

dR(T )

dT
pj ′(1/2). (C7)

Note that pj and pj ′ are even and odd functions of x,
respectively.

APPENDIX D: HAMILTONIAN FORMULATION
OF THE PROBLEM

In general, the Euler-Lagrange equation for the optimal
profile j (x; d) is a rather involved fourth-order differential
equation. We can go to the equivalent “Hamiltonian” descrip-
tion, in which an equivalent set of four coupled first-order
differential equations is obtained. In the following, we sketch
the procedure to introduce the Hamiltonian for a Lagrangian
with higher-order derivatives [31,32], adapted to the present
case. As said above, the Euler-Lagrange equation is a fourth-
order differential equation, and we should have two canonical
coordinates and their two corresponding canonical momenta.
The first canonical coordinate is the current j , and we choose
the second one to be y, which is proportional to j ′, as given
by Eq. (2.16). This choice is suggested by the structure of
the Lagrangian in Eq. (2.18). It is worth recalling that the
density profile can be directly obtained from y by making use
of its definition, Eq. (2.5a). Next, we introduce the canonical
momenta py and pj conjugate to y and j , respectively. They
stem from Eq. (A6), which gives directly pj , while py is given
by

py ≡ −ν
∂L
∂j ′′ , (D1)
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taking also into account the relation between y and j ′,
Eq. (2.16). The Hamiltonian is then introduced in the usual
way,

H ≡ y ′py + j ′pj − L ≡ y ′py − νypj − L. (D2)

After some algebra, we get

H = 1

2
Q(y)p2

y − D̂−1(y)jpy − νypj , (D3a)

Q(y) ≡ σ̂ (y)

D̂2(y)
, (D3b)

where we have defined the auxiliary function Q(y), with
Q(y) > 0 for all y. We have also made use of the explicit
expression for py ,

py = D̂(y)
j + D̂(y)y ′

σ̂ (y)
, (D4)

which follows from its definition (D1), and of the Lagrangian

L = σ̂ (y)p2
y

2D̂2(y)
= 1

2
Q(y)p2

y, (D5)

written in terms of the canonical variables, with the aid
of Eq. (D4). As usual, H is a function of (y,j,py,pj ),
which satisfies a set of four “canonical” first-order differential
equations,

y ′ = ∂H
∂py

= Q(y)py − D̂−1(y)j, (D6a)

j ′ = ∂H
∂pj

= −νy, (D6b)

p′
y = −∂H

∂y
= −dQ(y)

dy

p2
y

2
+ dD̂−1(y)

dy
jpy + νpj , (D6c)

p′
j = −∂H

∂j
= D̂−1(y)py, (D6d)

which are equivalent to the fourth-order Euler-Lagrange
equation (C2). Note that, as is usual in physics and in order
not to clutter our formulas, we have dropped the subindex
0 for the optimal profiles, which are now solutions of the
above canonical equations; the same notation is used for the
canonical variables in the Hamiltonian and for the solutions of
Hamilton equations. On the other hand, as the Hamiltonian

does not depend explicitly on x, it is a first integral of
the system (D6): H = const. over any of its solutions. This
property may be used to simplify the integration of the
system.

In general, for a given value of the dissipation d, we have
to solve the system of equations (D6) with the boundary
conditions

y(±1/2) = R(T ), j (−1/2) = −j (1/2) = d/2, (D7)

which follow from Eqs. (C5) and the definition of y, Eq. (2.16)
Again, we have to look for solutions of Eq. (D6) with well-
defined parity, that is, y and j are even and odd functions of
x, respectively (and, therefore, py is odd and pj even). The
solution of these canonical equations is then inserted into the
expression of the LDF G(d), which can be written in terms of
the canonical variables as

G(d) = −
∫ 1/2

−1/2
dx L = −1

2

∫ 1/2

−1/2
dx Q(y)p2

y, (D8)

by combining Eqs. (2.18) and (D5). In this way, we obtain
the LDF for an arbitrary value of the integrated dissipation d

within the Hamiltonian formulation of the variational problem.
Equation (D8) shows clearly that the most probable (average)
profiles correspond to a solution with py = 0 for all x, for
which G(d) vanishes. By substituting py = 0 in Eqs. (D6c)
and (D6d), we also have that pj = 0 for all x. Moreover,
Eqs. (D6a) and (D6b) simplify to Eq. (2.8); that is, the average
profiles are reobtained. Therefore, there is always a solution
of the canonical equations (D6) with identically vanishing
canonical momenta, which corresponds to the average solution
of the hydrodynamic equation (2.8) [44]. These average
hydrodynamic profiles {ρav,jav} lead to the average value of
the integrated dissipation,

dav = ν

∫ 1/2

−1/2
dx R(ρav) = ν

∫ 1/2

−1/2
dx yav(x)

= 2jav(−1/2). (D9)

This discussion is consistent with the one below Eq. (C3),
which was done within the framework of the equivalent
Lagrangian description. Fluctuations involve nonzero values
for the canonical momenta, whose magnitude is then a measure
of the departure from the average behavior (d − dav)/dav.
Equations (D8) and (D9) are identical to Eqs. (2.26) and (2.27)
of the main text.
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