
PHYSICAL REVIEW E 88, 022105 (2013)

Dynamics of influence on hierarchical structures
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Dichotomous spin dynamics on a pyramidal hierarchical structure (the Bethe lattice) are studied. The system
embodies a number of classes, where a class comprises nodes that are equidistant from the root (head node).
Weighted links exist between nodes from the same and different classes. The spin (hereafter state) of the head
node is fixed. We solve for the dynamics of the system for different boundary conditions. We find necessary
conditions so that the classes eventually repudiate or acquiesce in the state imposed by the head node. The results
indicate that to reach unanimity across the hierarchy, it suffices that the bottommost class adopts the same state
as the head node. Then the rest of the hierarchy will inevitably comply. This also sheds light on the importance of
mass media as a means of synchronization between the topmost and bottommost classes. Surprisingly, in the case
of discord between the head node and the bottommost classes, the average state over all nodes inclines towards
that of the bottommost class regardless of the link weights and intraclass configurations. Hence the role of the
bottommost class is signified.
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I. INTRODUCTION

The voter model is a dynamic generalization of the Ising
model, a binary-valued process defined over a network, where
the binary values at each node vary as a function of those
at neighboring nodes [1–4]. It has been proposed as a model
to capture the spread of ideas and opinions in the context
of social networks. Hierarchical structures appear in many
contexts within the scientific study of human social behavior,
ranging from bureaucratic organizations [5–7] to modern mass
media organizations [8–10] and politics [11].

This paper discusses a generalization of the voter model on
a hierarchically structured network. The underlying graph is
a Bethe lattice with coordination number q (i.e., a complete
q-ary tree), and we also allow for random connections between
nodes at the same depth. The central focus of this paper is
to identify the effect of the states adopted by nodes at the
extreme ends of the hierarchy (the root and the leaves in a
finite network) on the dynamics and steady-state opinion of
the system.

In the voter model, each node x has a time-varying state
sx(t) taking one of the values ±1. The states of nodes are
considered to be binary to model, e.g., cases where individuals
take a dichotomous stance on issues such as elections with two
major parties. Nodes update their state in a randomized manner
based on the states of their neighbors in the graph. Let Nx

denote the set of neighbors of node x and let J {x ′ → x} � 0
denote the time-homogeneous influence which a neighbor x ′
has on x’s decision. Then the probability that x flips its state
at time t is given by

wx(t) =
∑

x ′∈Nx :sx′ �=sx
J {x ′ → x}sx ′ (t)∑

x ′∈Nx
J {x ′ → x} . (1)

This paper focuses on hierarchically structured networks.
Specifically, we assume the network takes the form of a
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complete q-ary tree. We index depth in the tree using the
variable y. There is a single node (the “root” or “head” node)
at level y = 0. The root is connected to q nodes at level 1;
each of these nodes is connected to q nodes at level 2 and so
on (see Fig. 1). Thus, there are qy nodes at level y, each with
one connection to a parent at level y − 1 and q connections
to children at level y + 1. In addition, we allow for a node at
level y to have random connections to other nodes at the same
level.

It is well known that for voter dynamics on general
connected networks, when all nodes follow the dynamics
described above, eventually, a consensus is reached across
the network on a single state [1–4], and the expected value of
the consensus state depends on the initial conditions (fraction
of the population initially with opinion +1 vs −1). If a single
node is stubborn and fixes its state at the value +1 for all time,
then eventually all nodes converge to the state +1. In general,
when more than one node is stubborn and their opinions do not
coincide, the opinions of the remaining nodes do not converge
to a consensus; rather, they reach a steady state where, in
expectation, a fraction of the network holds +1, and the size
of this fraction depends on the opinions and locations of the
stubborn agents within the network.

A. Contributions and organization of the paper

We focus on the case where the root node fixes its opinion
at s0(t) = +1 for all time, and we investigate the effect this
has on the steady-state opinions of the rest of the network
under a mean-field approximation. For a node at level y, let
the weights of influence, relative to weight J {y → y} that this
node assigns to other nodes at the same level, be given by

J {y − 1 → y}
J {y → y} = β,

J {y + 1 → y}
J {y → y} = α. (2)

That is, each parent exerts a relative influence of β on its
children, and children exert a relative weight of α on their
parents.

When only the root node is stubborn and holds its opinion
fixed at s0(t) = +1, then in the limit all nodes consent to
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FIG. 1. (Color online) The first four levels of a hierarchy with
q = 3. The links within each class are not shown. The number of
these links is modeled in two different ways in the text. First, it is
assumed to be a constant number, then a constant fraction of the
possible links.

the opinion +1, regardless of whether the network is finite
(i.e., fixed depth L < ∞) or infinite (i.e., L → ∞). We derive
level-specific expressions for the rate of convergence in this
setting.

Then we consider the case where nodes at the bottommost
level of a finite network are also stubborn. Surprisingly, we find
that when all of the nodes at the deepest level from the root
have their states fixed at sL(t) = −1, opposing the root node,
then so long as β > 0, the majority of nodes in the network
will have a negative state when q > 1, and when q = 1 (i.e.,
the network is a chain of length L), then the majority opinion
is the same as the sign of β − α. Our findings highlight the
importance of the role of the bottommost class.

The rest of this paper is organized as follows. Section II
reviews the background and provides the motivation for the
modeling assumptions adopted. Then two different models
are considered. Section III examines a model where the self-
weights J {y → y} are all constant and independent of the
level y. Section IV then considers the case where J {y → y}
scales with the level, so that the influence is proportional to
the number of other nodes at level y. In both of these sections
our analysis is based on a mean-field approximation where we
allow both time t and the level y to be continuous valued. In
Sec. V we provide the analysis for the case where the level y

takes only integer values. We conclude in Sec. VI.

II. BACKGROUND AND MOTIVATION

A. Sociophysics: The Ising and voter models

Recently, statistical mechanics has offered its perspective
of the micro-macro entwinement in problems originating from
the social sciences. Many sociological problems have been
studied by physicists through the vantage point of the Ising
model [12–22] and its dynamic generalizations [23–32]. For
a thorough review of these models, see [33–35]. For other
instances of opinion dynamics and voting on hierarchical
structures, see [35–39]. For studies on real election data and
their universal features, see [40,41]. For a recent study on
the effects of social mobility on the structure of hierarchical
networks, see [42].

A kinetic generalization of the Ising model is the voter
model [1] (also see [43]). The rationale behind the conventional
voter models is peer pressure and the influence of others on
each agent, which is evident in social interactions [44–50].

The conventional voter model considers a simple scenario
in which, at each time step, each node finds the fractions
of its neighbors who currently agree with and oppose it and
with those probabilities follows either of the states. So if,
for instance, all neighboring nodes are at state +1, the node
definitely follows. However, if 90% of them are at state +1,
there is a 10% chance that the node will adopt −1. Note that
this model is easily generalized to allow for weights (a degree
of influence) for each neighbor’s opinion, as considered in this
work.

The steady-state behavior of the voter model on arbitrary
graphs is characterized in [2] through a mean-field approxima-
tion. In [51,52] the generalization to three states is considered.
The q-voter model is introduced in [53], where each node
adopts the state of q randomly selected neighbors, given that
they are unanimous. The voter model on weighted graphs has
been studied in [3]; in that work a mean-field approximation
is adopted whereby all nodes with the same degree hold the
same state, but this is inapplicable to the problem addressed in
this paper since the states depend on class level. See [54–62]
for examples of recent generalizations of the voter model.

B. Hierarchical structures in social systems

We next provide examples of cases where hierarchical
systems appear in the social sciences to motivate the structural
assumptions made in this paper. The first example is the
hierarchical structure of organizations, the second one is the
media industry, and the third one is the hierarchical nature of
structures of power.

Modernization hinges on extensive rationalization of or-
ganizational and institutional structures. The first analytical
treatment of modern bureaucratic organizations dates back to
Weber’s seminal work [5], in which he laid the foundation of
the ideal type of modern bureaucracies and delineated how
the properties of modern bureaucracies increase efficiency.
Among those traits of instrumental rationality is the hierarchy
of authorities, which is central to this paper. Agents occupy
different positions and have different degrees of power and
influence over the organization. Bureaucratization of social
institutions does increase efficiency in some ways but comes
with costs and drawbacks (see, for example, [6,63–66] for
broader discussions). One of these pitfalls pertains to a problem
examined in this paper called “the iron law of oligarchy,” a term
coined by the sociologist R. Michels [7].

Oligarchy is the control of organizations of the society by
the people at the summit (also known as the elite). It is a
seemingly inevitable property of any large-scale bureaucra-
tized organization. Michels contends that these organizations
will monopolize power in the hands of those at the top. He
concisely writes [7], “It is organization which gives birth to
the domination of the elected over the electors. . . . Who says
organization says oligarchy.” In this paper, we investigate the
extent to which the state imposed by the head node will affect
the state of other nodes at lower levels of the hierarchy.

The second example that motivates studying diffusion of
influence over hierarchical graphs is the network of mass
media organizations. Giant corporations own (or partially
control) large media conglomerates which, in turn, control
large television networks or film studios and production
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companies, which have subsidiary units of their own and
so on [8,67]. Hierarchy confines behavior; seldom is it the
case that a low-ranked member of this hierarchy reflects
opinions or disseminates information without approval (or at
least the influence) of higher authorities, who, in turn, are
controlled by the members at even higher levels. Hence it
seems natural to assume that the agenda set by the ones at
the top significantly influences the action of the ones below
[9–11,68,69]. For a thorough discussion on the effects that this
type of hierarchical structure might have on the impartiality
of the news and opinions reflected through the media, see
[9,10,70]. In particular, to get a sense of the extent to which
hierarchical structures pervade modern media networks, the
reader is referred to [9, Chap. 1] and [10, Chap. 2].

The third example in which hierarchical structures are
evoked lies in the field of political sociology. In his study
on power structures and the power elite [68], Wright Mills
perceived a pyramidal structure of power. He contended that
there is a ruling class (the power elite) which is in a cohesively
organized minority and controls the majority of the society
in various economic, political, and military realms. This
motivates our use of a hierarchical model for society, with
elites at the top and the masses at the bottom and intermediary
classes in the middle. As Dye argues [11], policy making is a
product of elite consensus, which is then imposed and, in turn,
transformed into public demand, not the other way around.

C. The mean-field assumption

In this section we provide the motivation for the “mean-
field” assumption that will be adopted below. It falls in the
domain of the Marxian theory of class conflict [71–73]. Here
we briefly describe its central notions.

Marxian social classification is based on capital and
property ownership [74]. This segregates the system into haves
and have-nots, or the bourgeoisie and the proletariat (and a
minority in the middle, i.e., the petit bourgeoisie). Members of
the same class share economic status and interests, which leads
to common belief of affiliation and, consequently, convergence
of action. The economic interests of the classes are of opposing
natures. As disparity between the life conditions of the
classes increases, class consciousness shifts into conflict and
antagonism between the classes, and convergence of action
is intensified. This convergence of behavior is the rationale
behind the assumption made in this paper, that nodes from the
same class have the same state.

Class struggle further intensifies the pressure impinged
upon the proletariat, which is then followed by a transient
state called the “dictatorship of the proletariat,” eventuating
in a revolution. Hence the role of the bottommost class of the
society is essential [75]. This paper also investigates the role
of the bottommost class and studies the effect it has on the
collective state of the system.

III. FIRST MODEL: CONSTANT SELF-WEIGHT

Recall that sx(t) ∈ {±1} denotes the state of node x at time t .
Throughout this paper we adopt a mean-field assumption
whereby the state of a node is replaced with the average
state of all nodes at the same level. This assumption is

structurally justified by observing the symmetric structure of
the underlying network. Sociologically, this is equivalent to
the behavioral convergence of class members mentioned in
Sec. II C above. Based on this assumption, the tree collapses
to a one-dimensional chain with one node representing each
class. Let sy(t) ∈ [−1, + 1] denote the average state of a node
at level y at time t .

The strengths of influence that nodes at levels y − 1 and
y + 1 have on nodes at level y is given by (2).

The model considered in this section supposes that each
node also accounts for its own opinion with weight p. One can
interpret p as the number of neighbors a node has at the same
level as itself (where neighbors are drawn uniformly from all
nodes at the same level, to preserve symmetry), with the weight
assigned to each of these neighbors being J {y → y} = 1. Note
that p can be smaller than unity, which means that the weight
it gives to members of the same level is less than those weights
given to members of neighboring levels.

The flipping probability of each node is proportional to
the weighted fraction of its neighbors with the opposite state.
Denote the flipping probability for nodes at level y by wy(t).
This means that with probability wy(t), we have sy(t + �t) =
−sy(t), and with probability 1 − wy(t), we have sy(t + �t) =
sy(t). Denote the set of nodes adjacent to the node at level y

by Ny . We have

wy =
∑

x∈Ny,sx �=sy
J {x → y}sx∑

x∈Ny
J {x → y} , (3)

which simplifies to

wy = 1

2

[
1 − sy

qα + 1 × β + p × 1
(βsy−1 + qαsy+1 + psy)

]
.

(4)

Using the flipping probability, we find the time evolution of
sy(t):

∂sy

∂t
= −

(
qα + β

qα + β + p

)
sy +

(
β

qα + β + p

)
sy−1

+
(

qα

qα + β + p

)
sy+1. (5)

A. Continuous approximation, semi-infinite structure

Consider the case where the structure is limited from above
but unlimited from below, i.e., y ∈ Z+ = {0,1,2, . . .}. Note
that (5) can be written equivalently as

∂sy

∂t
=

(
qα

qα + β + p

)
(sy+1 + sy−1 − 2sy)

+
(

qα − β

qα + β + p

)
(sy − sy−1). (6)

A continuous approximation of (5) can be obtained as a
differential equation in y by relaxing y to take values in
R+ = {x ∈ R : x � 0}, in which case we have

∂t sy(t) =
(

qα

qα + β + p

)
∂2
yysy(t) +

(
qα − β

qα + β + p

)
∂ysy(t).

(7)

022105-3



BABAK FOTOUHI AND MICHAEL G. RABBAT PHYSICAL REVIEW E 88, 022105 (2013)

This turns into the standard heat equation [76] for φ(y,t) using
the substitution

sy(t) = φ(y,t) exp

[
− (qα − β)2

4qα(qα + β + p)
t − (qα − β)

2qα
y

]
.

(8)

If the initial state of the nodes are sy(0) and the head node
is at some arbitrary state s0(t), defining A ≡ qα + β + p for
brevity, then this equation has the solution

sy(t) =
(√

A

qα

)exp
[
− (qα−β)2t

4qα(A)

]
2
√

πt
�(y,t) + 	(y,t), (9)

where we have defined

�(y,t)
def=

∫ ∞

0
sξ (t = 0) exp

[(
ξ − y

2

)
(αq − β)

]

×
{

exp

[
− (y − ξ )2

4tqα
(A)

]

− exp

[
− (y + ξ )2

4tqα
(A)

]}
dξ,

	(y,t)
def=

(
y

2
√

π

√
A

qα

)
exp

[
β − qα

2qα
y

] ∫ t

0

s0(t − λ)

λ
3
2

× exp

[
− (qα − β)2(λ)

4qα(A)
− y2(A)

4qαλ

]
dλ.

The first term in (9) is transient and is due to initial conditions.
If we define

γ
def= |qα − β|

qα + β + p
, (10)

then 	(y,t) can be approximated asymptotically for long
times:

sy(t) ∼
exp

[−(
qα−β

2qα

)
y
]

√
γy

s0(t − γy) t � γy. (11)

The condition on t ensures that the integrand has a maximizer
and the asymptotic approximation is valid. Intuitively, the
“wave” of influence has not reached y before time γy, and
thus the expected state is still zero, assuming that function
s0(t) only takes nonzero values for t � 0.

For the problem at hand, the head node is fixed at state
s0(t) = +1 for all t � 0. This implies that the function s0(t) is
the Heaviside step function u(t), resulting in

sy(t) ∼
√

|qα − β|
qα + β + p

exp
[−(

qα −β

2qα

)
y
]

√
y

u

(
t − y

qα + β + p

|qα − β|
)

.

(12)

Depending on the sign of (qα − β)/α, the exponential factor
will either grow or decay in y, giving rise to two different
behaviors (see Figs. 2 and 3): (1) When qα < β, then sy(t) →
+1 for all nodes (as illustrated in Fig. 2). (2) When qα > β,
then the expected value of the spin decays in y, and the grip of
the head on the system debilitates the further one is from the
head node (as illustrated in Fig. 3).

FIG. 2. (Color online) Time evolution of the state on different
sites on a semi-infinite structure when β = 1.2αq > αq (thus the
head node takes over) for y = 2 (top line) to y = 7. It is clear that
the closer to the head the class is located, the faster it complies. We
simulated a chain of length 5000 to approximate the semi-infinite
chain for the y < 250 region and averaged over 10 000 Monte Carlo
simulations.

B. Continuous approximation: Finite structure

Next we study equation (7) for the case of a finite hierarchy,
ymax = L < ∞. Let us define the constants

qα

qα + β + p
≡ a,

qα − β

qα + β + p
≡ b. (13)

Using these, we rewrite (7) as

∂sy(t)

∂t
= a

∂2sy(t)

∂y2
+ b

∂sy(t)

∂y
. (14)

The state of the head node is fixed at s0(t) = +1. We
turn our attention to the case where there is complete
disagreement between the head and the bottommost class; i.e.,
the bottommost class is fixed at sL(t) = −1.

With the substitution sy(t) = φ(y,t) exp(−b
2a

y − b2

4a
t), (14)

is recognizable as the standard homogeneous heat equation for

FIG. 3. Steady-state values on a semi-infinite structure when
β = 0.7αq < αq; thus the influence of the head node dies out. We
simulated a chain of length 5000 to approximate the semi-infinite
chain for the y < 250 region. Monte Carlo simulations were added
until the absolute value of the relative change in the mean state,
averaged over all cites, became less than 10−5.
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FIG. 4. (Color online) Time evolution of states on a finite chain
when β = 0.7αq < αq, implying the dominance of the universal
class. The solid lines represent the theoretical prediction. The height
of the structure is L = 40 in this simulation. The two lines at the
bottom (y = 30,35) are frozen at a state very close to −1 because of
the proximity to the universal class at y = L = 40. The results are
averaged over 12 000 Monte Carlo simulations.

φ(y,t). Thus we arrive at

sy(t) = 2π

L2

∞∑
n=1

n sin

(
nπy

L

){
1 − exp

[
−

(
n2π2a

L2 + b2

4a2

)
t
]}

n2π2

L2 + b2

4a2

×
[

exp

(
−by

2a

)
+ (−1)n exp

(
b(L − y)

2a

)]
, (15)

as depicted in Figs. 4 and 5. For the steady state, when the
time derivative vanishes, we have

lim
t→∞ sy(t) = 2π

L2

∞∑
n=1

{
n sin

(
nπy

L

)

× exp
(− by

2a

) + (−1)n exp
(

b(L−y)
2a

)
π2n2

L2 + b2

4a2

}
. (16)

FIG. 5. (Color online) Time evolution of states on a finite chain
when β = 1.2αq > αq, whose ramification is the dominance of the
head. The solid lines represent the theoretical prediction. The height of
the structure is L = 40. The line at the bottom corresponds to y = 35
in the vicinity of the universal class but frozen near zero rather than
−1. The state of the top two lines (y = 5,10), neighboring the head,
is almost exactly +1 in this simulation. The results are averaged over
12 000 Monte Carlo simulations.

FIG. 6. Steady state on a finite chain with length L = 40 when
β = 0.7αq < αq. Note that the majority is converted to the lead of
the bottom class. The results are averaged over 15 000 Monte Carlo
simulations, when the absolute value of the relative change in the
mean state, averaged over all cites, became less than 10−5.

To simplify this further, observe that the steady state can be
expressed in a simpler form by noting that (14) reduces to

a
d2

dy2
sy + b

d

dy
sy = 0. (17)

When sL(t) = −1 and s0(t) = 1, the solution is given by

lim
t→∞ sy(t) = 2 exp

(−b
a

y
) − 1 − exp

(−b
a

L
)

1 − exp
(−b

a
L

) . (18)

The expression in (16) is the Fourier expansion of (18), as
shown in Appendix A. The results are illustrated in Figs. 6
and 7.

Note that, in the case of agreement between the two ends,
we have

lim
t→∞ sy(t) = +1 ∀ y, (19)

which signifies the importance of the role of the bottom class.

IV. SECOND MODEL: CONSTANT FRACTION
OF INTRACLASS LINKS

In this section we suppose that the number of neighbors
each node has at the same level is a constant fraction of the

FIG. 7. Steady state on a finite chain with length L = 40 when
β = 1.2αq > αq. The head node prevails clearly. The results are
averaged over 8000 Monte Carlo simulations, when the absolute
value of the relative change in the mean state, averaged over all cites,
became less than 10−5.
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size of that level; this is in contrast to the model studied in
the previous section where each node had exactly p neighbors
at the same level. Recall that there are qy nodes at level y.
In this section, we model the weight assigned by nodes at
level y to the average opinion of nodes at that same level as
py = Rqy for some positive constant R � 1. Structurally, this
corresponds to having the connections from a node at level y to
each other node at level y be present with probability R. Thus,
the global structure is obtained by forming the hierarchy to
obtain levels and then creating an Erdős-Rényi (i.e., Bernoulli)
random graph among the nodes within each level, for which
the average intralevel degree is taken to be linear in the number
of nodes at that level.

The evolution of the expected values of the states becomes

ṡy = −
(

qα + β

qα + β + Rqy

)
sy +

(
β

qα + β + Rqy

)
sy−1

+
(

qα

qα + β + Rqy

)
sy+1. (20)

Let us first consider the case of strong hierarchy, i.e., qα �
β,py . For α = 0, there is complete obedience to the superior
class, and no weight is assigned to the inferior classes. For this
case we have

∂t sy(t) =
( −β

β + Rqy

)
∂ysy(t). (21)

If the head node is fixed at s = +1, which means s0(t) = u(t),
then we have

sy(t) = u

(
t − y − Rqy

β ln q

)
, (22)

which implies that for long times, eventually, all levels conform
to the head node.

The other polar case would be where qα � β,py , which
gives

∂t sy(t) = ∂2
yysy(t) + ∂ysy(t), (23)

whose solution for long times follows

sy(t) ∼ e−y

√
y

u(t − y), (24)

which decays in y.
For the steady state, (14) can be written as(

qα

qα + β + Rqy

)
d2

dy2
sy +

(
qα − β

qα + β + Rqy

)
d

dy
sy = 0,

(25)

whose solution is of the form

sy = K1 exp

(
β − qα

qα
y

)
+ K2, (26)

where K1 and K2 are constants that are uniquely determined
for given boundary conditions.

The solution in the case of sL(t) = −1, s0(t) = 1 coincides
with (18), which does not depend on the value of R. Also, if
sL(t) = s0(t) = +1 for all t , then we have limt→∞ sy(t) = 1
for all y. Note that (1) the value of R does not affect the steady
state, only how fast the system reaches it, and (2) the only
determinant factor of conformity is the relative value of β and

qα; if the latter is greater, the state imposed by the head node
decays, and it takes over otherwise.

V. GENERAL STEADY-STATE DISCRETE SOLUTION:
FINITE HIERARCHY

In this section we consider the general case for intraclass
connectivity. We also take y to be discrete. Let the average
degree of the class at level y be p(y). Then the evolution of
the expected value of the state is

ṡy(t) = −
(

qα + β

qα + β + p(y)

)
sy(t)

+
(

β

qα + β + p(y)

)
sy−1(t)

+
(

qα

qα + β + p(y)

)
sy+1(t). (27)

Now we focus on the steady state; thus we drop the time
arguments. The steady state satisfies

−
(

qα + β

qα + β + p(y)

)
sy +

(
β

qα + β + p(y)

)
sy−1

+
(

qα

qα + β + p(y)

)
sy+1 = 0, (28)

or, equivalently,

−(αq + β)sy + βsy−1 + αqsy+1 = 0, (29)

which is independent of p(y). We emphasize that the form of
p(y) does not affect the steady state but merely how fast the
system arrives there.

Equation (29) is a linear difference equation with constant
coefficients [77]. Therefore its solution has the form sy =
K1λ

y

1 + K2λ
y

2 . The coefficients K1 and K2 are determined
using the boundary conditions. The factors λ1 and λ2 are
readily determined by plugging the ansatz sy = λy into (29),
which gives

αqλ2 − (αq + β)λ + β = 0. (30)

The two solutions to this quadratic equation yield λ1,λ2:

λ1 = 1, λ2 = β

αq
. (31)

To solve equation (29), we require two boundary conditions to
extract K1 and K2. Thus we consider three distinct cases (the
calculation of K1 and K2 is given in Appendix B).

A. First case: s0(t) = +1 and sL(t) = −1

Suppose s0(t) = +1 and sL(t) = −1. Then the steady state
value at level y is

sy =
1 + (

β

αq

)L − 2
(

β

αq

)y

(
β

αq

)L − 1
, (32)

which is a transition between the two states. The majority,
across the entire network, is held by the head or the bottom
depending on whether β is bigger or smaller than αq,
respectively. Figures 8 and 9 are depictions of these two
possibilities for the case where p(y) varies exponentially with
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FIG. 8. Steady state on a finite chain with the bottom class
opposing the head node for the case β = 0.7αq < αq for the
exponential p(y). We averaged over 10 000 Monte Carlo simulations,
when the absolute value of the relative change in the mean state,
averaged over all cites, became less than 10−5.

y, meaning that a constant fraction of neighbors from each
class are linked.

Now let us calculate the average state among all nodes.
Denote the number of nodes at level y by ny , and let m denote
the mean opinion across the entire network. We want to find

m
def=

L∑
y=0

nysy =
L∑

y=0

qysy. (33)

As shown in Appendix B, with r = β/(αq), in this case we
have

m = (rL + 1)

(rL − 1)
− 2[(rq)L+1 − 1](q − 1)

(qL+1 − 1)(rq − 1)(rL − 1)
. (34)

The sign of the average state determines the collective
inclination of the system, i.e., towards which state the system

FIG. 9. Steady state on a finite chain with the bottom class
opposing the head node for the case β = 1.2αq > αq for the
exponential p(y). We averaged over 4000 Monte Carlo simulations,
when the absolute value of the relative change in the mean state,
averaged over all cites, became less than 10−5.

FIG. 10. Steady state on a finite chain when β = 0.7αq < αq.
The bottom node is free, which means that it follows the class above
it. We averaged over 21 000 Monte Carlo simulations, when the
absolute value of the relative change in the mean state, averaged over
all cites, became less than 10−5.

is leaning on average. In Appendix B we show that, as long as
α,β > 0, the following is true: When the bottommost class is
fixed at the state s = −1, (1) if q > 1, then the mean state is
negative, regardless of the values of β,α, and (2) if q = 1, then
the sign of the mean state is the same as the sign of β − α.

B. Second case: s0(t) = +1 and class L is influenceable

Next, suppose that s0(t) = +1 and the bottom class are
influenceable; i.e., they follow the dynamics in (27), implying
imitation of the upper class. In this case we have

sy = rL+1 − ry

rL+1 − 1
. (35)

Figures 10 and 11 illustrate this case. The average state is
calculated in Appendix C. The result is

m = rL+1

rL+1 − 1
− [(qr)L+1 − 1](q − 1)

(qr − 1)(qL+1 − 1)(rL+1 − 1)
. (36)

Taking the average over all nodes, we find that when the
bottommost class is influenceable, the mean state of the system
is positive, regardless of the value of r and q.

FIG. 11. State of the sites on an open-ended finite chain for
different times for the case β = 1.2αq > αq, the leftmost being
t = 10 and the rightmost being t = 20. The wave of influence is
moving to the right. The results are averaged over 10 000 Monte
Carlo simulations.
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C. Third case: s0(t) = +1 and sL(t) = +1

Finally, suppose that both s0(t) = +1 and sL(t) = +1. In
this case, limt→∞ s(y) = 1 for all y, irrespective of the values
of β,α, and q.

The implication of the last case is straightforward. The
head node does not need to exert influence on the middle
classes to achieve its ends; rather, getting the bottommost class
aligned suffices to dominate the entire hierarchy. This signifies
the importance of media or any other means by which this
alignment could be obtained.

VI. SUMMARY AND DISCUSSION

We studied the dynamics of binary states for nodes on a
pyramid-shaped hierarchical graph. The head node was given
a fixed state, trying to impose it on the whole network. The
conditions that facilitate or hinder the dominance of the head
node were found. If classes assign more weight to classes
below them, dominance of the head node is hampered. It was
observed that in the case of discord between the head node
and the bottom class in a finite hierarchy, one of them wins the
majority. Another result was that the density of the intraclass
links does not affect the steady state, but merely determines
how quickly the system reaches it. Also, if the head node and
the bottommost class are fixed at the same state, the whole
hierarchy will eventually comply, under any conditions for the
inter- and intraclass links.

Possible extensions of this work include using a more
realistic topology for the underlying graph to model the social
structure, considering continuous and/or multidimensional
states, deploying more than one classification attribute (e.g.,
Weberian class theory [73]), and having level-dependent ratios
for weights assigned to lower and higher classes. Also, one can
examine the effects of adding sparse long-range interactions to
the hierarchy. Another modification would be adding fractions
of stubborn agents within the middle classes and studying
their effect on the final state. Also, one can add exogenous
influence to the whole system in the form of an external field,
with different exposure degrees for different classes. This can
model the effect of mass media.
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APPENDIX A: PROOF OF THE EQUIVALENCE
OF (16) AND (18)

Let us begin with (18), which is repeated here for easy
reference:

lim
t→∞ sy(t) = 2 exp

(−b
a

y
) − 1 − exp

(−b
a

L
)

1 − exp
(−b

a
L

) . (A1)

Let us factor out exp(−by

2a
) to obtain

lim
t→∞ sy(t) = exp

(−b
2a

y
)

1 − exp
(−b

a
L

){
2 exp

(−b

2a
y

)

−
[

1 + exp

(−b

a
L

)]
exp

(+b

2a
y

)}
. (A2)

Now let us define

χ (y)
def= 2 exp

(−b

2a
y

)
−

[
1 + exp

(−b

a
L

)]
exp

(+b

2a
y

)
.

(A3)

We want to find the Fourier representation of this function in
the following form:

χ (y) =
∑

n

an sin

(
nπ

L
y

)
. (A4)

The coefficients an are calculated as follows:

an = 2

L

∫ L

y=0
χ (y) sin

(
nπ

L
y

)
. (A5)

We need the following integrals, which are evaluated by twice
integration by parts:∫ y

exp

(−b

2a
y ′

)
sin

(
nπ

L
y ′

)
dy ′

= exp

(−b

2a
y

) −b
2a

sin
(

nπ
L

y
) − nπ

L
cos

(
nπ
L

y
)

(
b2

4a2

) + (
n2π2

L2

) ,

∫ y

exp

(+b

2a
y ′

)
sin

(
nπ

L
y ′

)
dy ′

= exp

(+b

2a
y

) b
2a

sin
(

nπ
L

y
) − nπ

L
cos

(
nπ
L

y
)

(
b2

4a2

) + (
n2π2

L2

) .

The integration is from 0 to L. The sin terms vanish at both
ends, and we get∫ L

y ′=0
exp

(−b

2a
y ′

)
sin

(
nπ

L
y ′

)
dy ′

=
(

nπ

L

)
1 − (−1)n exp

(−bL
2a

)
(

b2

4a2

) + (
n2π2

L2

) ,

∫ L

y ′=0
exp

(+b

2a
y ′

)
sin

(
nπ

L
y ′

)
dy ′

=
(

nπ

L

)
1 − (−1)n exp

(+bL
2a

)
(

b2

4a2

) + (
n2π2

L2

) .

Using these, the Fourier coefficients become

an = 4nπ

L2

1 − (−1)n exp
(−bL

2a

)
(

b2

4a2

) + (
n2π2

L2

)
− 2nπ

L2

[
1 + exp

(−b

a
L

)]
1 − (−1)n exp

(+bL
2a

)
(

b2

4a2

) + (
n2π2

L2

) ,

(A6)

which simplifies to

an = 2nπ

L2

× 1 − exp
(−b

a
L

)− (−1)n exp
(−b

2a
L

)+ (−1)n exp
(

b
2a

L
)

(
b2

4a2

) + (
n2π2

L2

)
= 2nπ

L2

[
1 − exp

(−b
a

L
)][

1 + (−1)n exp
(

b
2a

L
)]

(
b2

4a2

) + (
n2π2

L2

) . (A7)
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Substituting this expression to represent χ (y) in (A2) in
Fourier series form, we arrive at

lim
t→∞ sy(t) =

∑
n

sin

(
nπ

L

)
2nπ

L2

×
{
exp

(−b
2a

y
) + (−1)n exp

[
b

2a
(L− y)

]}
(

b2

4a2

) + (
n2π2

L2

) , (A8)

which is identical to (16), as we wanted to illustrated.

APPENDIX B: COMPLETE SOLUTION OF (29) FOR THE
BOUNDARY CONDITION OF FIXED OPPOSITE ENDS

AND DISCUSSION OF THE AVERAGE STATE

Using the ansatz sy = λy in the homogeneous linear
difference equation

−(αq + β)sy + βsy−1 + αqsy+1 = 0, (B1)

we get the characteristic equation

αqλ2 − (αq + β)λ + β = 0. (B2)

The roots are

λ1 = 1, λ2 = β

αq
. (B3)

Let us define

r
def= β

αq
. (B4)

The general solution is of the form sy = K1λ
y

1 + K2λ
y

2 . We
have the boundary conditions s0 = 1 and sL = −1. The first
condition gives

K1 + K2 = 1. (B5)

The second one gives

K1 + K2r
L = −1. (B6)

Solving for K1 and K2, we get

K1 = 1 + rL

rL − 1
, K2 = −2

rL − 1
. (B7)

So the solution is

sy = 1 + rL − 2ry

rL − 1
. (B8)

To take the average state, we first have to find the following
sum:

L∑
y=0

(1 + rL)qy − 2(rq)y

rL − 1

= (rL + 1)

rL − 1

L∑
y=0

qy − 2

rL − 1

L∑
y=0

(rq)y

= (1 + rL)(qL+1 − 1)

(rL − 1)(q − 1)
− 2[(rq)L+1 − 1]

(rL − 1)(rq − 1)
. (B9)

Note that the total number of nodes is
L∑

y=0

qy = qL+1 − 1

q − 1
. (B10)

Dividing (B9) by the number of nodes yields the average state
over all nodes,

m = (rL + 1)

(rL − 1)
− 2[(rq)L+1 − 1](q − 1)

(qL+1 − 1)(rq − 1)(rL − 1)
. (B11)

Now let us show that for any q > 1, the average state is
negative, regardless of L and r . The negative average state
is indicative of the dominance of the bottommost class.

First, let us consider the case of r > 1, that is, the value of
β being greater than αq. In this case, since rL − 1 is positive,
we have to show that the following is true:

(rL + 1) − 2[(rq)L+1 − 1](q − 1)

(qL+1 − 1)(rq − 1)
< 0. (B12)

It is equivalent to

2[(rq)L+1 − 1](q − 1) − (qL+1 − 1)(rq − 1)(rL + 1) > 0,

(B13)

which, after rearranging the terms and separating different
powers of r , transforms into

rL+1(qL+2 − 2qL+1 + q) + rL(qL+1 − 1) − rq(qL+1 − 1)

+ (qL+1 + 1 − 2q) > 0. (B14)

Let us define

f (q,r)
def= rL+1(qL+2 − 2qL+1 + q) + rL(qL+1 − 1)

− rq(qL+1 − 1) + (qL+1 + 1 − 2q). (B15)

This can also be rearranged as follows:

f (q,r) = qL+2 (
rL+1 − r

) + qL+1 (
rL − 2rL+1 + 1

)
+ q(rL+1 + r − 2) + (1 − rL). (B16)

The objective is to show that f (r,q) is positive for all integers
q > 1 and all r > 1. Now we show that f (q,1) = 0, that the
first derivative of f (·) with respect to r at r = 1 is nonnegative,
and that the second derivative of f (·) is nonnegative for all
r � 1 and all integers q > 1. From (B16) it is clear that

f (q,1) = 0. (B17)

Now we take the first derivative of (B15). We get

∂f (q,r)

∂r
= (L + 1)rL(qL+2 − 2qL+1 + q)

+LrL−1(qL+1 − 1) − q(qL+1 − 1). (B18)

Evaluating this at r = 1, we get

∂f (q,r)

∂r

∣∣∣∣
r=1

= (L + 1)(qL+2 − 2qL+1 + q)

+L(qL+1 − 1) − q(qL+1 − 1). (B19)

To confirm that this is positive for all q � 2, we first show that
its value at q = 2 is positive and then show that its derivative
with respect to q is always nonnegative. We have

∂f (q,r)

∂r

∣∣∣∣
q=2,r=1

= (L + 1)(2L+2 − 2L+2 + 2)

+L(2L+1 − 1) − 2(2L+1 − 1)

= L + 2 + 2L+1(L − 2), (B20)
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which is positive for all valid values of L which are integers
greater than zero (note that at L = 1 the value of the derivative
is 1, and for larger values of L, all terms are positive). Now
that we have shown the value of the derivative at q = 2 is
positive, we take the derivative to verify that it is monotonically
increasing for greater values of q. Taking the derivative
of (B19), we have

∂2f (q,r)

∂r∂q

∣∣∣∣
r=1

= (L + 1)[(L + 2)qL+1 − 2(L + 1)qL + 1]

+L(L + 1)qL − [(L + 2)qL+1 − 1]

= qL+1L(L + 2) + qL(L + 1)(L − 2L − 2) + (L + 2)

= (L + 2)[LqL+1 − (L + 1)qL + 1]. (B21)

To show that this is nonnegative, it suffices to show that

LqL+1 > (L + 1)qL, (B22)

which is equivalent to

q � L + 1

L
, (B23)

which is true since we have q � 2 and L is at least 1.
The last step is to show that the second derivative of f (·)

with respect to r is nonnegative. Taking the derivative of (B24),
we get

∂2f (q,r)

∂r2
= L(L + 1)rL−1(qL+2 − 2qL+1 + q)

+L(L − 1)rL−2(qL+1 − 1). (B24)

The second term is nonnegative. Now we prove that the first
term is also nonnegative for all q � 2. Note that the following
is true:

qL+2 − 2qL+1 + q = qL+1(q − 2) + q. (B25)

Each term is nonnegative for q � 2; hence the second
derivative is always positive. Hence for the case of r > 1,
we have proved that f (q � 2,r) is always positive, so m is
negative.

The second case we consider is when r < 1 and rq > 1.
Looking back at (B11), we now have to prove that f (q,r) is
nonpositive in this range of r . Note that we have already proven
that f (·) is convex in r , and it is zero at r = 1. From (B13) it
is readily seen that r = 1

q
is also a root. A convex function can

at most have two zeros, which we have found. In between, it
is nonpositive, as we sought to prove.

The final case is when r < 1 and rq < 1. In this case,
from (B11) we know that f (·) must be nonnegative in this
range. With a reasoning similar to the previous case, we know
that a convex function is nonnegative on the left hand side of
its left root, as we desired f (·) to be.

In sum, we have shown that (B11) is nonpositive, regardless
of r , for all integers q > 1.

The case of q = 1 is peculiar. Note that the geometric series
summation which resulted in (B11) must be modified since this

time the total population is L + 1. The mean state is

m = (rL + 1)

(rL − 1)
− 2[rL+1 − 1]

(rL − 1)(r − 1)(L + 1)
. (B26)

Taking the common denominator, we have

m = (rL + 1)(r − 1)(L + 1) − 2[rL+1 − 1]

(rL − 1)(r − 1)(L + 1)
. (B27)

Note that this becomes zero for r = 1. We intend to show that
this is positive for r > 1 and negative in the range 0 < r < 1.
The denominator is always positive (both factors flip sign at
r = 1). Let us denote the numerator by g(r). We have

g(0) = 1 − L � 0, g(1) = 0. (B28)

Taking the derivative, we have

d

dr
g(r) = (L + 1)[LrL−1(r − 1) + rL + 1] − 2(L + 1)rL

= (L + 1)[LrL−1(r − 1) + 1 − rL]. (B29)

Evaluating the derivative at points r = 0 and r = 1, we get

d

dr
g(r)

∣∣∣∣
r=0

= L + 1 > 0,
d

dr
g(r)

∣∣∣∣
r=1

= 0. (B30)

The second derivative is

d2

dr2
g(r)

= (L + 1)[L(L − 1)rL−2(r − 1) + LrL−1 − LrL−1]

= L(L2 − 1)(r − 1)rL−2, (B31)

whose roots are only r = 0,1. Also note that the second
derivative is strictly negative in the range 0 < r < 1, which
is indicative of its concavity. We recognize the following
behaviors.

(1) r > 1. Since the derivative is zero at r = 1 and is positive
for all r > 1, the function g(·) will have a greater value in this
range than at r = 1. Since the function, like its derivative, is
zero at this point, it will have a positive value for all r > 1.

(2) 0 < r < 1. The function has a negative value at r = 0
and its vicinity. The concavity of the function allows only for
one point for the derivative to vanish. Since this point happens
to be the end of the interval, i.e., at r = 1, the function will not
have a turning point in this range. This means that it starts off
from 1 − L at r = 0 and reaches zero at r = 1. So the function
is nonpositive throughout this interval.

So we have shown that for the case of q = 1, the following
holds:

r > 1 =⇒ m > 0,

r = 1 =⇒ m = 0, (B32)

r < 1 =⇒ m < 0.

APPENDIX C: DISCUSSION OF THE SOLUTION OF THE
DIFFERENCE EQUATION AND THE MEAN STATE FOR

AN OPEN-ENDED BOUNDARY CONDITION

Since the boundary condition is open-ended, at the top we
have s0 = 1, and at the bottommost class, sL follows (27),

022105-10



DYNAMICS OF INFLUENCE ON HIERARCHICAL STRUCTURES PHYSICAL REVIEW E 88, 022105 (2013)

which simplifies to the following:

−
(

qα + β

qα + β + p(y)

)
sL +

(
β

qα + β + p(y)

)
sL−1 = 0

(C1)

since there is no bottom class for the Lth class. This simplifies
to

rsL−1 − (1 + r)sL = 0, (C2)

which yields the following:

r[K1 + K2r
L−1] − (1 + r)[K1 + K2r

L] = 0. (C3)

Replacing K1 with 1 − K2, we have

K1 = −rL+1

1 − rL+1
, K2 = 1

1 − rL+1
. (C4)

The steady-state solution then becomes

sy = rL+1 − ry

rL+1 − 1
. (C5)

Along the lines of the previous case, the mean state becomes

m = rL+1

rL+1 − 1
−

[
(qr)L+1 − 1

]
(q − 1)

(qr − 1)(qL+1 − 1)(rL+1 − 1)
. (C6)

Note that the case of q = 1 is singular and will be analyzed
afterwards. Taking the common denominator, we arrive at

m = rL+1(qr − 1)(qL+1 − 1) − (qL+1rL+1 − 1)(q − 1)

(rL+1)(qr − 1)(qL+1 − 1)
.

(C7)

The denominator has two poles, one at r = 1 and the other at
r = 1

q
. The sign of the denominator is negative in the interval

between the poles and is positive otherwise. So we have to
show that the numerator has the same sign in these three
ranges, so that m will be positive everywhere. Let us denote
the denominator by h(·). Note that we have

h(1,q) = 0,

h

(
1

q
,q

)
= 0, (C8)

h(0,q) = q − 1 > 1.

Taking the derivative, we have

∂h(r,q)

∂r
= (L + 1)rL(qr − 1)(qL+1 − 1) + rL+1q(qL+1 − 1)

− qL+1(L + 1)(q − 1)rL. (C9)

Evaluating this at r = 1 yields

∂h(r,q)

∂r

∣∣∣∣
r=1

= (L + 1)(q − 1)(qL+1 − 1)

+ q(qL+1 − 1) − (L + 1)(q − 1)qL+1

= qL+2 − q(L + 2) + (L + 1). (C10)

Note that this expression is zero at q = 1, and its derivative
with respect to q is

∂2h(r,q)

∂r∂q

∣∣∣∣
r=1

= (L + 2)(qL+1 − 1) > 0. (C11)

So the derivative at r = 1 is positive for all q > 1. Now we
evaluate the derivative at r = 1

q
. We obtain

∂h(r,q)

∂r

∣∣∣∣
r=1/q

= q−L(qL+1 − 1) − (L + 1)(qL+2 − qL+1)q−L

= q−L[qL+1 − 1 − (L + 1)qL+2 + (L + 1)qL+1]

= −q−L[(L + 1)qL+2 − (L + 2)qL+1 + 1]. (C12)

We intend to show that this is negative, which is equivalent to
the positivity of the term inside the brackets. Let us define

θ (q)
def= (L + 1)qL+2 − (L + 2)qL+1 + 1. (C13)

It is readily observable that θ (1) = 0. Also, taking the
derivative, we obtain

d

dq
θ (q) = (L + 2)(L + 1)qL+1 − (L + 2)(L + 1)qL

= (L + 2)(L + 1)qL(q − 1) > 0. (C14)

Since the derivate is always positive for q > 1 and the value
of the function at q = 1 is zero, the function itself is positive
in this range.

So far we have seen that the derivative of h(r,q) is negative
at r = 1

q
and is positive at r = 1. The value of the function

is zero at both points. If we show that the derivative only
vanishes once in this interval, we can conclude that the function
is negative between these two points, as desired, so that the
mean state would be positive for all values of r .

Setting the derivative equal to zero, we find

∂h(r,q)

∂r
= 0 =⇒ (L + 1)rL(qr − 1)(qL+1 − 1)

+ rL+1q(qL+1 − 1) − qL+1(L + 1)(q − 1)rL = 0.

(C15)

Rearranging the terms and separating different powers of r

gives

rL+1[q(qL+1 − 1) + q(L + 1)(qL+1 − 1)]

= rL[qL+1(L + 1)(q − 1) + (L + 1)(qL+1 − 1)], (C16)

which yields the only root

r = qL+1(L + 1)(q − 1) + (L + 1)(qL+1 − 1)

q(qL+1 − 1) + q(L + 1)(qL+1 − 1)
. (C17)

This can be simplified to

r = (L + 1)(qL+2 − 1)

q(L + 2)(qL+1 − 1)
. (C18)

This is the only root in the derivative. Now let us show that it
is between the two roots, that is,

1

q
<

(L + 1)(qL+2 − 1)

q(L + 2)(qL+1 − 1)
< 1. (C19)

This is equivalent to the following system of inequalities:

qL+2 − q(L + 2) + (L + 1) > 0,
(C20)

(L + 1)qL+2 − (L + 2)qL+1 + 1 > 0.

The second one is θ (r), the positivity of which was proven
above. For the first one, first note that its value is zero at
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q = 1. Its derivative is

(L + 2)qL+1 − (L + 2) = (L + 2)(q+1 − 1) > 0. (C21)

So we have found that the numerator of (C6) has a single
turning point between r = 1

q
and r = 1, and it is negative

at the former and positive at the latter. Hence the numerator
is negative between these points and positive otherwise, the
same as the denominator. So we conclude that the mean state
is always nonnegative, regardless of r .

Now let us examine the peculiar case of q = 1. In this case,
the mean state is

m = rL+1

rL+1 − 1
− [(r)L+1 − 1]

(r − 1)(rL+1 − 1)(L + 1)

= rL+1

rL+1 − 1
− 1

(r − 1)(L + 1)

= rL+2(L + 1) − rL+1(L + 2) + 1

(rL+1 − 1)(r − 1)(L + 1)
. (C22)

The denominator is always positive since the two factors flip
sign at the same point. We require verifying that the numerator
is always nonnegative. Let us define

η(r)
def= rL+2(L + 1) − rL+1(L + 2) + 1. (C23)

The derivative is
d

dr
η(r) = (L + 2)(L + 1)rL(r − 1). (C24)

Since the function is zero at r = 1 and the derivative is
always positive for r > 1, the mean state is positive for this
range.

To find the sign of the mean state for m < 1, note that
the derivative is negative in this range, and there are only
two turning points, which are r = 0,1. The value of the mean
state is positive for r = 0, so the mean state is positive for
r < 1.

We conclude that for the case of q = 1, the mean state is
positive regardless of the value of r .
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[59] G. A. Böhme and T. Gross, Phys. Rev. E 85, 066117 (2012).
[60] C. J. Tessone and R. Toral, Eur. Phys. J. B 71, 549 (2009).
[61] S. M. Krause and S. Bornholdt, Phys. Rev. E 86, 056106 (2012).
[62] C. Biely, R. Hanel, and S. Thurner, Eur. Phys. J. B 67, 285

(2009).
[63] R. K. Merton, R. K. Gray, B. Hockey, and H. C. Selvin, Reader

in Bureaucracy (Free Press, Glencoe, IL, 1952).
[64] P. M. Blau, Bureaucracy in Modern Society (Random House,

New York, 1956).

[65] P. M. Blau, Am. J. Soc. 73, 453 (1968).
[66] W. G. Ouchi, Acad. Manage. J. 21, 2 (1978).
[67] R. A. Gershon, The Transnational Media Corporation: Global

Messages and Free Market Competition (Lawrence Erlbaum,
Mahwah, NJ, 1996).

[68] C. Wright Mills, The Power Elite (Oxford University Press, New
York, 2000).

[69] E. E. Schattschneider, The Semi-sovereign People (Holt, Rine-
hart and Winston, Hindsale, IL, 1960).

[70] Critical Studies in Media Commercialism, edited by R. Andersen
and L. Strate (Oxford University Press, Oxford, 2000).

[71] C. Calhoun, J. Gerteis, J. Moody, S. Pfaff, K. Schmidt, and
I. Virk, Classical Sociological Theory (Blackwell, Malden, MA,
2002).

[72] S. Appelrouth and L. D. Edles, Classsical and Contemporary
Sociological Theory: Text and Readings (Pine Forge Press, Los
Angeles, 2008).

[73] L. A. Coser, Masters of Sociological Thought: Ideas in Histori-
cal and Social Context (Harcourt Brace Jovanovich, New York,
1971).

[74] In this paper, it is tacitly assumed that there is a unique classifier
of the members of society, on the basis of which the levels
are assigned. So the analysis is more applicable to situations
where there is a dominant classification factor. For example, in
an ideal typical chain of command, one’s rank is the determinant
of influence, regardless of other socioeconomic factors.

[75] Let us mention that Weber’s social classification adds other
factors to that of Marx, such as status groups, yielding a classi-
fication with at least two dimensions, altering the consequences
[78,79].

[76] A. D. Polyanin, Handbook of Linear Partial Differential Equa-
tions for Engineers and Scientists (CRC Press, Boca Raton, FL,
2002).

[77] C. M. Bender and S. A. Orszag, Advanced Mathematical
Methods for Scientists and Engineers (McGraw-Hill, New York,
1978).

[78] M. Weber, Max Weber: Selections in Translation (Cambridge
University Press, Cambridge, 1978).

[79] A. Giddens, Sociology 4, 289 (1970).

022105-13

http://dx.doi.org/10.1037/h0040525
http://dx.doi.org/10.1146/annurev.psych.55.090902.142015
http://dx.doi.org/10.1146/annurev.psych.55.090902.142015
http://dx.doi.org/10.1088/0305-4470/37/35/006
http://dx.doi.org/10.1209/0295-5075/85/48003
http://dx.doi.org/10.1209/0295-5075/85/48003
http://dx.doi.org/10.1103/PhysRevE.80.041129
http://dx.doi.org/10.1103/PhysRevE.80.041129
http://dx.doi.org/10.1103/PhysRevE.87.052114
http://dx.doi.org/10.1103/PhysRevE.87.052114
http://dx.doi.org/10.1103/PhysRevE.87.012806
http://dx.doi.org/10.1103/PhysRevE.87.012806
http://dx.doi.org/10.1103/PhysRevE.86.051123
http://dx.doi.org/10.1103/PhysRevE.86.051123
http://dx.doi.org/10.1140/epjb/e2011-10359-0
http://dx.doi.org/10.1103/PhysRevE.86.011105
http://dx.doi.org/10.1103/PhysRevE.86.011105
http://dx.doi.org/10.1103/PhysRevE.85.066117
http://dx.doi.org/10.1140/epjb/e2009-00343-8
http://dx.doi.org/10.1103/PhysRevE.86.056106
http://dx.doi.org/10.1140/epjb/e2008-00390-7
http://dx.doi.org/10.1140/epjb/e2008-00390-7
http://dx.doi.org/10.1086/224506
http://dx.doi.org/10.2307/255753
http://dx.doi.org/10.1177/003803857000400301



