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Solid-liquid transition in polydisperse Lennard-Jones systems
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We study melting of a face-centered crystalline solid consisting of polydisperse Lennard-Jones spheres with
Gaussian polydispersity in size. The phase diagram reproduces the existence of a nearly temperature invariant
terminal polydispersity (δt � 0.11), with no signature of reentrant melting. The absence of reentrant melting
can be attributed to the influence of the attractive part of the potential upon melting. We find that at terminal
polydispersity the fractional density change approaches zero, which seems to arise from vanishingly small
compressibility of the disordered phase. At constant temperature and volume fraction the system undergoes a
sharp transition from crystalline solid to the disordered amorphous or fluid state with increasing polydispersity.
This has been quantified by second- and third-order rotational invariant bond orientational order, as well as by
the average inherent structure energy. The translational order parameter also indicates a similar sharp structural
change at δ � 0.09 in case of T ∗ = 1.0, φ = 0.58. The free energy calculation further supports the sharp nature
of the transition. The third-order rotationally invariant bond order shows that with increasing polydispersity,
the local cluster favors a more icosahedral arrangement and the system loses its local crystalline symmetry.
Interestingly, the value of structure factor S(k) of the amorphous phase at δ � 0.10 (just beyond the solid-liquid
transition density at T ∗ = 1) becomes 2.75, which is below the value of 2.85 required for freezing given by the
empirical Hansen-Verlet rule of crystallization, well known in the theory of freezing.
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I. INTRODUCTION

A system that consists of particles with a spread of size,
shape, or charge is commonly referred as “polydisperse.”
There are many materials which are polydisperse in nature,
e.g., colloids, polymers, etc. It is now known that polydisperse
fluids exhibit many behaviors not observed in monodisperse
systems [1–11]. For example, polydisperse systems can exhibit
novel phase behavior, such as an intense sensitivity of phase
boundaries to the presence of atypical large particles [2],
fractionation leading to multiphase coexistence [3–8], as
well as remarkable dynamical effects such as an enhanced
susceptibility to glass formation [9,10] and the likelihood of
multistage relaxation processes [11]. Various earlier studies
suggested that beyond an upper limit on the size polydispersity
(terminal polydispersity), homogeneous crystallization never
takes place [12–16]. This terminal polydispersity and the
nature of transition at this point are subjects of great interest
[17–20].

About three decades ago Rice and co-workers found an
intriguing result in their study of the freezing of hard sphere
systems that provides new insight into the random close
packed (RCP) state of the hard sphere fluid [21–23]. They
also carried out a similar analysis of Lennard-Jones (LJ)
fluids [22]. Analysis of the nonlinear integral equations for
inhomogeneous density corresponding to freezing to the fcc,
by using the bifurcation theory of freezing developed by Kozak
et al. [24], suggested the existence of a terminal density that
can be identified with the RCP state. We shall elaborate on
this fascinating result in a bit more detail. In this approach, the
transformed order parameter of liquid to solid transition ψ �G =
ρl

ρs
φ �G (where φ �G is the order parameter that describes freezing

and is ultimately related to the Debye-Waller factor, ρl and
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ρs are the density of the liquid and solid phases, respectively)
was investigated in terms of λ �G, where λ �G = ρs

�C2( �G), and
�C2( �G) is the Fourier transform of the direct pair correlation
function �C2( �R12), evaluated at the reciprocal lattice vector �G.
The bifurcation diagram so obtained exhibited certain inter-
esting features that are independent of interaction potential,
determined solely by the lattice type and the dimensionality.
The reduced order parameter was found to go continuously
to zero at λ �Gα

= 1, where �Gα is the first reciprocal lattice
vector of fcc, i.e., ( ±1, ±1, ±1) 2π/a, where a is the unit
cell length. Numerical calculations using the Thiele-Wertheim
[25,26] solution for hard spheres of the Percus-Yevick equation
provide the following values of the density parameters for
liquid to solid transition ρ∗

l = 1.202, ρ∗
s = 1.381 at λ �Gα

= 1.
Note that beyond λ �Gα

= 1, no liquid-solid transition can exist.
They found the liquid density is close to the random closed
pack density of hard spheres obtained by Bernal [27] a long
time ago (and verified by many authors since then), and the
density of the solid is close to the crystal closed pack density,
which is equal to 1.414.

The three-dimensional bifurcation diagram for an fcc lattice
predicted a first-order phase transition at lower (than RCP)
density, which can be obtained by imposing the equality of
thermodynamic potential between the liquid and the solid
phases. However, a bifurcation diagram can also be used to
address the metastable region in the order parameter space as
given by the nonlinear integral equation theory of freezing.
Rice and co-workers further speculated that the RCP, where
the reduced order parameter ψ �Gα

goes to zero, is the terminal
point in the phase diagram where the liquid must transfer
to solid [22]. This was considered as the spinodal point of
the liquid-solid transition. However, a precise origin of the
reason for the RCP state as the terminal transition point is still
not clear and remains an intriguing unsolved issue. Clearly
transition to crystalline solid can become prohibitively difficult
at the RCP state of the liquid where the compressibility
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goes to zero and density fluctuations are virtually impos-
sible. Although Rice and co-workers recently exhibited the
existence of RCP in binary mixture [28], no study has been
carried out for the polydisperse system using the bifurcation
diagram.

In one of the previous studies Phan et al. [29] reported that
large polydispersity favors the formation of a metastable disor-
dered solid. They furthermore found that the crystalline state is
usually characterized by an ordered arrangement where larger
particles are placed on the corners and smaller particles on
faces of the fcc. Thus larger particles are surrounded by twelve
smaller particles, whereas smaller particles are surrounded by
four larger particles and eight smaller particles. They made a
remarkable observation that the maximum volume fraction of
the RCP, i.e., φRCP

max , is almost independent of polydispersity,
whereas maximum volume fraction of fcc i.e.,φfcc

max, decreases
with the increase in polydispersity. As a result, a crossover
between φfcc

max and φRCP
max is observed at around 0.12 (see Fig. 10

of Ref. [29]). Thus, beyond this density, no freezing of fluid
phase into crystalline solid is predicted to be possible, because
the density of the solid becomes less than that of the liquid. This
crossover implies that at large polydispersity random packing
of hard spheres is more efficient than crystal close packing.
Just prior to the crossover, as the polydispersity is increased,
the density difference between the random disordered state
and the crystalline state (both at the same pressure) is very
small, implying that the fractional density change on freezing
would also be very small. This is analogous to the freezing
of three- and two-dimensional one component plasma to bcc
and the hexagonal lattice, respectively [21,23]. In the case
of a one component plasma, the fractional density change is
zero to preserve electroneutrality of the system. A freezing
transition is possible because the compressibility tends to
zero, so the energy gain from freezing remains finite and
can counter the loss in free energy due to entropy loss upon
solidification. In the case of freezing near the RCP state,
compressibility tends to zero, making a transition with zero
fractional density change thermodynamically possible. The
existence of terminal polydispersity and the coincidence of
liquid-solid density at the terminal polydispersity with the RCP
state bears a resemblance to the analysis of Rice et al. [22]
for a hard sphere system and also conjectured for the one
component Lennard-Jones fluid as the bifurcation diagram for
liquid-fcc transition is independent of interaction potential.
For Lennard-Jones potential, the density of the RCP state is
weakly temperature dependent [29].

Subsequently, several studies of phase behavior of freezing
transition of polydisperse hard sphere and repulsive soft
sphere fluids have been carried out [5,6,8,30,31]. A significant
conclusion from all of these studies is the microscopic
fractionation, in which case local polydispersity can be
different among the coexisting phases. In polydisperse hard
sphere systems, another fascinating observation is the reentrant
melting [9,32,33] scenario, which has been observed for hard
spheres at large polydispersity and large volume fraction. In
those limits, (where pressure is also high) the disordered state
is more stable. Therefore the crystalline solid state is bounded
by φ < φS and δ < δt . The reentrant melting has also been
observed in experiments [34].

Although an analytical study of freezing or melting of
polydisperse fluid is challenging, there have been several
notable attempts to study both the fluid-fluid and the fluid-solid
transition [1,35]. Recently, an elegant application of density
functional theory (DFT) theory of freezing of hard sphere fluid
by Chaudhuri et al. found a terminal polydispersity of 0.048,
followed by a reentrant melting at larger density [16]. In fact, a
number of studies on hard sphere polydisperse systems showed
the existence of terminal polydispersity as well as reentrant
melting [9,32,33]. Experimental studies, however, observed a
nearly universal value of 0.12 for the terminal polydispersity
[29,36]. Simulation studies on hard sphere crystals also predict
a possible terminal polydispersity of 0.113 [37], which is
close to the value that Bolhuis and Kofke [38] reported for
the terminal polydispersity δt = 0.118 for the fluid. Simple
mean-field model of polydisperse hard spheres suggests the
value to be 0.0833 [32]. It is also well known that for binary
systems, the Hume-Rothery rule precludes freezing when the
radii of the two components differ by more than 15%, beyond
which glass becomes the stable phase at high density [39].

While a sharp increase in liquid-solid surface tension
with polydispersity can exclude nucleation of a crystalline
nucleus [15], it still leaves open the question of the existence
of a thermodynamically stable crystalline phase, at a large
polydispersity, marked by a global free energy minimum.
DFT analysis, on the other hand, suggests that the crystalline
minimum either disappears or becomes metastable with re-
spect to the disordered phase beyond a terminal polydispersity.
Thus the situation is again a bit like spinodal decomposition.
In the DFT analysis, the reduced stability of the crystalline
phase arises from the reduced value of the first peak of the
static structure factor, S(k). This is then related to the larger
disorder in polydisperse fluids than monodisperse fluids and
this disorder increases with polydispersity. However, the said
DFT analysis, in addition to predicting a lower value of the
terminal polydispersity for hard spheres, does not address
the issue of the transition properties, like the polydispersity
dependence of the volume fraction change across the transition
[16]. Temperature dependence of the transition has not been
studied theoretically (most of the studies considered only
hard spheres) and thus the phase diagram has not been fully
elucidated yet.

In this article we present a computer simulation study
of melting of the Lennard-Jones polydisperse system. Our
study reveals a remarkable result that the transition poly-
dispersity converges, when volume fraction is varied, to a
maximum value of 0.11, termed as terminal polydispersity,
at different temperatures, in agreement with experiments [34].
The transition line does not show any signature of reentrant
melting. Additionally, we find that the fractional volume
change on melting or freezing approaches zero as we increase
the polydispersity at constant temperature. The second-order
and third-order rotational invariant bond orientational order
parameters show a large amplitude jump as the system passes
through the transition polydispersity. The third-order bond
orientational order explores that at large polydispersity local
crystalline symmetry decreases and structure becomes more
icosahedral type. We also show by inherent structure analysis
[40] that some of the above results can be understood from
the increase in the internal energy of the crystalline phase
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with polydispersity. In the present study we also find that at
the limiting polydispersity the value of the first peak of static
structure factor S(k) falls below the 2.85 needed for freezing,
as given by the Hansen-Verlet rule of crystallization [41].

II. SIMULATION DETAILS

We study all simulations using standard molecular dynam-
ics (MD) and Monte Carlo (MC) techniques supplemented
by a particle swap algorithm. It is well known that standard
simulation techniques may not be fully capable of locating
the true thermodynamic equilibrium of the system. The
particle swap technique alleviates this lacuna to some extent.
The system we study consists of 500 particles with periodic
boundary conditions having Gaussian distribution of particle
diameters σ,

P (σ ) = 1√
2πd2

exp

[
−1

2

(
σ − σ̄

d

)2]
. (1)

The dimensionless polydispersity index is defined as δ = d
σ̄

,
where d is standard deviation of the distribution and σ̄ is
the mean diameter. The particles interact with LJ potential
having a constant potential depth. The potential for a pair
of particles i and j is cut and shifted to zero, at distance
rc = 2.5σij , where σij = (σi + σj )/2. We study for different
polydispersity indices starting from δ = 0–0.20 with an
increment of 0.01. Both MD and MC simulations have
been employed in NVT, NPT, and NVE ensembles. The MC
simulations are aided with particle swapping, which enables a
faster equilibration in the solid phase. Instead of monitoring
the density of the polydisperse system in the case of NVT and
NVE ensembles, it is customary to monitor the volume fraction
(φ) of the systems. The standard conjugate gradient method
[42] has been employed to obtain the inherent structures
along an MD trajectory. The free energy calculation has been
carried out by using umbrella sampling in NPT ensembles.
In order to check the finite size effects, we carry out MC
simulations with larger system size (2048 particles) as well.
The overall physical picture does not change upon variation of
system size; however, the transition point shifts toward lower
polydispersity.

III. RESULTS AND DISCUSSIONS

A. Quenched phase diagram and terminal polydispersity

The presence of polydispersity makes the phase diagram
rich and complex, with the possibilities of the presence of
terminal polydispersity and reentrant melting. There exist
enormous theoretical and computational studies on polydis-
perse hard sphere fluids in the literature. Polydisperse hard
sphere fluids show first-order fluid to solid phase transition
with increasing volume fraction. Further increase of volume
fraction leads to reentrant melting of the solid. In addition to the
reentrant melting, there is another characteristic feature of the
hard sphere system: above a threshold value of polydispersity
it does not form solid phase under any condition. Contrary to
the hard sphere fluid, there are very few studies on systems
such as LJ fluids that have attractive interaction potential.
Therefore it is interesting to study such model systems to

0 0.04 0.08 0.12 0.16 0.2
δ

-7.4

-7.2

-7

-6.8

-6.6

<E
IS

>

FIG. 1. Variation of average inherent structure energy with
respect to polydispersity index at constant volume fraction φ = 0.58
and temperature T ∗ = 1.0. The average IS energy increases almost
quadratically with polydispersity until δ = 0.09, when a structural
transition takes place and the dependence changes sharply. In
the disordered state, average IS energy is nearly independent of
polydispersity.

understand the influence of the attractive part of potential on
the above-mentioned characteristics.

The terminal polydispersity at a different temperature
has been calculated in the following fashion. For every
polydispersity we carry out NVT ensemble simulation for
5 × 104 steps, followed by 5 × 104 steps in the NVE ensemble
for equilibration and 5 × 105 more steps in the NVE ensemble
for acquiring results. The single time step size is 2 fs. The
standard conjugate gradient method [42] has been employed
to obtain the inherent structures along an MD trajectory. We
compute the average inherent structure (IS) energy by varying
polydispersity. The average inherent structure increases almost
quadratically with polydispersity up to a polydispersity index
at which structural transition takes place. This polydispersity
index is known as “transition polydispersity,” beyond which
the crystalline solid phase is no longer stable (Fig. 1.).

At a given temperature from average IS energy calculation
we obtain the transition polydispersity for a given volume
fraction. The transition polydispersity initially increases with
increasing φ and then becomes invariant at large φ [Fig. 2(a)].
Though the transition lines are different for different temper-
atures, they eventually converge to a value of δt ∼ 0.11 at
large φ. There is no liquid-solid transition observed above this
polydispersity and it is termed as “terminal polydispersity.”
Here we should mention that the terminal polydispersity
observed in experiments is close to 0.12 in colloidal spheres,
which may be modeled as hard spheres [34], and the density
functional theoretical prediction of terminal polydispersity of
hard spheres is 0.05. The significance of this observation is that
for polydispersity higher than δt , there is no crystallization and
the system inhabits glassy minima. We find that the terminal
polydispersity is weakly temperature dependent, and for all
the temperatures the phase transition ranges between 0.10 and
0.11—the lower limit is obtained at high temperature [see
Fig. 2(a)]. The transition line does not show any signature
of reentrant melting, as the transition line monotonically
increases and gets saturated at higher values of φ [Fig. 2(a)].
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FIG. 2. (Color online) (a) Transition polydispersity obtained from average inherent energy calculation versus volume fraction at three
different temperatures T ∗ = 0.50 (blue solid line with filled diamond), 1.0 (red solid line with star), and 2.74 (black solid line with filled circle).
Note that the transition polydispersity at different temperatures converges to a maximum value of δt ∼ 0.11, termed as terminal polydispersity.
(b) Phase diagram of the quenched system (i.e., for a given polydispersity only one particle size distribution is studied) in polydispersity-volume
fraction plane at T ∗ = 1.0. Note that with increasing polydispersity, the gap between the liquid line and the solid line decreases and at 9% the
difference becomes negligibly small (further supported by substantially small compressibility and fractional volume change).

We compute the coexistence line of the solid-liquid transi-
tion by varying polydispersity [see Figs. 2(b) and 3] at different
temperatures. Figure 2(b) shows the coexistence line at T ∗ =
1.0, whereas Fig. 3 represents the same at four different
temperatures T ∗ = 0.8, 0.9, 1.0, and 1.1. Note that with
increasing polydispersity the liquid and solid line approach
each other, and at 9% polydispersity the density difference of
the two phases becomes quite small, less than 1% fractional
density change [Fig. 2(b)]. Beyond 9% polydispersity the
system does not retain any crystalline solid configuration up
to the highest pressures studied. The temperature dependence
coexistence line shows that with increasing temperature the
fractional density change shifts towards a higher value (Fig. 3).
As remarked earlier, we do not observe any reentrant melting
scenario.
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FIG. 3. (Color online) The coexistence lines are shown for four
different temperatures: T ∗ = 0.8 in blue, 0.9 in cyan, 1.0 in red, and
1.1 in green. For all the cases the filled square symbol corresponds to
the liquid line and the filled circle symbol represents the solid line.
With increasing temperature the coexistence volume fraction also
increases.

B. Fractional volume change and isothermal compressibility
at the transition point

We already discussed earlier that with increasing poly-
dispersity the difference between the density of liquid and
solid state at coexistence becomes very small. Here we have
computed the fractional volume change at the transition
point defined as (VL − VS)/VS . Fractional volume change
upon melting is computed in the NPT system for different
polydispersity values at constant reduced temperature T ∗ =
1.0. Figure 4(a) shows that with increasing polydispersity the
fractional volume change decreases and eventually becomes
very small near the terminal polydispersity. It is further
supported by decrease of compressibility (at the spinodal or
transition point) with increasing δ, as shown in Fig. 4(b).

Along the transition line the isothermal compressibility
(χ ) for each polydispersity (δ) has been computed using
NPT simulation at constant reduced temperature T ∗ = 1.0
and P ∗ = 10.0 Figure 4(b) shows that with increase in
polydispersity, the value of the isothermal compressibility (χ )
(at the solid-liquid phase transition point) decreases gradually
until the polydispersity reaches 0.09, beyond which χ remains
almost constant with further increase in polydispersity. This
signifies the structural change at δ = 0.09, where the system
enters into disordered amorphous or fluid phase. As we all
know that isothermal-isobaric compressibility measures the
volume fluctuations in the system, consequently, very low
compressibility at the transition point provides an explanation
for small (∼zero) volume change due to the transition.

C. Quantification of structural change

To quantify the variation in the amplitude of structural
change with polydispersity, we compute the local bond order
introduced by Steinhardt et al. [43], and first apply it to study
crystal nucleation by Frenkel and co-workers [44]. Following
their definition, a vector rij pointing from a given molecule (i)
to one of its nearest neighbors (j ) is denoted as a “bond.” For
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FIG. 4. (a) Fractional volume change against polydispersity index δ. Note that the fractional volume change on the solid-liquid phase
transition approaches zero as the polydispersity is increased at constant temperature T ∗ = 1.0. At a polydispersity of 0.09, the fractional volume
change is less than 0.01. (b) Variation of compressibility at the transition point with polydispersity index δ. Note that at constant temperature
T ∗ = 1.0, as the polydispersity is increased, compressibility decreases and then becomes almost constant from δ = 0.09 onwards.

each bond one determines the quantity

Qlm(rij ) = Ylm[θ (rij ),φ(rij )], (2)

where Ylm[θ (rij ),φ(rij )] is spherical harmonics and θ (rij ) and
φ(rij ) are the polar and azimuthal angles of vector rij with
respect to an arbitrary reference frame. The global bond order
is obtained by averaging over all bonds in the system,

Q̄lm = 1

Nb

∑
bonds

Qlm(rij ), (3)

where Nb is the number of bonds. To make the order parameters
invariant with respect to rotations of the reference frame, the
second-order invariants are defined as

Ql =
[

4π

2l + 1

m=l∑
m=−l

Q̄2
lm

]1/2

(4)

and the third-order invariants are defined as

Wl =
∑

m1+m2+m3=0

(
l

m1

l

m2

l

m3

)
Q̄lm1Q̄lm2Q̄lm3 , (5)

where the coefficients (· · ·) are the Wigner 3j symbols [45]. To
measure the symmetry of a cluster in a better way, a normalized
quantity is defined as

Ŵl = Wl∑
m

(|Qlm|2)
3
2

. (6)

In fcc lattice the orientational order is characterized by
sixfold symmetry that corresponds to l = 6, and, for perfect
fcc Q6 = 0.5745 [42,45]. To detect specifically icosahedral
order, the preferential choice is W6 or the normalized quantity
Ŵ6, and for perfect icosahedral arrangement, Ŵ6 = −0.16975
[43,46]. We have computed Q6 and Ŵ6 at T ∗ = 1.0, φ =
0.58 by varying polydispersity of the system [Fig. 5(a)].
Note that in Fig. 5(a) both Q6 and Ŵ6 show a sharp
structural transition at 9% polydispersity. It is evident from the
result that at constant temperature and volume fraction with
increasing polydispersity the crystalline order (Q6) decreases

gradually and at 9% polydispersity the crystalline phase
disappears completely. It is also clear that with increasing
polydispersity, Ŵ6 becomes more and more negative, which
signifies the formation of local icosahedral arrangement. Thus
icosahedral arrangement is more tolerant to size asymme-
try than crystalline order. The sharp structural transition
at 9% polydispersity, indicated by a sharp fall in Q6 as
well as Ŵ6, confirms the first-order nature of the phase
transition.

We also compute the translational order (τ ) from the radial
distribution function [47,48] as

τ = 1

sc

∫ sc

0
[g(s) − 1]ds, (7)

where s = rρ1/3 is the radial distance scaled by the number
density, g(s) is the pair correlation function, and sc is the
upper limit of s and set to 3.5. Translational order provides a
measure of the local density modulations over a finite number
of coordination shells and can be considered as a quantity to
characterize the local structure. For a completely uncorrelated
system, g(s) = 1, and thus τ has a value of zero. On the
other hand, the value of τ is relatively large for systems
with long-range order. For a perfect fcc crystal it has a value
of τ fcc(sc = 3.5) = 1.7893. The translational order has been
calculated by varying the system polydispersity. The results
are shown in Fig. 5(b). The translational order also shows
a transition similar to Q6 and Ŵ6 at the same polydispersity.
Both Figs. 5(a) and 5(b) together confirm a structural transition
at 9% polydispersity, at T ∗ = 1.0, and φ = 0.58.

Another unique way of characterization of the structural
order that exists in the system is to construct an order map of
bond orientational and translation order, shown in Fig. 5(c).
It is now well discussed that by increasing the polydispersity
the system shows a crystalline solid to fluid phase transition. It
is clear from Fig. 5(c) that all crystalline and fluid phases fall
onto single lines for each of the respective phases. This means
that the two order metrics are strictly correlated and are not
independently variable.
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FIG. 5. (Color online) (a) The second-order (Q6) and third-order (W6) rotational invariants bond orientational order parameter vs
polydispersity. Note with increasing polydispersity the crystalline order (Q6) decreases and eventually becomes very small, followed by
a sharp transition at δ = 0.09, which confirms that homogeneous crystalline phase becomes unstable with increasing polydispersity. On the
other hand, the third-order rotational invariants bond order (W6) becomes more negative, followed by a sharp structural change at same
polydispersity. The large negative value (W6) indicates local clusters that are stabilized by an icosahedral arrangement. (b) Translational order
parameter with respect to polydispersity index δ. Note that translational and orientational order together confirm a structural change at 9%
polydispersity at temperature T ∗ = 1.0, volume fraction φ = 0.58. (c) Ordering map in τ -Q6 plane for different δ, at T ∗ = 1.0 and φ = 0.58.
It is clear from the order metrics map that two order metrics are highly correlated and are not independently variable.

D. Free energy and existence of metastable amorphous solid

Previously Wales and co-workers have shown that potential
energy surfaces can be used to achieve insight into structure,
dynamics, and thermodynamics at both a qualitative and a
quantitative level [49–51]. We carry out NPT simulation and
calculate the free energy of the system at different values
of polydispersity (δ), at constant temperature T ∗ = 1, and
pressure P ∗ = 5, 10, and 15 by using the umbrella sampling
technique and considering Q6 as the order parameter. At
a particular pressure, with increasing polydispersity, the
crystalline phase becomes gradually less stable and there
exists a coexistence polydispersity, (e.g., δ ≈ 0.07, for P ∗ =
10), where the free energy of the two states becomes equal
[Figs. 6(a)–6(c)]. Upon further increase in δ, the solid becomes
less stable, and beyond a particular value of δ, the metastable
solid minimum vanishes. Figures 6(a) and 6(b) indicate that
the coexistence polydispersity at P ∗ = 10 is δ � 0.07. Upon
further increase in δ, the disordered phase becomes more
stable and the solid state minimum disappears by δ = 0.09.
This is in agreement with the results discussed earlier.

E. Inherent structure energy and polydispersity

Polydispersity makes a first principle study of the melting or
freezing transition a bit difficult because analytical solution of

pair correlation functions is hard to obtain. Fortunately, one can
obtain considerable insight into the melting or freezing process
by studying the inherent structures of the liquids and solids
and also their energy as a function of the polydispersity. We
have discussed earlier (Fig. 1) that average inherent structure
energy 〈EIS〉 increases with polydispersity until a critical value
of around δ = 0.09 (at T ∗ = 1.0, φ = 0.58) and then it becomes
almost invariant of δ, which indicates a structural change at the
polydispersity δ = 0.09. In Fig. 7 we present distribution of
IS energy at different polydispersity indices. Note the lack of
spread in IS energy distribution until δ = 0.085 (at T ∗ = 1.0,
and φ = 0.58). There is a complete change in distribution from
polydispersity 0.09 and larger, indicating a structural change
and disappearance of homogeneous crystalline solid phase.

F. Discussion

As polydispersity increases, the entropy of the fluid also
increases. Thus it is expected that freezing will occur at
a higher volume fraction φ as the polydispersity index δ

increases. In a hard sphere system, this increase in entropy
loss on freezing must be counterbalanced by an increase
(in absolute magnitude) of the PV term, where P is the
pressure and V is the volume change on freezing. At
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FIG. 6. (Color online) (a) Free energy as a function of Q6 at temperature T ∗ = 1 and pressure P ∗ = 10 for different polydispersity indices
(δ). From figure it is clear that δ ∼ 0.07 represents the coexistence point. Note that at δ = 0.09, even the metastable solid phase disappears and
the system remains in the liquid phase. (b) The free energy difference of solid phase and liquid phase [(G) = GS − GL] for different
polydispersities at temperature T ∗ = 1 and pressure P ∗ = 5 (black, solid line with diamond), 10 (red, solid line with rectangle), and 15 (blue,
solid line with circle). From the figure, it is clear that at P ∗ = 10, the system is in coexistence at δ ∼ 0.07. (c) Free energy contour as a function
of Q6 at temperature T ∗ = 1 and pressure P ∗ = 5, 10, and 15 (left to right) for different polydispersity (δ). (The contours have been generated
by taking G(Q6=0.28) = 0 as the reference point.) From the figure it is clear that with increase in polydispersity the solid phase becomes more
and more unstable and eventually vanishes after the system has approached the terminal polydispersity. The effect of pressure shows that the
solid phase is stable at high pressure for δ < δt , and with decrease in pressure the system goes to liquid or amorphous phase, although at δ � δt

the liquid or amorphous phase becomes the true ground state for any value of pressure.

terminal polydispersity both the PV term and entropy loss
become negligible. For a Lennard-Jones system, an important
contribution is made by the change in the internal energy E
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FIG. 7. (Color online) Distribution of IS energy at different
polydispersity indices. Note that there is a sharp change in the
distribution beyond δ = 0.09 when the distribution assumes the
characteristics of a liquid state.

term. Polydispersity dependence of this energy term makes
freezing of LJ liquid quite different from that of the hard
sphere system, as we report here.

In this manuscript a large number of results pertaining
to melting of Lennard-Jones spheres are presented. The first
indication of the existence of a possible terminal polydispersity
comes from inherent structure analysis, which in a simple way
reveals the absence of crystallization at large δ values. The
inherent structure analysis also finds a sharp transition between
ordered and disordered states. Our analysis shows that the
transition line between the liquid and solid ends abruptly at
δt = 0.11 for all the temperatures studied, beyond which no
combination of P and T gives rise to crystallization, that is,
the δt has a quasiuniversal character. The large φt (volume
fraction at terminal polydispersity) seems to suggest this as
an analogy of RCP structure stated by Rice et al. and Phan
et al. [22,29].

Free energy calculation of the order-disorder transition
showed the progressive decrease in the stability of ordered
state with increase in δ values and for P ∗ = 10 and T ∗ =
1.0. The coexistence of solid and liquid phases is obtained
at δ = 0.07 with solid and liquid phase volume fractions,
φs = 0.55 and φl = 0.53, respectively. Free energy calculation
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also reveals a spinodal-like behavior when the crystalline
state loses even its metastable character and the minimum
of solid phase disappears. The value of δ at the “spinodal”
point depends on pressure and temperature and forms a
locus in the phase plane span by δ, P , and T . Thus the
increase in polydispersity acts similarly to be a stress on
the system. Therefore the polydispersity-induced solid-liquid
transition observed here is similar to the stress-induced
mechanical instabilities found in glass. The absence of freezing
beyond a terminal polydispersity can also be rationalized by
using the integral equation theory of freezing derived from
density functional theory, which we discuss elaborately in the
Supplemental Material [52].

We find that the compressibility of the liquid state decreases
to zero at the pressure where the liquid-solid transition
ceases to exist. This happens at the terminal polydispersity.
Just prior to the terminal polydispersity, the fractional density
change approaches the zero value. In such a situation, the
contribution of the PV term to the free energy change on
freezing becomes nontrivial and needs careful consideration.
As at every P and T , the δmax(P,T ) signals the terminal
polydispersity beyond which no liquid-solid transition is
possible. This is an intriguing result that the fractional volume
change approaches zero at every δmax, which seems to agree
with the vanishing compressibility of the system. Such a
situation has been observed for three-dimensional and two-
dimensional freezing of one component plasma.

The second- and third-order rotational invariant bond ori-
entational orders further support for a structural change at δ =
0.09. The third-order rotational invariant bond orientational
further explores that with increasing polydispersity the local
arrangement shifts from crystalline to icosahedral type. We
thus provide evidence that local icosahedral order suppresses
crystalline order in polydisperse Lennard-Jones systems.

Interestingly, our result related to terminal polydispersity
can be analyzed using the Hansen-Verlet rule of crystallization.
In the present study we find that at the limiting polydispersity,
the value of structure factor S(k) of the amorphous phase
at δ � 0.10 (just beyond the solid-liquid transition density
at temperature T ∗ = 1) attains a value of 2.75 in its first
peak, which is below the value of S(k) � 2.85 required
for freezing given by the well-known Hansen-Verlet rule of
crystallization in the field of theory of freezing. This suggests
that a polydisperse liquid does not have the required short-
range order necessary to transform into a periodic long-range
order. The well-known Hansen-Verlet rule provides a nearly
universal structural criteria for a dense liquid to crystallize into
solid. In its simple form the rule states the crystallization occurs
when the first peak of the static structure factor S(k) touches the
value 2.85 when temperature T is lowered or density increased.
The microscopic explanation of this structural criteria comes
from density functional theory that uses the static structural
factor of liquid evaluated at the reciprocal lattice vectors
(RLVs) of liquid as the response of liquid to periodic density
fluctuations. Both for fcc and bcc lattices, a prominent RLV
nearly coincident with the wave vector where S(k) has its first
(and most prominent) maximum.

All the above results can be rationalized in the following
fashion. As δ increases the entropy of the liquid also increases
and at a constant volume fraction pressure decreases. Therefore

one needs to increase the volume fraction to offset this effect.
However, as δ increases, the increase of volume fraction makes
efficient packing a difficult process as disorderliness in the
system increases, which can even led to fractionation. As
shown in Figs. 6(b) and 6(c), increase of pressure makes the
solid more stable at low values of polydispersity, but the same
ceases to happen when polydispersity increases beyond the
terminal value.

IV. CONCLUSIONS

The freezing of polydisperse LJ fluids presents an in-
teresting case because the energy-entropy balance becomes
increasingly unfavorable for the solid to exist as a stable
phase as the polydispersity increases. The energy of the solid
increases due to buildup of strain energy because of the
difference in the size of the neighbors, while the entropy of the
liquid increases. It is plausible that the crystalline solid may
also exist in a large number of minima that involve different
degrees of fractionation. While a global minimum of the
fractionated crystal can exist, its precise configuration in terms
of particle distribution appears to be a bit ill defined. The last
statement is meant to imply that there have to be many minima
adjacent to the global minimum. So crystallization can happen
from an isotropic liquid to any of the anisotropic solids. These
two factors lead to the existence of a terminal polydispersity.
Note that beyond δ � 0.11, the system remains in the disorder
state even at very high pressure and low temperature. In an
earlier paper, Rice et al. suggested that the spinodal point of
liquid-solid transition of a Lennard-Jones fluid is effectively
a random close packing state and that no freezing transition
is possible beyond this point [22,28]. It is interesting to find
correlation of the present study with this earlier work. This is
also in agreement with simulation results of Ref. [29].

Polydisperse systems are good glass formers. Elsewhere we
have discussed a fragile to strong liquid crossover as the value
of the polydispersity index δ is increased [18,53] at constant
volume fraction. This is because the existence of particles
of different size interferes with the buildup of dynamical
correlations necessary for fragility. Large polydispersity also
interferes with buildup of static intermolecular correlations and
makes formation of a crystalline state from the liquid phase
difficult.

The present study with its focus on inherent structure
analysis and free energy calculation compliments earlier
studies restricted mostly to repulsive potential. The absence
of reentrant melting in the present system may be attributed to
the stabilization of solid by the attractive potential. This point
deserves further study. It is also shown that at high volume
fraction emergence of local icosahedral ordering eventually
suppresses crystalline order in large polydispersity.
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