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Crystal growth inside an octant
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We study crystal growth inside an infinite octant on a cubic lattice. The growth proceeds through the
deposition of elementary cubes into inner corners. After rescaling by the characteristic size, the interface becomes
progressively more deterministic in the long-time limit. Utilizing known results for the crystal growth inside a
two-dimensional corner, we propose a hyperbolic partial differential equation for the evolution of the limiting
shape. This equation is interpreted as a Hamilton-Jacobi equation, which helps in finding an analytical solution.
Simulations of the growth process are in excellent agreement with analytical predictions. We then study the
evolution of the subleading correction to the volume of the crystal, the asymptotic growth of the variance of the
volume of the crystal, and the total number of inner and outer corners. We also show how to generalize the results
to arbitrary spatial dimension.
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I. INTRODUCTION

Shapes of growing objects are scientifically fascinating and
the understanding of these shapes is crucial for numerous
technological applications. Microscopic processes underlying
growth phenomena are usually stochastic, with rules depend-
ing on the detailed local structure of the interface, so it is not
surprising that even the simplest growth rules lead to interfaces,
which are seemingly impossible to describe theoretically. An
important relatively recent theoretical insight is the realization
that microscopic details often play a secondary role. This has
led to the devising of continuum descriptions for fluctuations
of growing interfaces. The most well known such framework
was initiated by Kardar, Parisi, and Zhang (KPZ) who
proposed a continuum theory based on a nonlinear stochastic
partial differential equation [1], arguably the simplest equation
accounting for the crucial growth ingredients—nonlinearity,
stochasticity, irreversibility, and locality. The KPZ equation
provides a unifying framework for probing fluctuations in a
large class of growing interfaces. A comprehensive description
of fluctuations of one-dimensional growing interfaces has
subsequently emerged (see Refs. [2,3] and references therein),
and a key recent breakthrough is a solution of the 1 + 1
dimensional KPZ equation [4]. Crystal growth typically occurs
in three dimensions, however. Microscopic growth models
and continuum theories are straightforward to formulate
in arbitrary dimension, yet in 2 + 1 dimensions the KPZ
equation remains inaccessible to current analytical approaches.
Therefore fluctuations of two-dimensional growing interfaces
are still poorly understood.

Fluctuations characterize the local structure of the in-
terfaces, but they tell nothing about the overall shape of
an interface, more precisely the shape on the scale greatly
exceeding length scales associated with fluctuations. Such
overall shapes, known as limiting shapes, usually become
clearly identifiable in the long-time limit. In the simplest case
when growth begins from a flat substrate, the limiting shape is
trivial—the interface remains on average flat, and only speed
and fluctuations matter. In most applications the interfaces
are curved. Curved limiting shapes have been analytically
determined only in a few cases. For instance, the limiting shape

is still unknown for the two-dimensional Eden-Richardson
growth model, although it has been proved that the limiting
shape exists and that it is roughly but not exactly circular [5];
in contrast, fluctuations of the interface of Eden clusters
are understood (and belong to the 1 + 1 dimensional KPZ
universality class).

There are almost no analytical results for the limiting shapes
of curved two-dimensional growing interfaces. All known
tractable examples correspond to anisotropic growth in 2 + 1
dimensions. The term anisotropic means that the first two
dimensions, the transversal directions along the interface, arise
in a greatly distinct manner. An anisotropic 2 + 1 dimensional
growth model can usually be reformulated as a collection
of identical solvable 1 + 1 dimensional growth models with
some nonintersecting condition between neighboring inter-
faces. One solvable anisotropic growth model is the 2 + 1
dimensional Gates-Westcott model [6], which mimics vicinal
growing surfaces; this model has been solved by a free-fermion
mapping [7]. Average interface profiles are also known for two
other anisotropic 2 + 1 dimensional growth models [8,9]. In
the most basic isotropic growth models limiting shapes are not
known.

One of the first nontrivial limiting shapes was found in the
context of the corner growth model [10]. In this model, one
starts with an infinite empty corner, namely with a quadrant
on the square lattice; the growth occurs by deposition of
1 × 1 squares into available inner corners. The limiting shape
consists of two ballistically receding half lines constituting the
original boundary, which are connected by a piece of parabola⎧⎪⎨

⎪⎩
x = 0 y > t
√

x + √
y = √

t 0 < x,y < t

y = 0 x > t

. (1)

This two-dimensional corner growth model has also played
a crucial role in the analytical description of the statistics
associated with 1 + 1 dimensional KPZ growth [11,12].

In this paper we consider the natural generalization of
the corner growth process to three dimensions, where the
growth occurs inside an octant, and to higher dimensions.
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We also study the behavior of integral characteristics, e.g., the
volume of the crystal (we look at the average and the standard
deviation), and the total numbers of inner and outer corners on
the interface.

The rest of this paper is organized as follows. The growth
process is defined in Sec. II where we also recall known
two-dimensional results. In Sec. III we investigate the three-
dimensional case, namely we consider crystal growth on the
cubic grid inside the octant. We propose an evolution equation
describing the asymptotic evolution of the interface. In Sec. IV
we interpret this equation as the Hamilton-Jacobi equation,
and we use an equivalent description based on the canonical
Hamilton equations to derive the solution. Generalizations to
higher dimensions are discussed in Sec. V. The behavior of
the average volume of the crystal (both the leading asymptotic
and the subleading correction) and volume fluctuations are
investigated in Sec. VI. The growth of the total numbers of
inner and outer corners is analyzed in Sec. VII. In Sec. VIII
we summarize what we understand, emphasize the remaining
challenges, and discuss open problems.

II. MODEL

Consider an infinite corner, viz. a positive octant in the cubic
lattice, which is initially empty. The growth process begins at
time t = 0 and proceeds by depositing elementary 1 × 1 × 1
cubes into available inner corners. We set the deposition rate
to unity without loss of generality. Initially there is one inner
corner available, so the smallest nonempty crystal is unique.
After this first deposition event, there are three available inner
corners that can accommodate the next cube, so the uniqueness
is lost. For the crystal shown in Fig. 1 there are six places to
insert a new cube.

The above dynamics can be defined in arbitrary spatial
dimension. The models are of course lattice models; more
specifically they are defined on hypercubic lattices. (One can
consider other lattices, but then one should choose a different
infinite initially empty region depending on lattice structure.)

The interpretation is a matter of taste: Rather than talking
about crystal growth through the deposition of cubes into
inner corners, we can think about crystal melting through the

FIG. 1. (Color online) A three-dimensional crystal of volume 4.
A new cube can be deposited to six places.

FIG. 2. (Color online) Melting of a three-dimensional crystal
initially occupying a negative octant; a view from the (1,1,1)
direction.

desorption of cubes from outer corners of an initially fully
filled octant. These two processes are dual. A typical realiza-
tion of the melting process is presented in Fig. 2. The interface
is stochastic, yet as the crystal grows (or equivalently as the
melted volume increases), the interface becomes smoother
and ultimately approaches a deterministic limiting shape.

The two-dimensional corner growth process can be un-
derstood by a mapping onto the one-dimensional totally
asymmetric simple exclusion process (TASEP), which is a
collection of particles undergoing a biased random walk under
the constraint that there is at most one particle per site [10].
(This mapping is also helpful in computing fluctuations of the
interface [11,12].) The representation in terms of the TASEP
becomes evident after one rotates the corner counterclockwise
by an angle of π/4 around the origin and then projects the
interface onto the one-dimensional lattice (see Fig. 3) in such
a way that bonds of the interface are identified with sites
on the one-dimensional lattice. We now put a particle on a
site (leave a site empty) if the corresponding segment on the
interface goes along the codiagonal (diagonal). Each site on
the one-dimensional lattice is occupied by at most one particle,
the particles hop to the right with unit rate, and the lattice gas
is clearly identical to the TASEP. The average density ρ(z,t)
evolves according to the (inviscid) Burgers equation

∂ρ

∂t
+ ∂[ρ(1 − ρ)]

∂z
= 0.

Solving this Burgers equation and expressing the limiting
shape through the density [13] one arrives at a remarkably
simple parabolic limiting shape (1).

y x

z

FIG. 3. An example of the interface of the two-dimensional
crystal rotated by π/4 and the corresponding particle configuration.
A deposition event is shown, and the corresponding hop of a particle
to a neighboring vacant site is highlighted.
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In three dimensions, the corner growth model can be
mapped onto an infinite set of coupled TASEPs in the plane,
also known as the zigzag model [14]. Unfortunately, no
exact solutions are known for such planar interacting particle
processes. The generalization to higher dimensions also seems
exceedingly difficult. We therefore choose a different strategy,
namely, we try to directly write an evolution equation for the
limiting shape without using intermediate mappings onto a
particle process.

In two dimensions, this program can be fulfilled, viz. the
limiting shape y(x; t) satisfies the evolution equation [15–17]

yt = yx

yx − 1
, (2)

where yt = ∂y

∂t
,yx = ∂y

∂x
. The solution to Eq. (2) is indeed given

by (1). Our task is to generalize Eq. (2) to three and higher
dimensions.

III. THREE DIMENSIONS

We have not derived a generalization Eq. (2) to three
dimensions. In such a situation, one can proceed in a less
systematic manner by guessing an evolution equation. The
criteria are the simplicity and the validity of the basic symmetry
properties. More precisely, we seek an evolution equation for
z(x,y; t) that

(i) reduces to the proper analogs of Eq. (2) on the
boundaries x = 0 and y = 0, viz. zt = zy/(zy − 1) on the first
boundary and zt = zx/(zx − 1) on the second, and

(ii) is invariant in form under the x ↔ z and y ↔ z

coordinate exchanges.
Needless to say, we anticipate that the governing equation is

a first-order partial differential equation (PDE) of the form zt =
F (zx,zy) similar to the two-dimensional case. The simplest
guess for the right-hand side is the product of terms similar to
those appearing in Eq. (2)

zt = zx

zx − 1

zy

zy − 1
. (3)

On the boundaries x = 0 and y = 0 we have zx = −∞ and
zy = −∞, and hence (3) reduces to zt = zy/(zy − 1) and zt =
zx/(zx − 1) on these boundaries. Yet Eq. (3) does not possess
the required invariance under the exchange of variables.

We eventually found an equation satisfying the above
criteria. This equation has a very unusual form

zt = zx

zx − 1

zy

zy − 1

[
1 − 1

zx + zy

]
. (4)

Our search was facilitated by numerical experiments in which
we studied the movement of various planes. (More precisely,
we initially investigated a generalized version of the hypercube
stacking model of Forrest and Tang [18], which allows for
tuning the slopes zx and zy of the flat interface.) Any plane
moves (on average) with a constant speed. We thus measure
the speed and compare it with the prediction of Eq. (4).
For the plane zx = zy = −1 [this is the plane orthogonal
to the (1,1,1) direction] we found zt ≈ 0.378, which is
in excellent agreement with the prediction zt = 3

8 implied
by (4). We looked at several other planes, e.g., for the plane

zx = − 1
2 , zy = −2 the measured velocity is again within 1%

of the prediction zt = 14
45 implied by (4).

A. Arguments in favor of Eq. (4)

Consider a one-parameter family of evolution equations

zt = zx

zx − 1

zy

zy − 1

zx + zy + λ

zx + zy

. (5)

This family contains Eqs. (3) and (4) as special cases.
The invariance under the exchange of x and y is manifest.
Further, Eq. (5) reduces to zt = zy/(zy − 1) [respectively to
zt = zx/(zx − 1)] when x = 0 (respectively y = 0). Hence we
only need to test the invariance under the exchange of x and
z. We use standard relations between the derivatives

zt = − xt

xz

, zx = 1

xz

, zy = −xy

xz

. (6)

By inserting (6) into (5) we arrive at

xt = xz

xz − 1

xy

xy − 1

xy − λxz − 1

xy + xz

.

On the other hand, the invariance under the exchange of x and
z requires that we should obtain

xt = xz

xz − 1

xy

xy − 1

xy + xz + λ

xy + xz

.

Comparing these two equations we conclude that the only
member of the family of equations (5) that satisfies the
invariance requirements corresponds to λ = −1, which is
precisely the evolution equation (4). In particular, Eq. (3),
which corresponds to λ = 0, is not invariant under the
exchange of x and z.

Instead of a one-parameter family of evolutionary equa-
tions (5) let us now analyze an infinite-parameter family of
evolutionary equations

zt = zx

zx − 1

zy

zy − 1

⎡
⎣1 +

∑
n�1

λn

(zx + zy)n

⎤
⎦ . (7)

The invariance under x ↔ z exchange leads to

1 + λ1

xy + xz

+ λ2

(xy + xz)2
+ λ3

(xy + xz)3
+ · · ·

= 1 − 1

xy + xz

− (λ1 + 1)xz

xy + xz

+ λ2x
2
z

(xy − 1)(xy + xz)

− λ3x
3
z

(xy − 1)2(xy + xz)
+ · · ·

This is valid for arbitrary xy, xz only when λ1 = −1 and λn =
0 for n � 2.

We can further generalize the class of equations (7), namely
by replacing the term in the square brackets in (7) with an
arbitrary Laurent series

zt = zx

zx − 1

zy

zy − 1

∞∑
n=−∞

λn

(zx + zy)n
. (8)

Terms with n < 0 cannot be present, however, since on the
boundaries x = 0 and y = 0 we must recover zt = zy/(zy − 1)
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and zt = zx/(zx − 1); this requirement additionally fixes the
parameter λ0 = 1 and hence we are back to (7). Therefore
Eq. (4) is the only appropriate evolution equation among the
family of equations (8).

B. Caveats

The evolution equation (4) is not a unique evolution
equation satisfying the necessary requirements. For instance,
we have found another equation

zt = zx

zx − 1

zy

zy − 1

[
1 + 1

zxzy − zx − zy

]
(9)

that obeys all necessary conditions. Equation (9) looks more
complicated than (4), although it can be rewritten in a very
simple (even if a bit unusual) form if we replace derivatives
by their reciprocal values:

1

zt

= 1 − 1

zx

− 1

zy

. (10)

This equation admits a very simple analytical solution, which
is a straightforward generalization of the solution in the two-
dimensional setting

√
x + √

y + √
z = √

t . (11)

This is verified by a direct substitution. The analytical solution
of (4) is different from (11) as we shall see.

A comparison of predictions of (4) and (9) is strongly
in favor of Eq. (4). For instance, consider the volume
of the crystal. For the surface (11) corresponding to the
evolution equation (9), the volume is t3/90. It is much more
difficult to compute the volume corresponding to the evolution
equation (4). An exact solution to Eq. (4) is rather cumbersome;
namely it is parametric, so one must compute an unwieldy
integral. The answer is

V3 = v3t
3, v3 = 3π2

211
= 0.014457428321908 · · · . (12)

The amplitude substantially exceeds 1
90 corresponding to the

interface (11); numerically v3 ≈ 0.01472(3).
Further, let us look at the intersection of the interface and

the diagonal [in the (1,1,1) direction]. One can numerically
determine this quantity with a good precision. Analytically,
this point corresponds to

x = y = z = wt. (13)

For the surface (11), we have w = 1
9 , while w = 1

8 , on
the interface predicted by Eq. (4). Interestingly, we can
extract w = 1

8 without knowing the limiting shape. The high
symmetry of the diagonal implies that

xy = xz = yz = yx = zx = zy = −1 (14)

on the diagonal (13). Indeed, all the derivatives in (14) must be
equal due to symmetry. To establish the numerical value we use
zx = xz together with the identity xz = 1/zx to conclude that
(zx)2 = 1 from which (the derivatives are obviously negative)
we arrive at (14).

Plugging (14) into (4) we find that zt = 3
8 on the diagonal.

Projecting the vector (0,0,zt ) onto the diagonal (1,1,1)
direction we find that the distance of the diagonal point

on the interface from the origin is equal to 3
8

1√
3
t . To

determine x = y = z we need to project again; this yields w =
3
8

1√
3

1√
3

= 1
8 .

Numerically w ≈ 0.1261(2). This result is close to the
theoretical prediction w = 0.125 and clearly differs from
w = 1

9 = 0.111 . . . that characterizes the interface (11).
In principle, one can use Eqs. (4) and (9) as building blocks

to obtain one-parameter families of equations satisfying the
necessary requirements. Two such families are obtained by an
additive and a multiplicative combination of (4) and (9). An
additive family is

zt = zx

zx − 1

zy

zy − 1

[
1 − 1 + c

zx + zy

− c

zxzy − zx − zy

]
, (15)

and a multiplicative family is

zt =
[

1 − 1
zx+zy(

1 − 1
zx

)(
1 − 1

zy

)
]1+c [

1 − 1

zx

− 1

zy

]c

. (16)

For the additive class of evolution equations (15), the choice
c ≈ 0.079 provides the best fit for the numerically determined
value of w [19]; for the multiplicative class of evolution
equations (16), the optimal choice of the mixing parameter
is c ≈ 0.074. The corner interface growth is presumably
described by a simple equation that does not contain an
anomalously small mixing parameter. This in conjunction with
our numerical results suggest that Eq. (4) describes corner
interface evolution; at the very least, the true evolution equation
is not an ugly deformation like (15) or (16) with a very small
mixing parameter.

Using Eqs. (4) and (10) separately, one can construct a few
more families of invariant equations. One such one-parameter
series family

zt = zx

zx − 1

zy

zy − 1

[
1 − 1

zx + zy

]
(1 − zx − zy)n

1 + (−zx)n + (−zy)n

extends the presumably correct Eq. (4) corresponding to n = 1
to arbitrary real n. Setting n = 1 + log3(8w) would match the
observed value of w; for w = 0.126, one gets n ≈ 1.00725. A
similar extension of (10) is

1

zt

=
[

1 − 1

zx

− 1

zy

]
1 + (−zx)n + (−zy)n

(1 − zx − zy)n
.

Choosing n = 3 + log3 w would match the observed value of
w, so for w = 0.126 one gets n ≈ 1.114.

We can even construct multiparameter families of evolution
equations by simply multiplying any number of additional
factors of the form

(1 − zx − zy)ni + αi(zxzy)ni/3

1 + (−zx)ni + (−zy)ni + βi(zxzy)ni/3

onto the right-hand side of (15) or (16), where each ni , αi , and
βi is a free parameter. Each such factor strictly preserves the
invariance properties of the evolution equation. In principle,
we could obtain nearly perfect theoretical agreement over the
entire simulated interface profile by suitably tuning parameters
in these equations. The tradeoff is that the growth equations
are becoming quite unsightly. That our numerical simulations
persistently show such minute discrepancies from a beautiful
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analytical description (4) is puzzling [20]. Even for careful
simulations of the hypercube stacking model [21], tiny (yet
apparently significant) inconsistencies between our simple
Eq. (4) and simulation data persist. Theoretically explaining
the precise source of these discrepancies is an intriguing open
question.

C. Simulation results

For 2 + 1 dimensional corner growth, we saved the
simulated interface profile at times ti = 20000/2(9−i)/2 with
i = 0, . . . ,9, giving a total of ten data points. We ran forty
independent realizations of the growth process until at least
time t = 7071. We then continued running twenty of those
realizations until at least time t = 10000, and we ran ten
of those realizations all the way to t = 20000. Each of our
measurements of a quantity at time ti is therefore an ensemble
average. The error bar for a measurement is computed as the
standard error of the measured quantity over all forty, twenty,
or ten realizations that were run for at least that long.

It is possible that discrepancies between our simulation
results and the predictions that follow from Eq. (4) can be
attributed to rather slow convergence to the asymptotic state.
Flat and curved interface geometries have been proven to have
differing fluctuation statistics in 1 + 1 dimensions [22], and we
are operating in the much less understood 2 + 1 dimensional
setting. A similarly slow convergence to asymptotic behavior
occurs in various well-understood one-dimensional growth
models (see, e.g., Refs. [23–25]). For example, for 1 + 1
dimensional corner growth, the intersection of the interface
with the (1,1) direction evolves according to [3,11,12]

x(t) = t

4
+ t1/3 ξ, (17)

where ξ is a stationary random variable with 〈ξ 〉 > 0. Thus
averaging over many realizations gives an effective velocity
weff − 1

4 ∼ t−2/3.
For growth inside a three-dimensional corner, we therefore

anticipate that weff − 1
8 ∼ t−α , with a certain (theoretically

unknown) exponent α. Very extensive simulations for flat
interfaces in 2 + 1 dimensions indicate that α is close to 0.77
[26–29]. On the other hand, extrapolation from our simulations
for t � 20000 suggests that α ≈ 0.74. This difference in
exponent estimates suggests that t = 20000 is still outside the
long-time regime for growth inside a three-dimensional corner
(see Fig. 4). It has proved difficult to obtain consistent esti-
mates of the KPZ scaling exponents from simulations even in
the simpler case of growing flat interfaces in 2 + 1 dimensions
(see, e.g., Refs. [30–32]). This slow approach to the asymptotic
behavior can be the source of the discrepancy between our
simulation results and the theoretical prediction (4) for the
interface profile.

As an additional numerical test, consider the intersection
of the interface with the plane x = y. From our analytical
solution of (4), we obtain

x

t
= 1

2

z

t
− 3

4

(z

t

)2/3
+ 1

4
, (18)

which agrees well with simulations (Fig. 5).

FIG. 4. (Color online) Convergence of the diagonal interface
speed versus t−0.77. This quantity appears to settle at a value slightly
greater than 0.126, which is roughly 0.9% off from our prediction
0.125.

IV. ANALYTICAL DETERMINATION OF THE
LIMITING SHAPE

In this section we solve the evolution equation (4) and
determine the limiting shape predicted by Eq. (4). Equation (4)
is solvable since it is a first-order (hyperbolic) PDE. Such
equations can be treated using the method of characteristics
[33]. The method of characteristics is especially efficient
in applications to linear and quasilinear hyperbolic PDEs.
Equation (4) is fully nonlinear and in such cases the analysis in-
volving the method of characteristics tends to be cumbersome.
Fortunately, there is a shortcut in the present situation: We
can employ the Hamilton-Jacobi formalism [34,35]. A trick is
to interpret z = z(x,y; t) as an action. Then (4) becomes the
Hamilton-Jacobi equation, zt + H = 0, with Hamiltonian

H = − p1

p1 − 1

p2

p2 − 1

[
1 − 1

p1 + p2

]
. (19)

Here p1 and p2 are momenta, i.e., the spatial derivatives of the
action

p1 = ∂z

∂x
≡ zx, p2 = ∂z

∂y
≡ zy. (20)

FIG. 5. (Color online) Scaled interface profile, z/t versus x/t ,
along the diagonal x = y at different times.
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The canonical Hamilton equations for coordinates are

dx

dt
= ∂H

∂p1
,

dy

dt
= ∂H

∂p2
. (21)

The canonical Hamilton equations for momenta show that
both momenta are constant [this is obvious since the
Hamiltonian (19) does not depend on the coordinates].
Plugging (19) into (21) we arrive at

dx

dt
= A ≡ 1

(p1 − 1)2

p2

p2 − 1

[
1 − 1

p1 + p2

]

− p1

p1 − 1

p2

p2 − 1

1

(p1 + p2)2
(22)

and

dy

dt
= B ≡ 1

(p2 − 1)2

p1

p1 − 1

[
1 − 1

p1 + p2

]

− p1

p1 − 1

p2

p2 − 1

1

(p1 + p2)2
. (23)

In our concrete problem, the action variable z plays the
same role as x and y; the separate treatment of x, y, and
z in Eq. (4) is just a matter of choice. To determine z we
integrate the Hamilton-Jacobi equation zt + H = 0 to yield
z = −Ht + F (x,y), and then recalling (20) we fix F (x,y) =
p1x + p2y. Integrating Eqs. (22) and (23) and combing these
results with z = −Ht + p1x + p2y we get

x

t
= A,

y

t
= B,

z

t
= C (24)

with A(p1,p2) and B(p1,p2) defined in (22) and (23), and
C(p1,p2) given by

C = Ap1 + Bp2 − H. (25)

For any fixed time, Eq. (24) gives an exact parametric
representation of the limiting shape of the interface; the plot
of the interface is presented in Fig. 6. More precisely, (24)
represents the nontrivial part of the interface, with parameters
varying in the range −∞ < p1,p2 < 0. For every fixed

FIG. 6. (Color online) The interface (24).

(p1,p2) we can think of x(t), y(t), and z(t) as a point growing
along a line, this line is merely a characteristic of the original
PDE.

As a check of consistency we note that for p2 = −∞,
we have A = (p1 − 1)−2,B = 0,C = p2

1(p1 − 1)−2. In other
words, the nontrivial part of the intersection of the inter-
face (24) and the y = 0 plane is

x

t
= 1

(p1 − 1)2
,

z

t
= p2

1

(p1 − 1)2

from which we get
√

x + √
z = √

t , i.e., we recover the two-
dimensional result [cf. (1)].

It seems impossible to exclude the parameters (p1,p2) and
find an explicit expression for the interface (24) in terms
of x/t,y/t,z/t . Some lines on the surface defined by (24)
can be explicitly presented, however. Consider for instance
the intersection of the surface (24) and the plane x = y. On
this plane p1 = p2 and therefore this line has a parametric
representation

x

t
= y

t
= 1

2
P 3 + 3

4
P 2 ,

z

t
= (P + 1)3, (26)

where P = (p1 − 1)−1. Excluding the parameter P we re-
cast (26) into the announced result (18).

To compute the volume of the crystal

V3 =
∫∫

dx dy z (27)

we need to integrate over the region

0 < x < t, 0 < y < t,
√

x + √
y �

√
t .

Using the exact solution (24) we reduce (27) to V3 = v3t
3,

with amplitude v3 given by

v3 =
∫ 0

−∞

∫ 0

−∞
dp1 dp2 C

∂(A,B)

∂(p1,p2)
.

Using expressions for A(p1,p2),B(p1,p2),C(p1,p2) from
Eqs. (22), (23), (25) and computing the Jacobian ∂(A,B)

∂(p1,p2)
we reduce v3 to a cumbersome but elementary integral. We
computed this integral with the help of MATHEMATICA and
obtained the value given in (12).

V. HIGHER DIMENSIONS

We want to generalize Eqs. (2) and (4). In four dimensions
the governing equation for the height h(x,y,z; t) has the form

ht =
(
1 − 1

hx+hy

)(
1 − 1

hy+hz

)(
1 − 1

hz+hx

)
(
1 − 1

hx

)(
1 − 1

hy

)(
1 − 1

hz

)(
1 − 1

hx+hy+hz

) . (28)

This equation is manifestly symmetric in x, y, z and it reduces
to proper equations when one of the derivatives (hx, hy , or hz)
goes to −∞. Therefore it suffices to test that (28) is invariant
under the exchange of x and h. Substituting

ht = − xt

xh

, hx = 1

xh

, hy = −xy

xh

, hz = − xz

xh

(29)

we indeed establish the required invariance.
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Generally in d + 1 dimensions, the evolution equation for
the height h(x1, . . . ,xd ; t) reads

ht =
d∏

a=1

∏
1�i1<···<ia�d

(
1 − 1

hi1 + · · · + hia

)(−1)a

, (30)

where hi ≡ ∂h
∂xi

.
Let us first determine the diagonal point

x1 = · · · = xd = h = wdt.

The derivatives in (30) are h1 = · · · = hd = −1 at this point
and therefore

ht =
d∏

a=1

(
1 + 1

a

)(−1)a(d

a)

at the diagonal point. The same argument as before gives

wd = 1

d + 1

d∏
a=1

(
1 + 1

a

)(−1)a(d

a)
. (31)

The already known values, w1 = 1/4 and w2 = 1/8, are
followed by

34

45
,

310

410
,

318 56

247
,

328 521

298
,

328 556 78

2202
,

5126 736

2399
.

The interface defined by Eq. (30) apparently lies above the
hypersurface

√
x1 + · · · + √

xd+1 = √
t, h ≡ xd+1, (32)

which would be a solution if the governing equation for the
interface were given by the analog of (10)

1

ht

= 1 − 1

h1
− · · · − 1

hd

, (33)

which also satisfies the required invariance properties. Us-
ing (31) we found that wd > (d + 1)−2, where the latter value
is implied by (33), in dimensions 2 � d � 50. We believe that
this bound is generally valid, and it seems that the asymptotic
behaviors are very different, namely wd ≈ 0.1

d+1 provides a good
fit of the large d behavior of wd given by (31), although we
haven’t deduced this asymptotic.

We ran 400 independent realizations of four-dimensional
(4D) corner growth. We measured the middle point on the
interface at times ti = 1024/2(9−i)/2 with i = 0, . . . ,9, so that
the velocity at each of the ten time values was averaged
over forty independent runs. Our data yield w3 ≈ 0.0806 (see
Fig. 7), within roughly 2% of the prediction 34/45 of Eq. (31)
and 29% greater than the prediction 1/42 based on (32). At the
least, the interface defined by Eq. (30) provides a much more
accurate description of 3 + 1 dimensional corner growth than
does (32).

To determine an exact solution of Eq. (30) we use again the
Hamilton-Jacobi technique. In four dimensions, for instance,
the Hamiltonian is

H = −
(
1 − 1

p1+p2

)(
1 − 1

p2+p3

)(
1 − 1

p3+p1

)
(
1 − 1

p1

)(
1 − 1

p2

)(
1 − 1

p3

)(
1 − 1

p1+p2+p3

) . (34)

The nontrivial part of the interface is

xj

t
= Aj , j = 1,2,3;

h

t
= B. (35)

FIG. 7. (Color online) Convergence of the diagonal interface
speed for 4D corner growth versus t−0.74, where the exponent −0.74
gives the best linear fit over the simulated time values. This quantity
appears to approach 0.0806 as t → ∞, which is strikingly close to
our prediction 34/45 = 0.0791 . . . .

Here

Aj

H
= 1

pj (1 − pj )
+ 1

(p1 + p2 + p3)(1 − p1 − p2 − p3)

+ 1

(pj + pj+1)(pj + pj+1 − 1)

+ 1

(pj + pj−1)(pj + pj−1 − 1)
(36)

with j = 1,2,3 (the indexes j ± 1 are taken modulo 3).
Further,

B

H
= 1

1 − p1
+ 1

1 − p2
+ 1

1 − p3
− 1

+ 1

1 − p1 − p2 − p3

+ 1

p1 + p2 − 1
+ 1

p2 + p3 − 1
+ 1

p3 + p1 − 1
. (37)

The intersection of this interface with the two-dimensional
plane x1 = x2 = x3 is a line that can be parametrically
represented as

x

t
= (11q2 + 6q + 1)(2q + 1)2

8(q + 1)4(3q + 1)2

(38)
h

t
= 9q4(2q + 1)2

4(q + 1)4(3q + 1)2
,

where q = −p1 = −p2 = −p3 varies on the interval (0,∞).
The plot of the line (38) is given in Fig. 8.

VI. VOLUME FLUCTUATIONS

In previous sections, we investigated the limiting shape
of the surface of the growing crystal. The growth laws are
stochastic, so at any time there are deviations from the
deterministic limiting shape. Fluctuations of the interface are
rather fully understood only in two dimensions (the growth
inside the quadrant), and even in that case fluctuations of the
shape were mostly probed (see Ref. [4] and references therein).
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FIG. 8. (Color online) The height h/t of the 4D growing crystal
versus x/t with the constraint x = y = z; we averaged over 100
realizations for t = 128 and over 10 realizations for t = 1024.

Here we briefly discuss fluctuations of the volume of the crystal
in arbitrary dimension.

The growing crystal has a typical size, which scales linearly
with time t . Therefore the average volume is 〈V 〉 = vdt

d in
the leading order. To estimate the subleading correction to the
average volume and the asymptotic behavior of the variance
of the crystal volume, we use heuristic arguments to argue that
the average volume grows as

〈V 〉 = vdt
d + adt

d−1+ζ/z + · · · (39)

while the variance grows according to

〈V 2〉c ≡ 〈V 2〉 − 〈V 〉2 = bdt
d−3+(d+3)/z (40)

in the leading order. Here ζ and z are the well-known exponents
[2], which are defined through the growth law

W ∼ t ζ/z (41)

for the width of the interface and the growth law


 ∼ t1/z (42)

for the correlation length. In our crystal growth problem, the
interface follows the Kardar-Parisi-Zhang (KPZ) growth laws.
The corresponding exponents ζ and z are related through the
KPZ formula [2]

ζ + z = 2. (43)

The exact values are known only in d = 1 + 1 dimensions:
ζ = 1

2 ,z = 3
2 . Equations (39) and (40) also contain positive

amplitudes ad and bd , which are analytically unknown even in
two dimensions.

To establish (39) one makes a natural assumption that the
average width scales according to (41). The volume is vdt

d

in the leading order, and since the area of the interface scales
as td−1, the extra volume grows as Wtd−1 resulting in the
subleading correction in Eq. (39).

To establish (40) we divide the interface into patches of
size equal to the correlation length. The number of such
patches is (t/
)d−1. Within each patch, the extra volume is
W
d−1. The deviation of the volume from its average value is
therefore the sum

∑±W
d−1 containing (t/
)d−1 terms. This
gives an estimate for the variance 〈V 2〉c ∼ (t/
)d−1(W
d−1)2.

Using (41) and (42) we obtain

〈V 2〉c ∼ td−1+(d−1)/z+2ζ/z

and recalling relation (43) we arrive at (40).
In three dimensions, Eq. (39) reduces to

〈V 〉 = v3t
3 + a3t

1+2/z + · · · (44)

and (40) turns into

〈V 2〉c = b3t
6/z. (45)

Careful numerical estimates for the dynamical exponent
z characterizing two-dimensional interfaces are given in
Ref. [32]. Numerically, we are dealing with substantial finite-
time effects. Still, our estimates for the lowest-order correction
exponent for 〈V 〉 [where we get ≈ −0.73 while (44) gives
t−3〈V 〉 − v3 ∼ t−2(1−1/z)] and the exponent for 〈V 2〉c [where
we get ≈4 while (45) predicts the exponent 6/z] are consistent
with prior numerical estimates [32] of the exponent z.

VII. INNER AND OUTER CORNERS

In our lattice growth problem, the continuum limiting
shape, and even fluctuations of the interface, are just a
few key properties. Even if we limit our concern to global
characteristics of the interface, we can ask about the growth
laws for the total number N+(t) of inner corners and for the
total number N−(t) of outer corners. Using the definition of
the growth dynamics we conclude that 〈N+〉 = dVd/dt , where
Vd is the average volume of the growing crystal. Equation (39)
then tells us that

〈N+〉 = dvd td−1 + (d − 2 + 2/z)adt
d−3+2/z + · · · . (46)

The dynamics says nothing about the average total number
of outer corners. In two dimensions, we can use the obvious
topological relation,

N+(t) − N−(t) = 1 in two dimensions, (47)

to draw conclusions about the number of outer corners. In two
dimensions, we know v2 = 1

6 and z = 3
2 , and hence

〈N+〉 = 1
3 t + 4

3a2 t1/3 + · · · . (48)

In three dimensions, there is no conservation law like (47).
For instance, N+ = 6 and N− = 3 for the crystal depicted
in Fig. 1. We anticipated that generally N+ > N− and that
the average numbers of corners of each kind exhibit the
same leading growth. Intriguingly, our simulation results show
that the average total number of outer corners exhibits a
faster asymptotic growth (Fig. 9). Numerically, the leading
asymptotic behaviors are

〈N+〉 = C+t2, C+ = 0.0442(2) (49a)

〈N−〉 = C−t2, C− = 0.0459(2). (49b)

Our numerical estimate for the amplitude C+ is in good
agreement with the theoretical prediction (46) according to
which C+ = 3v3 = 9π2

211 = 0.043372285 . . . .

How can the unexpected result C− > C+ be reconciled
with the concave curvature of the corner interface (see Fig. 6)?
To aid in understanding, consider Fig. 10, which shows a
flat planar interface, with slopes zx = zy = −1 in an average
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FIG. 9. (Color online) The total number of outer corners divided
by the total number of inner corners versus t−0.77. In the long-time
limit, this quantity appears to be greater than 1.

sense, that extends to infinity in all directions. In Fig. 10 (top),
the number of inner corners on the interface exactly equals the
number of outer corners. Since this interface has no average
curvature, the equality between inner and outer corners is not
so surprising. Now consider the interface in Fig. 10 (bottom)
after making a small dimple at each outer corner in the top
image. The ratio of outer corners to inner corners is now 3/2,
yet the interface macroscopically still has no curvature. One
sees that the statistics of inner and outer corners cannot be
directly inferred from the global shape of an interface.

VIII. DISCUSSION

We have presented a minimalist model for studying crystal
growth in three dimensions. Elemental cubes are deposited
stochastically into an initially empty octant, namely into
the inner corners of the growing interface. At late times
when fluctuations become small relative to the typical size
of the interface, the interface becomes progressively more
deterministic. We have proposed a hyperbolic partial dif-
ferential equation (4) describing this dominant deterministic
limiting shape. This equation has passed through the necessary
consistency checks (it has the required symmetry properties,
and it reduces to correct evolution equations on the boundaries
of the octant). We have solved the evolution equation (4)
using the Hamilton-Jacobi technique and we have found a
very good agreement between analytical results and numerical
simulations of the growth process.

We have also analyzed fluctuations of integral characteris-
tics, e.g., we have expressed the subleading correction to the
volume of the crystal and the variance of the volume through
the KPZ exponents. Even in 1 + 1 dimensions, the only case
for which these exponents are known, our results are incom-
plete as we haven’t computed the amplitudes. This technically
challenging problem may be within the reach of analytical
techniques, which have been developed in studies of interfaces
in 1 + 1 dimensions (see, e.g., Refs. [4,11,12,36–39]); perhaps
even large deviations could be analytically extracted.

Overall, we are faced with a dilemma: We haven’t derived
Eq. (4), and on the numerical side there is a small (less than
1% in the growth velocity) but persistent discrepancy between
the analytical solution of Eq. (4) and simulation results. One

FIG. 10. (Color online) In the top image, the densities of inner
and outer corners on an infinite flat plane are exactly equal. In the
bottom image, we again have an infinite flat plane, but there are now
three outer corners for every two inner corners.

possible explanation is that for the 2 + 1 dimensional KPZ
growth the convergence can be notoriously slow [30–32]. We
have shown that one can construct evolution equations passing
the consistency checks, which provide a better agreement with
the observed value of the growth velocity. Such equations are
ugly, and it seems that if an equation has a right-hand side
which is a rational function of the spatial derivatives zx and zy ,
the only elegant one which is in a very close proximity with
simulations is Eq. (4). Given the utmost simplicity of the rules
of our minimalist growth model, it would be very odd to end up
with an ugly equation for the limiting shape. Perhaps the only
possible way to overcome the above (admittedly imprecise)
arguments is if the true evolution equation has a right-hand
side which is a transcendental function of the spatial derivatives
zx and zy (which reduces to simple rational functions on the
boundaries of the octant, i.e. when zx = −∞ or zy = −∞).
The striking simplicity and accuracy of our conjectural growth
equation beautifully match the simplicity of the model under
study, which certainly warrants further investigation.
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We hope that our analytical results will aid in studies of
2 + 1 dimensional KPZ growth. Relatively little is known
about temporal correlations in height fluctuations in these
growth models. Some recent studies on 1 + 1 dimensional
KPZ growth have revealed slow temporal decorrelation along
the characteristic directions of interface growth. In the polynu-
clear growth model in 1 + 1 dimensions, temporal correlations
in height fluctuations have been proven to decay on a time
scale t2/3 for generic curves in the space time. However,
along the characteristic directions, temporal correlations decay
on a time that scales as t , i.e., much more slowly [40]. In
2 + 1 dimensions, presumably a similar slow decorrelation
phenomenon is present, although to our knowledge this has
not been tested. We now have predictions for the characteristic
curves of 3D corner growth, and our equations may help
facilitate numerical experiments on time-dependent interface
fluctuation statistics.

We have offered predictions for the subleading correction
to the average volume (39) and for the growth in variance
of the volume (40) of a growing crystal in three and higher
dimensions. These results should hold generically for all
higher-dimensional models that belong to the strong-coupling
KPZ universality class. Indeed, we hope that studies of
integral properties of the interface such as the volume or the
numbers of inner and outer corners may deliver valuable new
insights.

Open problems abound in the field of interface shapes
and statistics. A host of problems arise if we reformulate
our original problem in terms of the spin-flip dynamics [13].
Consider an Ising ferromagnet with nearest-neighbor inter-
actions endowed with zero-temperature spin-flip dynamics.
If we start with a minority phase occupying the octant, the
evolution is exactly the same as in our crystal growth process
if we additionally postulate that our ferromagnet is in a
magnetic field that favors the majority phase. What happens
if in addition to the nearest-neighbor interactions we take into
account next-nearest-neighbor interactions, or even longer-
range interactions? We have recently addressed this problem
[41] in two dimensions: We have derived evolution equations
generalizing Eq. (2) and found corresponding limiting shapes.

There is an infinite series of such equations varying with the
range of interactions. Needless to say, nothing is known in
three dimensions.

Even more challenging is to consider the problem without
any magnetic field. In our original language, this is equivalent
to allowing desorption of elemental cubes from outer corners
on the interface. The desorption proceeds with the same rate as
deposition. The interface grows much more slowly than in the
pure deposition case, namely the growth is diffusive (that is, the
linear size of the interface scales as

√
t). Quantitative results

are known only in two dimensions where the exact evolution
equation is known and solvable [42]. In the general case, an
evolution equation for unbiased dynamics was proposed in
Ref. [42], yet this equation appears analytically intractable.
Even numerically this problem has not yet been studied.

Finally, we mention equilibrium crystals (also known as
Young diagrams) of a fixed volume inside a corner. All crystals
with the same volume are equiprobable. A surface of a typical
crystal with large volume is close to a limiting shape, which
has been established both in two [43,44] and three [45,46]
dimensions (see also Refs. [47–49] for other three-dimensional
versions). In greater than three spatial dimensions, finding
the equilibrium limiting shape is a tantalizing mathematical
problem. One suspects a connection between equilibrium
limiting shapes and the limiting shapes arising in the growth
problems (with and without a magnetic field), or perhaps a
connection between equations, which determine these limiting
shapes. One may try to guess equilibrium limiting shapes using
the same tricks as before (symmetry constraints and matching
to low-dimensional equilibrium limiting shapes in conjunction
with a small number of well-chosen numerical clues).
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